mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
ONNX graphs simplifier
This commit is contained in:
parent
74bc8d351c
commit
c1c84d2fd1
207
modules/dnn/src/graph_simplifier.cpp
Normal file
207
modules/dnn/src/graph_simplifier.cpp
Normal file
@ -0,0 +1,207 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#include "graph_simplifier.hpp"
|
||||
|
||||
#include <queue>
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
|
||||
Subgraph::~Subgraph() {}
|
||||
|
||||
int Subgraph::addNodeToMatch(const std::string& op, int input_0, int input_1,
|
||||
int input_2, int input_3)
|
||||
{
|
||||
int nodeInputs[] = {input_0, input_1, input_2, input_3};
|
||||
int numInputs = 0;
|
||||
for (int i = 0; i < 4; ++i)
|
||||
{
|
||||
numInputs += (int)(nodeInputs[i] != -1);
|
||||
}
|
||||
return addNodeToMatch(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
|
||||
}
|
||||
|
||||
int Subgraph::addNodeToMatch(const std::string& op, const std::vector<int>& inputs_)
|
||||
{
|
||||
for (int i = 0; i < inputs_.size(); ++i)
|
||||
{
|
||||
CV_Assert(inputs_[i] < (int)nodes.size());
|
||||
}
|
||||
nodes.push_back(op);
|
||||
inputs.push_back(inputs_);
|
||||
return nodes.size() - 1;
|
||||
}
|
||||
|
||||
void Subgraph::setFusedNode(const std::string& op, int input_0, int input_1,
|
||||
int input_2, int input_3, int input_4, int input_5)
|
||||
{
|
||||
int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5};
|
||||
int numInputs = 0;
|
||||
for (int i = 0; i < 6; ++i)
|
||||
{
|
||||
CV_Assert(nodeInputs[i] < (int)nodes.size());
|
||||
numInputs += (int)(nodeInputs[i] != -1);
|
||||
}
|
||||
setFusedNode(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
|
||||
}
|
||||
|
||||
void Subgraph::setFusedNode(const std::string& op, const std::vector<int>& inputs_)
|
||||
{
|
||||
fusedNodeInputs = inputs_;
|
||||
fusedNodeOp = op;
|
||||
}
|
||||
|
||||
int Subgraph::getInputNodeId(const Ptr<ImportGraphWrapper>& net,
|
||||
const Ptr<ImportNodeWrapper>& node,
|
||||
int inpId)
|
||||
{
|
||||
CV_Assert(inpId < node->getNumInputs());
|
||||
std::string name = node->getInputName(inpId);
|
||||
// If operation produces several tensors, they are specified by index
|
||||
// after ':' character. In example, "input:0".
|
||||
name = name.substr(0, name.rfind(':'));
|
||||
const int numNodes = net->getNumNodes();
|
||||
for (int i = 0; i < numNodes; ++i)
|
||||
{
|
||||
if (net->getNodeName(i) == name)
|
||||
return i;
|
||||
}
|
||||
CV_Error(Error::StsParseError, "Input node with name " + name + " not found");
|
||||
}
|
||||
|
||||
bool Subgraph::match(const Ptr<ImportGraphWrapper>& net, int nodeId,
|
||||
std::vector<int>& matchedNodesIds,
|
||||
std::vector<int>& targetNodesIds)
|
||||
{
|
||||
matchedNodesIds.clear();
|
||||
targetNodesIds.clear();
|
||||
|
||||
std::queue<int> nodesToMatch;
|
||||
std::queue<int> targetNodes;
|
||||
nodesToMatch.push(nodeId);
|
||||
targetNodes.push(nodes.size() - 1);
|
||||
while (!nodesToMatch.empty())
|
||||
{
|
||||
int nodeToMatch = nodesToMatch.front();
|
||||
int targetNodeId = targetNodes.front();
|
||||
nodesToMatch.pop();
|
||||
targetNodes.pop();
|
||||
|
||||
if (std::find(matchedNodesIds.begin(), matchedNodesIds.end(), nodeToMatch) !=
|
||||
matchedNodesIds.end())
|
||||
continue;
|
||||
|
||||
const Ptr<ImportNodeWrapper> node = net->getNode(nodeToMatch);
|
||||
if (node->getType() != nodes[targetNodeId])
|
||||
return false;
|
||||
|
||||
std::vector<int>& inputNodes = inputs[targetNodeId];
|
||||
if (inputNodes.size() != node->getNumInputs())
|
||||
return false;
|
||||
|
||||
for (int j = 0; j < inputNodes.size(); ++j)
|
||||
{
|
||||
if (nodes[inputNodes[j]].empty()) // Unknown input node type.
|
||||
continue;
|
||||
nodeId = getInputNodeId(net, node, j);
|
||||
const Ptr<ImportNodeWrapper> inpNode = net->getNode(nodeId);
|
||||
if (inpNode->getType() != "Const")
|
||||
{
|
||||
nodesToMatch.push(nodeId);
|
||||
targetNodes.push(inputNodes[j]);
|
||||
}
|
||||
else if (nodes[inputNodes[j]] != "Const")
|
||||
return false;
|
||||
}
|
||||
matchedNodesIds.push_back(nodeToMatch);
|
||||
targetNodesIds.push_back(targetNodeId);
|
||||
}
|
||||
|
||||
const int n = matchedNodesIds.size();
|
||||
std::vector<std::pair<int, int> > elements(n);
|
||||
for (int i = 0; i < n; ++i)
|
||||
elements[i] = std::make_pair(matchedNodesIds[i], targetNodesIds[i]);
|
||||
std::sort(elements.begin(), elements.end());
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
matchedNodesIds[i] = elements[i].first;
|
||||
targetNodesIds[i] = elements[i].second;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
void Subgraph::replace(const Ptr<ImportGraphWrapper>& net, const std::vector<int>& matchedNodesIds,
|
||||
const std::vector<int>& targetNodesIds)
|
||||
{
|
||||
// Extract names of input nodes.
|
||||
std::vector<std::string> inputsNames(fusedNodeInputs.size());
|
||||
for (int i = 0; i < fusedNodeInputs.size(); ++i)
|
||||
{
|
||||
std::string inpName;
|
||||
// Find input node name looking at inputs of fused nodes.
|
||||
for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j)
|
||||
{
|
||||
Ptr<ImportNodeWrapper> node = net->getNode(matchedNodesIds[j]);
|
||||
std::vector<int>& inpIndices = inputs[targetNodesIds[j]];
|
||||
|
||||
CV_Assert(node->getNumInputs() == inpIndices.size());
|
||||
for (int k = 0; k < inpIndices.size(); ++k)
|
||||
{
|
||||
if (inpIndices[k] == fusedNodeInputs[i])
|
||||
{
|
||||
inpName = node->getInputName(k);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
CV_Assert(!inpName.empty());
|
||||
inputsNames[i] = inpName;
|
||||
}
|
||||
|
||||
// Remove matched nodes except the last one. Indices in ascending order are expected.
|
||||
Ptr<ImportNodeWrapper> node = net->getNode(matchedNodesIds.back());
|
||||
for (int i = matchedNodesIds.size() - 2; i >= 0; --i)
|
||||
net->removeNode(matchedNodesIds[i]);
|
||||
|
||||
// Modify the last node to be a fused one.
|
||||
node->setType(fusedNodeOp);
|
||||
node->setInputNames(inputsNames);
|
||||
|
||||
std::vector<Ptr<ImportNodeWrapper> > inputNodes(inputsNames.size());
|
||||
for (int i = 0; i < inputsNames.size(); ++i)
|
||||
{
|
||||
inputNodes[i] = net->getNode(getInputNodeId(net, node, i));
|
||||
}
|
||||
finalize(net, node, inputNodes);
|
||||
}
|
||||
|
||||
void Subgraph::finalize(const Ptr<ImportGraphWrapper>& net,
|
||||
const Ptr<ImportNodeWrapper>& fusedNode,
|
||||
std::vector<Ptr<ImportNodeWrapper> >& inputs) {}
|
||||
|
||||
void simplifySubgraphs(const Ptr<ImportGraphWrapper>& net,
|
||||
const std::vector<Ptr<Subgraph> >& patterns)
|
||||
{
|
||||
int numNodes = net->getNumNodes();
|
||||
std::vector<int> matchedNodesIds, targetNodesIds;
|
||||
for (int i = 0; i < numNodes; ++i)
|
||||
{
|
||||
for (int j = 0; j < patterns.size(); ++j)
|
||||
{
|
||||
if (patterns[j]->match(net, i, matchedNodesIds, targetNodesIds))
|
||||
{
|
||||
patterns[j]->replace(net, matchedNodesIds, targetNodesIds);
|
||||
numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added.
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
}} // namespace cv::dnn
|
100
modules/dnn/src/graph_simplifier.hpp
Normal file
100
modules/dnn/src/graph_simplifier.hpp
Normal file
@ -0,0 +1,100 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#ifndef __OPENCV_DNN_GRAPH_SIMPLIFIER_HPP__
|
||||
#define __OPENCV_DNN_GRAPH_SIMPLIFIER_HPP__
|
||||
|
||||
#include <string>
|
||||
|
||||
#include <opencv2/core.hpp>
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
|
||||
class ImportNodeWrapper
|
||||
{
|
||||
public:
|
||||
virtual ~ImportNodeWrapper() {};
|
||||
|
||||
virtual int getNumInputs() const = 0;
|
||||
|
||||
virtual std::string getInputName(int idx) const = 0;
|
||||
|
||||
virtual std::string getType() const = 0;
|
||||
|
||||
virtual void setType(const std::string& type) = 0;
|
||||
|
||||
virtual void setInputNames(const std::vector<std::string>& inputs) = 0;
|
||||
};
|
||||
|
||||
class ImportGraphWrapper
|
||||
{
|
||||
public:
|
||||
virtual ~ImportGraphWrapper() {};
|
||||
|
||||
virtual Ptr<ImportNodeWrapper> getNode(int idx) const = 0;
|
||||
|
||||
virtual int getNumNodes() const = 0;
|
||||
|
||||
virtual std::string getNodeName(int idx) const = 0;
|
||||
|
||||
virtual void removeNode(int idx) = 0;
|
||||
};
|
||||
|
||||
class Subgraph // Interface to match and replace subgraphs.
|
||||
{
|
||||
public:
|
||||
virtual ~Subgraph();
|
||||
|
||||
// Add a node to be matched in the origin graph. Specify ids of nodes that
|
||||
// are expected to be inputs. Returns id of a newly added node.
|
||||
// TODO: Replace inputs to std::vector<int> in C++11
|
||||
int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1,
|
||||
int input_2 = -1, int input_3 = -1);
|
||||
|
||||
int addNodeToMatch(const std::string& op, const std::vector<int>& inputs_);
|
||||
|
||||
// Specify resulting node. All the matched nodes in subgraph excluding
|
||||
// input nodes will be fused into this single node.
|
||||
// TODO: Replace inputs to std::vector<int> in C++11
|
||||
void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1,
|
||||
int input_2 = -1, int input_3 = -1, int input_4 = -1,
|
||||
int input_5 = -1);
|
||||
|
||||
void setFusedNode(const std::string& op, const std::vector<int>& inputs_);
|
||||
|
||||
static int getInputNodeId(const Ptr<ImportGraphWrapper>& net,
|
||||
const Ptr<ImportNodeWrapper>& node,
|
||||
int inpId);
|
||||
|
||||
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused.
|
||||
// Const nodes are skipped during matching. Returns true if nodes are matched and can be fused.
|
||||
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
|
||||
std::vector<int>& matchedNodesIds,
|
||||
std::vector<int>& targetNodesIds);
|
||||
|
||||
// Fuse matched subgraph.
|
||||
void replace(const Ptr<ImportGraphWrapper>& net, const std::vector<int>& matchedNodesIds,
|
||||
const std::vector<int>& targetNodesIds);
|
||||
|
||||
virtual void finalize(const Ptr<ImportGraphWrapper>& net,
|
||||
const Ptr<ImportNodeWrapper>& fusedNode,
|
||||
std::vector<Ptr<ImportNodeWrapper> >& inputs);
|
||||
|
||||
private:
|
||||
std::vector<std::string> nodes; // Nodes to be matched in the origin graph.
|
||||
std::vector<std::vector<int> > inputs; // Connections of an every node to it's inputs.
|
||||
|
||||
std::string fusedNodeOp; // Operation name of resulting fused node.
|
||||
std::vector<int> fusedNodeInputs; // Inputs of fused node.
|
||||
};
|
||||
|
||||
void simplifySubgraphs(const Ptr<ImportGraphWrapper>& net,
|
||||
const std::vector<Ptr<Subgraph> >& patterns);
|
||||
|
||||
}} // namespace dnn, namespace cv
|
||||
|
||||
#endif // __OPENCV_DNN_GRAPH_SIMPLIFIER_HPP__
|
157
modules/dnn/src/onnx/onnx_graph_simplifier.cpp
Normal file
157
modules/dnn/src/onnx/onnx_graph_simplifier.cpp
Normal file
@ -0,0 +1,157 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#include "../precomp.hpp"
|
||||
|
||||
#include "../graph_simplifier.hpp"
|
||||
#include "onnx_graph_simplifier.hpp"
|
||||
|
||||
#include <queue>
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
|
||||
// This wrapper can behave differently for fake input nodes and real graph nodes.
|
||||
class ONNXNodeWrapper : public ImportNodeWrapper
|
||||
{
|
||||
public:
|
||||
ONNXNodeWrapper(opencv_onnx::NodeProto* _node = 0) : node(_node) {}
|
||||
|
||||
virtual int getNumInputs() const CV_OVERRIDE
|
||||
{
|
||||
return node ? node->input_size() : 0;
|
||||
}
|
||||
|
||||
virtual std::string getInputName(int idx) const CV_OVERRIDE
|
||||
{
|
||||
CV_Assert_N(node, idx < node->input_size());
|
||||
return node->input(idx);
|
||||
}
|
||||
|
||||
virtual std::string getType() const CV_OVERRIDE
|
||||
{
|
||||
return node ? node->op_type() : "";
|
||||
}
|
||||
|
||||
virtual void setType(const std::string& type) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(node);
|
||||
node->set_op_type(type);
|
||||
}
|
||||
|
||||
virtual void setInputNames(const std::vector<std::string>& inputs) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(node);
|
||||
node->clear_input();
|
||||
for (int i = 0; i < inputs.size(); ++i)
|
||||
node->add_input(inputs[i]);
|
||||
}
|
||||
|
||||
opencv_onnx::NodeProto* node;
|
||||
};
|
||||
|
||||
// ONNX graph's inputs are separate from nodes so we index them before the rest of nodes.
|
||||
class ONNXGraphWrapper : public ImportGraphWrapper
|
||||
{
|
||||
public:
|
||||
ONNXGraphWrapper(opencv_onnx::GraphProto& _net) : net(_net)
|
||||
{
|
||||
numInputs = net.input_size();
|
||||
}
|
||||
|
||||
virtual Ptr<ImportNodeWrapper> getNode(int idx) const CV_OVERRIDE
|
||||
{
|
||||
opencv_onnx::NodeProto* node = 0;
|
||||
if (idx >= numInputs)
|
||||
node = net.mutable_node(idx - numInputs);
|
||||
return makePtr<ONNXNodeWrapper>(node);
|
||||
}
|
||||
|
||||
virtual int getNumNodes() const CV_OVERRIDE
|
||||
{
|
||||
return numInputs + net.node_size();
|
||||
}
|
||||
|
||||
virtual std::string getNodeName(int idx) const CV_OVERRIDE
|
||||
{
|
||||
if (idx < numInputs)
|
||||
return net.input(idx).name();
|
||||
else
|
||||
return net.node(idx - numInputs).output(0);
|
||||
}
|
||||
|
||||
virtual void removeNode(int idx) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(idx >= numInputs);
|
||||
net.mutable_node()->DeleteSubrange(idx - numInputs, 1);
|
||||
}
|
||||
|
||||
private:
|
||||
int numInputs;
|
||||
opencv_onnx::GraphProto& net;
|
||||
};
|
||||
|
||||
class SoftMaxSubgraph : public Subgraph
|
||||
{
|
||||
public:
|
||||
SoftMaxSubgraph()
|
||||
{
|
||||
int input = addNodeToMatch("");
|
||||
int inpExp = addNodeToMatch("Exp", input);
|
||||
int sum = addNodeToMatch("ReduceSum", inpExp);
|
||||
addNodeToMatch("Div", inpExp, sum);
|
||||
setFusedNode("Softmax", input);
|
||||
}
|
||||
|
||||
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
|
||||
std::vector<int>& matchedNodesIds,
|
||||
std::vector<int>& targetNodesIds) CV_OVERRIDE
|
||||
{
|
||||
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
|
||||
{
|
||||
Ptr<ImportNodeWrapper> sum = net->getNode(matchedNodesIds[1]);
|
||||
opencv_onnx::NodeProto* node = sum.dynamicCast<ONNXNodeWrapper>()->node;
|
||||
|
||||
for (int i = 0; i < node->attribute_size(); i++)
|
||||
{
|
||||
opencv_onnx::AttributeProto attr = node->attribute(i);
|
||||
if (attr.name() != "axes")
|
||||
continue;
|
||||
if (attr.ints_size() != 1)
|
||||
CV_Error(Error::StsNotImplemented, format("Unexpected number of axes: %d", attr.ints_size()));
|
||||
axis = attr.ints(0);
|
||||
return true;
|
||||
}
|
||||
CV_Error(Error::StsNotImplemented, "Missed axes attribute");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
virtual void finalize(const Ptr<ImportGraphWrapper>&,
|
||||
const Ptr<ImportNodeWrapper>& fusedNode,
|
||||
std::vector<Ptr<ImportNodeWrapper> >&) CV_OVERRIDE
|
||||
{
|
||||
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node;
|
||||
opencv_onnx::AttributeProto* attr = node->add_attribute();
|
||||
attr->set_name("axis");
|
||||
attr->set_i(axis);
|
||||
}
|
||||
|
||||
private:
|
||||
int axis;
|
||||
};
|
||||
|
||||
void simplifySubgraphs(opencv_onnx::GraphProto& net)
|
||||
{
|
||||
std::vector<Ptr<Subgraph> > subgraphs;
|
||||
subgraphs.push_back(makePtr<SoftMaxSubgraph>());
|
||||
|
||||
simplifySubgraphs(Ptr<ImportGraphWrapper>(new ONNXGraphWrapper(net)), subgraphs);
|
||||
}
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
}} // namespace cv::dnn
|
30
modules/dnn/src/onnx/onnx_graph_simplifier.hpp
Normal file
30
modules/dnn/src/onnx/onnx_graph_simplifier.hpp
Normal file
@ -0,0 +1,30 @@
|
||||
// This file is part of OpenCV project.
|
||||
// It is subject to the license terms in the LICENSE file found in the top-level directory
|
||||
// of this distribution and at http://opencv.org/license.html.
|
||||
|
||||
// Copyright (C) 2020, Intel Corporation, all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
|
||||
#ifndef __OPENCV_DNN_ONNX_SIMPLIFIER_HPP__
|
||||
#define __OPENCV_DNN_ONNX_SIMPLIFIER_HPP__
|
||||
|
||||
#include "../precomp.hpp"
|
||||
|
||||
#if defined(__GNUC__) && __GNUC__ >= 5
|
||||
#pragma GCC diagnostic push
|
||||
#pragma GCC diagnostic ignored "-Wsuggest-override"
|
||||
#endif
|
||||
#include "opencv-onnx.pb.h"
|
||||
#if defined(__GNUC__) && __GNUC__ >= 5
|
||||
#pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
namespace cv { namespace dnn {
|
||||
CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
|
||||
void simplifySubgraphs(opencv_onnx::GraphProto& net);
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
}} // namespace dnn, namespace cv
|
||||
|
||||
#endif // __OPENCV_DNN_ONNX_SIMPLIFIER_HPP__
|
@ -26,6 +26,8 @@
|
||||
#pragma GCC diagnostic pop
|
||||
#endif
|
||||
|
||||
#include "onnx_graph_simplifier.hpp"
|
||||
|
||||
namespace cv {
|
||||
namespace dnn {
|
||||
CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
@ -326,6 +328,9 @@ void ONNXImporter::populateNet(Net dstNet)
|
||||
{
|
||||
CV_Assert(model_proto.has_graph());
|
||||
opencv_onnx::GraphProto graph_proto = model_proto.graph();
|
||||
|
||||
simplifySubgraphs(graph_proto);
|
||||
|
||||
std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto);
|
||||
// List of internal blobs shapes.
|
||||
std::map<std::string, MatShape> outShapes;
|
||||
|
@ -9,6 +9,7 @@
|
||||
|
||||
#ifdef HAVE_PROTOBUF
|
||||
|
||||
#include "../graph_simplifier.hpp"
|
||||
#include "tf_graph_simplifier.hpp"
|
||||
#include <queue>
|
||||
|
||||
@ -18,203 +19,87 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
using ::google::protobuf::RepeatedField;
|
||||
using ::google::protobuf::MapPair;
|
||||
|
||||
class Subgraph // Interface to match and replace TensorFlow subgraphs.
|
||||
class TFNodeWrapper : public ImportNodeWrapper
|
||||
{
|
||||
public:
|
||||
virtual ~Subgraph() {}
|
||||
TFNodeWrapper(tensorflow::NodeDef* _node) : node(_node) {}
|
||||
|
||||
// Add a node to be matched in the origin graph. Specify ids of nodes that
|
||||
// are expected to be inputs. Returns id of a newly added node.
|
||||
// TODO: Replace inputs to std::vector<int> in C++11
|
||||
int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1,
|
||||
int input_2 = -1, int input_3 = -1)
|
||||
virtual int getNumInputs() const CV_OVERRIDE
|
||||
{
|
||||
int nodeInputs[] = {input_0, input_1, input_2, input_3};
|
||||
int numInputs = 0;
|
||||
for (int i = 0; i < 4; ++i)
|
||||
{
|
||||
numInputs += (int)(nodeInputs[i] != -1);
|
||||
}
|
||||
return addNodeToMatch(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
|
||||
return node->input_size();
|
||||
}
|
||||
|
||||
int addNodeToMatch(const std::string& op, const std::vector<int>& inputs_)
|
||||
virtual std::string getInputName(int idx) const CV_OVERRIDE
|
||||
{
|
||||
for (int i = 0; i < inputs_.size(); ++i)
|
||||
{
|
||||
CV_Assert(inputs_[i] < (int)nodes.size());
|
||||
}
|
||||
nodes.push_back(op);
|
||||
inputs.push_back(inputs_);
|
||||
return nodes.size() - 1;
|
||||
return node->input(idx);
|
||||
}
|
||||
|
||||
// Specify resulting node. All the matched nodes in subgraph excluding
|
||||
// input nodes will be fused into this single node.
|
||||
// TODO: Replace inputs to std::vector<int> in C++11
|
||||
void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1,
|
||||
int input_2 = -1, int input_3 = -1, int input_4 = -1,
|
||||
int input_5 = -1)
|
||||
virtual std::string getType() const CV_OVERRIDE
|
||||
{
|
||||
int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5};
|
||||
int numInputs = 0;
|
||||
for (int i = 0; i < 6; ++i)
|
||||
{
|
||||
CV_Assert(nodeInputs[i] < (int)nodes.size());
|
||||
numInputs += (int)(nodeInputs[i] != -1);
|
||||
}
|
||||
setFusedNode(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
|
||||
return node->op();
|
||||
}
|
||||
|
||||
void setFusedNode(const std::string& op, const std::vector<int>& inputs_)
|
||||
virtual void setType(const std::string& type) CV_OVERRIDE
|
||||
{
|
||||
fusedNodeInputs = inputs_;
|
||||
fusedNodeOp = op;
|
||||
node->set_op(type);
|
||||
}
|
||||
|
||||
static int getInputNodeId(const tensorflow::GraphDef& net,
|
||||
const tensorflow::NodeDef& node,
|
||||
int inpId)
|
||||
virtual void setInputNames(const std::vector<std::string>& inputs) CV_OVERRIDE
|
||||
{
|
||||
CV_Assert(inpId < node.input_size());
|
||||
std::string name = node.input(inpId);
|
||||
// If operation produces several tensors, they are specified by index
|
||||
// after ':' character. In example, "input:0".
|
||||
name = name.substr(0, name.rfind(':'));
|
||||
const int numNodes = net.node_size();
|
||||
for (int i = 0; i < numNodes; ++i)
|
||||
{
|
||||
if (net.node(i).name() == name)
|
||||
return i;
|
||||
}
|
||||
CV_Error(Error::StsParseError, "Input node with name " + name + " not found");
|
||||
}
|
||||
|
||||
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused.
|
||||
// Const nodes are skipped during matching. Returns true if nodes are matched and can be fused.
|
||||
virtual bool match(const tensorflow::GraphDef& net, int nodeId,
|
||||
std::vector<int>& matchedNodesIds,
|
||||
std::vector<int>& targetNodesIds)
|
||||
{
|
||||
matchedNodesIds.clear();
|
||||
targetNodesIds.clear();
|
||||
|
||||
std::queue<int> nodesToMatch;
|
||||
std::queue<int> targetNodes;
|
||||
nodesToMatch.push(nodeId);
|
||||
targetNodes.push(nodes.size() - 1);
|
||||
while (!nodesToMatch.empty())
|
||||
{
|
||||
int nodeToMatch = nodesToMatch.front();
|
||||
int targetNodeId = targetNodes.front();
|
||||
nodesToMatch.pop();
|
||||
targetNodes.pop();
|
||||
|
||||
if (std::find(matchedNodesIds.begin(), matchedNodesIds.end(), nodeToMatch) !=
|
||||
matchedNodesIds.end())
|
||||
continue;
|
||||
|
||||
const tensorflow::NodeDef& node = net.node(nodeToMatch);
|
||||
if (node.op() != nodes[targetNodeId])
|
||||
return false;
|
||||
|
||||
std::vector<int>& inputNodes = inputs[targetNodeId];
|
||||
if (inputNodes.size() != node.input_size())
|
||||
return false;
|
||||
|
||||
for (int j = 0; j < inputNodes.size(); ++j)
|
||||
{
|
||||
if (nodes[inputNodes[j]].empty()) // Unknown input node type.
|
||||
continue;
|
||||
nodeId = getInputNodeId(net, node, j);
|
||||
const tensorflow::NodeDef& inpNode = net.node(nodeId);
|
||||
if (inpNode.op() != "Const")
|
||||
{
|
||||
nodesToMatch.push(nodeId);
|
||||
targetNodes.push(inputNodes[j]);
|
||||
}
|
||||
else if (nodes[inputNodes[j]] != "Const")
|
||||
return false;
|
||||
}
|
||||
matchedNodesIds.push_back(nodeToMatch);
|
||||
targetNodesIds.push_back(targetNodeId);
|
||||
}
|
||||
|
||||
const int n = matchedNodesIds.size();
|
||||
std::vector<std::pair<int, int> > elements(n);
|
||||
for (int i = 0; i < n; ++i)
|
||||
elements[i] = std::make_pair(matchedNodesIds[i], targetNodesIds[i]);
|
||||
std::sort(elements.begin(), elements.end());
|
||||
for (int i = 0; i < n; ++i)
|
||||
{
|
||||
matchedNodesIds[i] = elements[i].first;
|
||||
targetNodesIds[i] = elements[i].second;
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
// Fuse matched subgraph.
|
||||
void replace(tensorflow::GraphDef& net, const std::vector<int>& matchedNodesIds,
|
||||
const std::vector<int>& targetNodesIds)
|
||||
{
|
||||
// Extract names of input nodes.
|
||||
std::vector<std::string> inputsNames(fusedNodeInputs.size());
|
||||
for (int i = 0; i < fusedNodeInputs.size(); ++i)
|
||||
{
|
||||
std::string inpName;
|
||||
// Find input node name looking at inputs of fused nodes.
|
||||
for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j)
|
||||
{
|
||||
const tensorflow::NodeDef &node = net.node(matchedNodesIds[j]);
|
||||
std::vector<int>& inpIndices = inputs[targetNodesIds[j]];
|
||||
|
||||
CV_Assert(node.input_size() == inpIndices.size());
|
||||
for (int k = 0; k < inpIndices.size(); ++k)
|
||||
{
|
||||
if (inpIndices[k] == fusedNodeInputs[i])
|
||||
{
|
||||
inpName = node.input(k);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
CV_Assert(!inpName.empty());
|
||||
inputsNames[i] = inpName;
|
||||
}
|
||||
|
||||
// Remove matched nodes except the last one. Indices in ascending order are expected.
|
||||
tensorflow::NodeDef* node = net.mutable_node(matchedNodesIds.back());
|
||||
for (int i = matchedNodesIds.size() - 2; i >= 0; --i)
|
||||
net.mutable_node()->DeleteSubrange(matchedNodesIds[i], 1);
|
||||
|
||||
// Modify the last node to be a fused one.
|
||||
node->set_op(fusedNodeOp);
|
||||
node->clear_input();
|
||||
for (int i = 0; i < inputsNames.size(); ++i)
|
||||
{
|
||||
node->add_input(inputsNames[i]);
|
||||
}
|
||||
|
||||
std::vector<tensorflow::NodeDef*> inputNodes(inputsNames.size());
|
||||
for (int i = 0; i < inputsNames.size(); ++i)
|
||||
{
|
||||
inputNodes[i] = net.mutable_node(getInputNodeId(net, *node, i));
|
||||
}
|
||||
finalize(net, node, inputNodes);
|
||||
for (int i = 0; i < inputs.size(); ++i)
|
||||
node->add_input(inputs[i]);
|
||||
}
|
||||
|
||||
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef*,
|
||||
std::vector<tensorflow::NodeDef*>&) {}
|
||||
|
||||
private:
|
||||
std::vector<std::string> nodes; // Nodes to be matched in the origin graph.
|
||||
std::vector<std::vector<int> > inputs; // Connections of an every node to it's inputs.
|
||||
|
||||
std::string fusedNodeOp; // Operation name of resulting fused node.
|
||||
std::vector<int> fusedNodeInputs; // Inputs of fused node.
|
||||
tensorflow::NodeDef* node;
|
||||
};
|
||||
|
||||
class BatchNormSubgraph : public Subgraph
|
||||
class TFGraphWrapper : public ImportGraphWrapper
|
||||
{
|
||||
public:
|
||||
TFGraphWrapper(tensorflow::GraphDef& _net) : net(_net) {}
|
||||
|
||||
virtual Ptr<ImportNodeWrapper> getNode(int idx) const CV_OVERRIDE
|
||||
{
|
||||
return makePtr<TFNodeWrapper>(net.mutable_node(idx));
|
||||
}
|
||||
|
||||
virtual int getNumNodes() const CV_OVERRIDE
|
||||
{
|
||||
return net.node_size();
|
||||
}
|
||||
|
||||
virtual std::string getNodeName(int idx) const CV_OVERRIDE
|
||||
{
|
||||
return net.node(idx).name();
|
||||
}
|
||||
|
||||
virtual void removeNode(int idx) CV_OVERRIDE
|
||||
{
|
||||
net.mutable_node()->DeleteSubrange(idx, 1);
|
||||
}
|
||||
|
||||
tensorflow::GraphDef& net;
|
||||
};
|
||||
|
||||
class TFSubgraph : public Subgraph
|
||||
{
|
||||
virtual void finalize(const Ptr<ImportGraphWrapper>& netWrapper,
|
||||
const Ptr<ImportNodeWrapper>& fusedNodeWrapper,
|
||||
std::vector<Ptr<ImportNodeWrapper> >& inputs) CV_OVERRIDE
|
||||
{
|
||||
std::vector<tensorflow::NodeDef*> inputNodes(inputs.size());
|
||||
for (int i = 0; i < inputs.size(); ++i)
|
||||
inputNodes[i] = inputs[i].dynamicCast<TFNodeWrapper>()->node;
|
||||
finalize(netWrapper.dynamicCast<TFGraphWrapper>()->net,
|
||||
fusedNodeWrapper.dynamicCast<TFNodeWrapper>()->node, inputNodes);
|
||||
}
|
||||
|
||||
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
|
||||
std::vector<tensorflow::NodeDef*>& inputNodes) {}
|
||||
};
|
||||
|
||||
class BatchNormSubgraph : public TFSubgraph
|
||||
{
|
||||
public:
|
||||
BatchNormSubgraph()
|
||||
@ -250,7 +135,7 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
class BatchNormNoGammaSubgraph : public Subgraph
|
||||
class BatchNormNoGammaSubgraph : public TFSubgraph
|
||||
{
|
||||
public:
|
||||
BatchNormNoGammaSubgraph()
|
||||
@ -366,20 +251,21 @@ public:
|
||||
setFusedNode("Relu6", input);
|
||||
}
|
||||
|
||||
virtual bool match(const tensorflow::GraphDef& net, int nodeId,
|
||||
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
|
||||
std::vector<int>& matchedNodesIds,
|
||||
std::vector<int>& targetNodesIds) CV_OVERRIDE
|
||||
{
|
||||
if (!Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
|
||||
return false;
|
||||
Mat maxValue = getTensorContent(net.node(matchedNodesIds.front() + 1).attr().at("value").tensor());
|
||||
tensorflow::NodeDef* node = net->getNode(matchedNodesIds.front() + 1).dynamicCast<TFNodeWrapper>()->node;
|
||||
Mat maxValue = getTensorContent(node->attr().at("value").tensor());
|
||||
return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at<float>(0) == 6;
|
||||
}
|
||||
};
|
||||
|
||||
// Keras' reshape stores output shape in separate Const nodes by one value.
|
||||
// Need to merge them into a single Const node.
|
||||
class ReshapeKerasSubgraph : public Subgraph
|
||||
class ReshapeKerasSubgraph : public TFSubgraph
|
||||
{
|
||||
public:
|
||||
ReshapeKerasSubgraph(int _numOutDims) : numOutDims(_numOutDims)
|
||||
@ -402,15 +288,15 @@ public:
|
||||
setFusedNode("Reshape", ids);
|
||||
}
|
||||
|
||||
virtual bool match(const tensorflow::GraphDef& net, int nodeId,
|
||||
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
|
||||
std::vector<int>& matchedNodesIds,
|
||||
std::vector<int>& targetNodesIds) CV_OVERRIDE
|
||||
{
|
||||
const tensorflow::NodeDef& node = net.node(nodeId);
|
||||
if (node.input_size() == 0)
|
||||
Ptr<ImportNodeWrapper> node = net->getNode(nodeId);
|
||||
if (node->getNumInputs() == 0)
|
||||
return false;
|
||||
|
||||
inpName = node.input(0);
|
||||
inpName = node->getInputName(0);
|
||||
return Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds);
|
||||
}
|
||||
|
||||
@ -457,7 +343,7 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
class DeconvolutionValidKerasSubgraph : public Subgraph
|
||||
class DeconvolutionValidKerasSubgraph : public TFSubgraph
|
||||
{
|
||||
public:
|
||||
DeconvolutionValidKerasSubgraph()
|
||||
@ -518,7 +404,7 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
class DeconvolutionSameKerasSubgraph : public Subgraph
|
||||
class DeconvolutionSameKerasSubgraph : public TFSubgraph
|
||||
{
|
||||
public:
|
||||
DeconvolutionSameKerasSubgraph()
|
||||
@ -608,7 +494,7 @@ public:
|
||||
};
|
||||
|
||||
// In case of resizing by factor.
|
||||
class UpsamplingKerasSubgraph : public Subgraph
|
||||
class UpsamplingKerasSubgraph : public TFSubgraph
|
||||
{
|
||||
public:
|
||||
UpsamplingKerasSubgraph(const std::string& type)
|
||||
@ -703,7 +589,7 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
class KerasMVNSubgraph : public Subgraph
|
||||
class KerasMVNSubgraph : public TFSubgraph
|
||||
{
|
||||
public:
|
||||
KerasMVNSubgraph()
|
||||
@ -758,20 +644,7 @@ void simplifySubgraphs(tensorflow::GraphDef& net)
|
||||
subgraphs.push_back(Ptr<Subgraph>(new ReshapeAsShapeSubgraph()));
|
||||
subgraphs.push_back(Ptr<Subgraph>(new KerasMVNSubgraph()));
|
||||
|
||||
int numNodes = net.node_size();
|
||||
std::vector<int> matchedNodesIds, targetNodesIds;
|
||||
for (int i = 0; i < numNodes; ++i)
|
||||
{
|
||||
for (int j = 0; j < subgraphs.size(); ++j)
|
||||
{
|
||||
if (subgraphs[j]->match(net, i, matchedNodesIds, targetNodesIds))
|
||||
{
|
||||
subgraphs[j]->replace(net, matchedNodesIds, targetNodesIds);
|
||||
numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added.
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
simplifySubgraphs(Ptr<ImportGraphWrapper>(new TFGraphWrapper(net)), subgraphs);
|
||||
}
|
||||
|
||||
void RemoveIdentityOps(tensorflow::GraphDef& net)
|
||||
|
@ -396,6 +396,7 @@ TEST_P(Test_ONNX_layers, Softmax)
|
||||
{
|
||||
testONNXModels("softmax");
|
||||
testONNXModels("log_softmax", npy, 0, 0, false, false);
|
||||
testONNXModels("softmax_unfused");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Split_EltwiseMax)
|
||||
|
Loading…
Reference in New Issue
Block a user