ONNX graphs simplifier

This commit is contained in:
Dmitry Kurtaev 2020-01-06 14:03:05 +03:00
parent 74bc8d351c
commit c1c84d2fd1
7 changed files with 575 additions and 202 deletions

View File

@ -0,0 +1,207 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2020, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "precomp.hpp"
#include "graph_simplifier.hpp"
#include <queue>
namespace cv { namespace dnn {
Subgraph::~Subgraph() {}
int Subgraph::addNodeToMatch(const std::string& op, int input_0, int input_1,
int input_2, int input_3)
{
int nodeInputs[] = {input_0, input_1, input_2, input_3};
int numInputs = 0;
for (int i = 0; i < 4; ++i)
{
numInputs += (int)(nodeInputs[i] != -1);
}
return addNodeToMatch(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
}
int Subgraph::addNodeToMatch(const std::string& op, const std::vector<int>& inputs_)
{
for (int i = 0; i < inputs_.size(); ++i)
{
CV_Assert(inputs_[i] < (int)nodes.size());
}
nodes.push_back(op);
inputs.push_back(inputs_);
return nodes.size() - 1;
}
void Subgraph::setFusedNode(const std::string& op, int input_0, int input_1,
int input_2, int input_3, int input_4, int input_5)
{
int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5};
int numInputs = 0;
for (int i = 0; i < 6; ++i)
{
CV_Assert(nodeInputs[i] < (int)nodes.size());
numInputs += (int)(nodeInputs[i] != -1);
}
setFusedNode(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
}
void Subgraph::setFusedNode(const std::string& op, const std::vector<int>& inputs_)
{
fusedNodeInputs = inputs_;
fusedNodeOp = op;
}
int Subgraph::getInputNodeId(const Ptr<ImportGraphWrapper>& net,
const Ptr<ImportNodeWrapper>& node,
int inpId)
{
CV_Assert(inpId < node->getNumInputs());
std::string name = node->getInputName(inpId);
// If operation produces several tensors, they are specified by index
// after ':' character. In example, "input:0".
name = name.substr(0, name.rfind(':'));
const int numNodes = net->getNumNodes();
for (int i = 0; i < numNodes; ++i)
{
if (net->getNodeName(i) == name)
return i;
}
CV_Error(Error::StsParseError, "Input node with name " + name + " not found");
}
bool Subgraph::match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds)
{
matchedNodesIds.clear();
targetNodesIds.clear();
std::queue<int> nodesToMatch;
std::queue<int> targetNodes;
nodesToMatch.push(nodeId);
targetNodes.push(nodes.size() - 1);
while (!nodesToMatch.empty())
{
int nodeToMatch = nodesToMatch.front();
int targetNodeId = targetNodes.front();
nodesToMatch.pop();
targetNodes.pop();
if (std::find(matchedNodesIds.begin(), matchedNodesIds.end(), nodeToMatch) !=
matchedNodesIds.end())
continue;
const Ptr<ImportNodeWrapper> node = net->getNode(nodeToMatch);
if (node->getType() != nodes[targetNodeId])
return false;
std::vector<int>& inputNodes = inputs[targetNodeId];
if (inputNodes.size() != node->getNumInputs())
return false;
for (int j = 0; j < inputNodes.size(); ++j)
{
if (nodes[inputNodes[j]].empty()) // Unknown input node type.
continue;
nodeId = getInputNodeId(net, node, j);
const Ptr<ImportNodeWrapper> inpNode = net->getNode(nodeId);
if (inpNode->getType() != "Const")
{
nodesToMatch.push(nodeId);
targetNodes.push(inputNodes[j]);
}
else if (nodes[inputNodes[j]] != "Const")
return false;
}
matchedNodesIds.push_back(nodeToMatch);
targetNodesIds.push_back(targetNodeId);
}
const int n = matchedNodesIds.size();
std::vector<std::pair<int, int> > elements(n);
for (int i = 0; i < n; ++i)
elements[i] = std::make_pair(matchedNodesIds[i], targetNodesIds[i]);
std::sort(elements.begin(), elements.end());
for (int i = 0; i < n; ++i)
{
matchedNodesIds[i] = elements[i].first;
targetNodesIds[i] = elements[i].second;
}
return true;
}
void Subgraph::replace(const Ptr<ImportGraphWrapper>& net, const std::vector<int>& matchedNodesIds,
const std::vector<int>& targetNodesIds)
{
// Extract names of input nodes.
std::vector<std::string> inputsNames(fusedNodeInputs.size());
for (int i = 0; i < fusedNodeInputs.size(); ++i)
{
std::string inpName;
// Find input node name looking at inputs of fused nodes.
for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j)
{
Ptr<ImportNodeWrapper> node = net->getNode(matchedNodesIds[j]);
std::vector<int>& inpIndices = inputs[targetNodesIds[j]];
CV_Assert(node->getNumInputs() == inpIndices.size());
for (int k = 0; k < inpIndices.size(); ++k)
{
if (inpIndices[k] == fusedNodeInputs[i])
{
inpName = node->getInputName(k);
break;
}
}
}
CV_Assert(!inpName.empty());
inputsNames[i] = inpName;
}
// Remove matched nodes except the last one. Indices in ascending order are expected.
Ptr<ImportNodeWrapper> node = net->getNode(matchedNodesIds.back());
for (int i = matchedNodesIds.size() - 2; i >= 0; --i)
net->removeNode(matchedNodesIds[i]);
// Modify the last node to be a fused one.
node->setType(fusedNodeOp);
node->setInputNames(inputsNames);
std::vector<Ptr<ImportNodeWrapper> > inputNodes(inputsNames.size());
for (int i = 0; i < inputsNames.size(); ++i)
{
inputNodes[i] = net->getNode(getInputNodeId(net, node, i));
}
finalize(net, node, inputNodes);
}
void Subgraph::finalize(const Ptr<ImportGraphWrapper>& net,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >& inputs) {}
void simplifySubgraphs(const Ptr<ImportGraphWrapper>& net,
const std::vector<Ptr<Subgraph> >& patterns)
{
int numNodes = net->getNumNodes();
std::vector<int> matchedNodesIds, targetNodesIds;
for (int i = 0; i < numNodes; ++i)
{
for (int j = 0; j < patterns.size(); ++j)
{
if (patterns[j]->match(net, i, matchedNodesIds, targetNodesIds))
{
patterns[j]->replace(net, matchedNodesIds, targetNodesIds);
numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added.
break;
}
}
}
}
}} // namespace cv::dnn

View File

@ -0,0 +1,100 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2020, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_DNN_GRAPH_SIMPLIFIER_HPP__
#define __OPENCV_DNN_GRAPH_SIMPLIFIER_HPP__
#include <string>
#include <opencv2/core.hpp>
namespace cv { namespace dnn {
class ImportNodeWrapper
{
public:
virtual ~ImportNodeWrapper() {};
virtual int getNumInputs() const = 0;
virtual std::string getInputName(int idx) const = 0;
virtual std::string getType() const = 0;
virtual void setType(const std::string& type) = 0;
virtual void setInputNames(const std::vector<std::string>& inputs) = 0;
};
class ImportGraphWrapper
{
public:
virtual ~ImportGraphWrapper() {};
virtual Ptr<ImportNodeWrapper> getNode(int idx) const = 0;
virtual int getNumNodes() const = 0;
virtual std::string getNodeName(int idx) const = 0;
virtual void removeNode(int idx) = 0;
};
class Subgraph // Interface to match and replace subgraphs.
{
public:
virtual ~Subgraph();
// Add a node to be matched in the origin graph. Specify ids of nodes that
// are expected to be inputs. Returns id of a newly added node.
// TODO: Replace inputs to std::vector<int> in C++11
int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1);
int addNodeToMatch(const std::string& op, const std::vector<int>& inputs_);
// Specify resulting node. All the matched nodes in subgraph excluding
// input nodes will be fused into this single node.
// TODO: Replace inputs to std::vector<int> in C++11
void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1, int input_4 = -1,
int input_5 = -1);
void setFusedNode(const std::string& op, const std::vector<int>& inputs_);
static int getInputNodeId(const Ptr<ImportGraphWrapper>& net,
const Ptr<ImportNodeWrapper>& node,
int inpId);
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused.
// Const nodes are skipped during matching. Returns true if nodes are matched and can be fused.
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds);
// Fuse matched subgraph.
void replace(const Ptr<ImportGraphWrapper>& net, const std::vector<int>& matchedNodesIds,
const std::vector<int>& targetNodesIds);
virtual void finalize(const Ptr<ImportGraphWrapper>& net,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >& inputs);
private:
std::vector<std::string> nodes; // Nodes to be matched in the origin graph.
std::vector<std::vector<int> > inputs; // Connections of an every node to it's inputs.
std::string fusedNodeOp; // Operation name of resulting fused node.
std::vector<int> fusedNodeInputs; // Inputs of fused node.
};
void simplifySubgraphs(const Ptr<ImportGraphWrapper>& net,
const std::vector<Ptr<Subgraph> >& patterns);
}} // namespace dnn, namespace cv
#endif // __OPENCV_DNN_GRAPH_SIMPLIFIER_HPP__

View File

@ -0,0 +1,157 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2020, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#include "../precomp.hpp"
#include "../graph_simplifier.hpp"
#include "onnx_graph_simplifier.hpp"
#include <queue>
namespace cv { namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
// This wrapper can behave differently for fake input nodes and real graph nodes.
class ONNXNodeWrapper : public ImportNodeWrapper
{
public:
ONNXNodeWrapper(opencv_onnx::NodeProto* _node = 0) : node(_node) {}
virtual int getNumInputs() const CV_OVERRIDE
{
return node ? node->input_size() : 0;
}
virtual std::string getInputName(int idx) const CV_OVERRIDE
{
CV_Assert_N(node, idx < node->input_size());
return node->input(idx);
}
virtual std::string getType() const CV_OVERRIDE
{
return node ? node->op_type() : "";
}
virtual void setType(const std::string& type) CV_OVERRIDE
{
CV_Assert(node);
node->set_op_type(type);
}
virtual void setInputNames(const std::vector<std::string>& inputs) CV_OVERRIDE
{
CV_Assert(node);
node->clear_input();
for (int i = 0; i < inputs.size(); ++i)
node->add_input(inputs[i]);
}
opencv_onnx::NodeProto* node;
};
// ONNX graph's inputs are separate from nodes so we index them before the rest of nodes.
class ONNXGraphWrapper : public ImportGraphWrapper
{
public:
ONNXGraphWrapper(opencv_onnx::GraphProto& _net) : net(_net)
{
numInputs = net.input_size();
}
virtual Ptr<ImportNodeWrapper> getNode(int idx) const CV_OVERRIDE
{
opencv_onnx::NodeProto* node = 0;
if (idx >= numInputs)
node = net.mutable_node(idx - numInputs);
return makePtr<ONNXNodeWrapper>(node);
}
virtual int getNumNodes() const CV_OVERRIDE
{
return numInputs + net.node_size();
}
virtual std::string getNodeName(int idx) const CV_OVERRIDE
{
if (idx < numInputs)
return net.input(idx).name();
else
return net.node(idx - numInputs).output(0);
}
virtual void removeNode(int idx) CV_OVERRIDE
{
CV_Assert(idx >= numInputs);
net.mutable_node()->DeleteSubrange(idx - numInputs, 1);
}
private:
int numInputs;
opencv_onnx::GraphProto& net;
};
class SoftMaxSubgraph : public Subgraph
{
public:
SoftMaxSubgraph()
{
int input = addNodeToMatch("");
int inpExp = addNodeToMatch("Exp", input);
int sum = addNodeToMatch("ReduceSum", inpExp);
addNodeToMatch("Div", inpExp, sum);
setFusedNode("Softmax", input);
}
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE
{
if (Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
{
Ptr<ImportNodeWrapper> sum = net->getNode(matchedNodesIds[1]);
opencv_onnx::NodeProto* node = sum.dynamicCast<ONNXNodeWrapper>()->node;
for (int i = 0; i < node->attribute_size(); i++)
{
opencv_onnx::AttributeProto attr = node->attribute(i);
if (attr.name() != "axes")
continue;
if (attr.ints_size() != 1)
CV_Error(Error::StsNotImplemented, format("Unexpected number of axes: %d", attr.ints_size()));
axis = attr.ints(0);
return true;
}
CV_Error(Error::StsNotImplemented, "Missed axes attribute");
}
return false;
}
virtual void finalize(const Ptr<ImportGraphWrapper>&,
const Ptr<ImportNodeWrapper>& fusedNode,
std::vector<Ptr<ImportNodeWrapper> >&) CV_OVERRIDE
{
opencv_onnx::NodeProto* node = fusedNode.dynamicCast<ONNXNodeWrapper>()->node;
opencv_onnx::AttributeProto* attr = node->add_attribute();
attr->set_name("axis");
attr->set_i(axis);
}
private:
int axis;
};
void simplifySubgraphs(opencv_onnx::GraphProto& net)
{
std::vector<Ptr<Subgraph> > subgraphs;
subgraphs.push_back(makePtr<SoftMaxSubgraph>());
simplifySubgraphs(Ptr<ImportGraphWrapper>(new ONNXGraphWrapper(net)), subgraphs);
}
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace cv::dnn

View File

@ -0,0 +1,30 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// Copyright (C) 2020, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
#ifndef __OPENCV_DNN_ONNX_SIMPLIFIER_HPP__
#define __OPENCV_DNN_ONNX_SIMPLIFIER_HPP__
#include "../precomp.hpp"
#if defined(__GNUC__) && __GNUC__ >= 5
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsuggest-override"
#endif
#include "opencv-onnx.pb.h"
#if defined(__GNUC__) && __GNUC__ >= 5
#pragma GCC diagnostic pop
#endif
namespace cv { namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN
void simplifySubgraphs(opencv_onnx::GraphProto& net);
CV__DNN_EXPERIMENTAL_NS_END
}} // namespace dnn, namespace cv
#endif // __OPENCV_DNN_ONNX_SIMPLIFIER_HPP__

View File

@ -26,6 +26,8 @@
#pragma GCC diagnostic pop #pragma GCC diagnostic pop
#endif #endif
#include "onnx_graph_simplifier.hpp"
namespace cv { namespace cv {
namespace dnn { namespace dnn {
CV__DNN_EXPERIMENTAL_NS_BEGIN CV__DNN_EXPERIMENTAL_NS_BEGIN
@ -326,6 +328,9 @@ void ONNXImporter::populateNet(Net dstNet)
{ {
CV_Assert(model_proto.has_graph()); CV_Assert(model_proto.has_graph());
opencv_onnx::GraphProto graph_proto = model_proto.graph(); opencv_onnx::GraphProto graph_proto = model_proto.graph();
simplifySubgraphs(graph_proto);
std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto); std::map<std::string, Mat> constBlobs = getGraphTensors(graph_proto);
// List of internal blobs shapes. // List of internal blobs shapes.
std::map<std::string, MatShape> outShapes; std::map<std::string, MatShape> outShapes;

View File

@ -9,6 +9,7 @@
#ifdef HAVE_PROTOBUF #ifdef HAVE_PROTOBUF
#include "../graph_simplifier.hpp"
#include "tf_graph_simplifier.hpp" #include "tf_graph_simplifier.hpp"
#include <queue> #include <queue>
@ -18,203 +19,87 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
using ::google::protobuf::RepeatedField; using ::google::protobuf::RepeatedField;
using ::google::protobuf::MapPair; using ::google::protobuf::MapPair;
class Subgraph // Interface to match and replace TensorFlow subgraphs. class TFNodeWrapper : public ImportNodeWrapper
{ {
public: public:
virtual ~Subgraph() {} TFNodeWrapper(tensorflow::NodeDef* _node) : node(_node) {}
// Add a node to be matched in the origin graph. Specify ids of nodes that virtual int getNumInputs() const CV_OVERRIDE
// are expected to be inputs. Returns id of a newly added node.
// TODO: Replace inputs to std::vector<int> in C++11
int addNodeToMatch(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1)
{ {
int nodeInputs[] = {input_0, input_1, input_2, input_3}; return node->input_size();
int numInputs = 0;
for (int i = 0; i < 4; ++i)
{
numInputs += (int)(nodeInputs[i] != -1);
}
return addNodeToMatch(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
} }
int addNodeToMatch(const std::string& op, const std::vector<int>& inputs_) virtual std::string getInputName(int idx) const CV_OVERRIDE
{ {
for (int i = 0; i < inputs_.size(); ++i) return node->input(idx);
{
CV_Assert(inputs_[i] < (int)nodes.size());
}
nodes.push_back(op);
inputs.push_back(inputs_);
return nodes.size() - 1;
} }
// Specify resulting node. All the matched nodes in subgraph excluding virtual std::string getType() const CV_OVERRIDE
// input nodes will be fused into this single node.
// TODO: Replace inputs to std::vector<int> in C++11
void setFusedNode(const std::string& op, int input_0 = -1, int input_1 = -1,
int input_2 = -1, int input_3 = -1, int input_4 = -1,
int input_5 = -1)
{ {
int nodeInputs[] = {input_0, input_1, input_2, input_3, input_4, input_5}; return node->op();
int numInputs = 0;
for (int i = 0; i < 6; ++i)
{
CV_Assert(nodeInputs[i] < (int)nodes.size());
numInputs += (int)(nodeInputs[i] != -1);
}
setFusedNode(op, std::vector<int>(&nodeInputs[0], &nodeInputs[0] + numInputs));
} }
void setFusedNode(const std::string& op, const std::vector<int>& inputs_) virtual void setType(const std::string& type) CV_OVERRIDE
{ {
fusedNodeInputs = inputs_; node->set_op(type);
fusedNodeOp = op;
} }
static int getInputNodeId(const tensorflow::GraphDef& net, virtual void setInputNames(const std::vector<std::string>& inputs) CV_OVERRIDE
const tensorflow::NodeDef& node,
int inpId)
{ {
CV_Assert(inpId < node.input_size());
std::string name = node.input(inpId);
// If operation produces several tensors, they are specified by index
// after ':' character. In example, "input:0".
name = name.substr(0, name.rfind(':'));
const int numNodes = net.node_size();
for (int i = 0; i < numNodes; ++i)
{
if (net.node(i).name() == name)
return i;
}
CV_Error(Error::StsParseError, "Input node with name " + name + " not found");
}
// Match TensorFlow subgraph starting from <nodeId> with a set of nodes to be fused.
// Const nodes are skipped during matching. Returns true if nodes are matched and can be fused.
virtual bool match(const tensorflow::GraphDef& net, int nodeId,
std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds)
{
matchedNodesIds.clear();
targetNodesIds.clear();
std::queue<int> nodesToMatch;
std::queue<int> targetNodes;
nodesToMatch.push(nodeId);
targetNodes.push(nodes.size() - 1);
while (!nodesToMatch.empty())
{
int nodeToMatch = nodesToMatch.front();
int targetNodeId = targetNodes.front();
nodesToMatch.pop();
targetNodes.pop();
if (std::find(matchedNodesIds.begin(), matchedNodesIds.end(), nodeToMatch) !=
matchedNodesIds.end())
continue;
const tensorflow::NodeDef& node = net.node(nodeToMatch);
if (node.op() != nodes[targetNodeId])
return false;
std::vector<int>& inputNodes = inputs[targetNodeId];
if (inputNodes.size() != node.input_size())
return false;
for (int j = 0; j < inputNodes.size(); ++j)
{
if (nodes[inputNodes[j]].empty()) // Unknown input node type.
continue;
nodeId = getInputNodeId(net, node, j);
const tensorflow::NodeDef& inpNode = net.node(nodeId);
if (inpNode.op() != "Const")
{
nodesToMatch.push(nodeId);
targetNodes.push(inputNodes[j]);
}
else if (nodes[inputNodes[j]] != "Const")
return false;
}
matchedNodesIds.push_back(nodeToMatch);
targetNodesIds.push_back(targetNodeId);
}
const int n = matchedNodesIds.size();
std::vector<std::pair<int, int> > elements(n);
for (int i = 0; i < n; ++i)
elements[i] = std::make_pair(matchedNodesIds[i], targetNodesIds[i]);
std::sort(elements.begin(), elements.end());
for (int i = 0; i < n; ++i)
{
matchedNodesIds[i] = elements[i].first;
targetNodesIds[i] = elements[i].second;
}
return true;
}
// Fuse matched subgraph.
void replace(tensorflow::GraphDef& net, const std::vector<int>& matchedNodesIds,
const std::vector<int>& targetNodesIds)
{
// Extract names of input nodes.
std::vector<std::string> inputsNames(fusedNodeInputs.size());
for (int i = 0; i < fusedNodeInputs.size(); ++i)
{
std::string inpName;
// Find input node name looking at inputs of fused nodes.
for (int j = 0; j < matchedNodesIds.size() && inpName.empty(); ++j)
{
const tensorflow::NodeDef &node = net.node(matchedNodesIds[j]);
std::vector<int>& inpIndices = inputs[targetNodesIds[j]];
CV_Assert(node.input_size() == inpIndices.size());
for (int k = 0; k < inpIndices.size(); ++k)
{
if (inpIndices[k] == fusedNodeInputs[i])
{
inpName = node.input(k);
break;
}
}
}
CV_Assert(!inpName.empty());
inputsNames[i] = inpName;
}
// Remove matched nodes except the last one. Indices in ascending order are expected.
tensorflow::NodeDef* node = net.mutable_node(matchedNodesIds.back());
for (int i = matchedNodesIds.size() - 2; i >= 0; --i)
net.mutable_node()->DeleteSubrange(matchedNodesIds[i], 1);
// Modify the last node to be a fused one.
node->set_op(fusedNodeOp);
node->clear_input(); node->clear_input();
for (int i = 0; i < inputsNames.size(); ++i) for (int i = 0; i < inputs.size(); ++i)
{ node->add_input(inputs[i]);
node->add_input(inputsNames[i]);
}
std::vector<tensorflow::NodeDef*> inputNodes(inputsNames.size());
for (int i = 0; i < inputsNames.size(); ++i)
{
inputNodes[i] = net.mutable_node(getInputNodeId(net, *node, i));
}
finalize(net, node, inputNodes);
} }
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef*, tensorflow::NodeDef* node;
std::vector<tensorflow::NodeDef*>&) {}
private:
std::vector<std::string> nodes; // Nodes to be matched in the origin graph.
std::vector<std::vector<int> > inputs; // Connections of an every node to it's inputs.
std::string fusedNodeOp; // Operation name of resulting fused node.
std::vector<int> fusedNodeInputs; // Inputs of fused node.
}; };
class BatchNormSubgraph : public Subgraph class TFGraphWrapper : public ImportGraphWrapper
{
public:
TFGraphWrapper(tensorflow::GraphDef& _net) : net(_net) {}
virtual Ptr<ImportNodeWrapper> getNode(int idx) const CV_OVERRIDE
{
return makePtr<TFNodeWrapper>(net.mutable_node(idx));
}
virtual int getNumNodes() const CV_OVERRIDE
{
return net.node_size();
}
virtual std::string getNodeName(int idx) const CV_OVERRIDE
{
return net.node(idx).name();
}
virtual void removeNode(int idx) CV_OVERRIDE
{
net.mutable_node()->DeleteSubrange(idx, 1);
}
tensorflow::GraphDef& net;
};
class TFSubgraph : public Subgraph
{
virtual void finalize(const Ptr<ImportGraphWrapper>& netWrapper,
const Ptr<ImportNodeWrapper>& fusedNodeWrapper,
std::vector<Ptr<ImportNodeWrapper> >& inputs) CV_OVERRIDE
{
std::vector<tensorflow::NodeDef*> inputNodes(inputs.size());
for (int i = 0; i < inputs.size(); ++i)
inputNodes[i] = inputs[i].dynamicCast<TFNodeWrapper>()->node;
finalize(netWrapper.dynamicCast<TFGraphWrapper>()->net,
fusedNodeWrapper.dynamicCast<TFNodeWrapper>()->node, inputNodes);
}
virtual void finalize(tensorflow::GraphDef&, tensorflow::NodeDef* fusedNode,
std::vector<tensorflow::NodeDef*>& inputNodes) {}
};
class BatchNormSubgraph : public TFSubgraph
{ {
public: public:
BatchNormSubgraph() BatchNormSubgraph()
@ -250,7 +135,7 @@ public:
} }
}; };
class BatchNormNoGammaSubgraph : public Subgraph class BatchNormNoGammaSubgraph : public TFSubgraph
{ {
public: public:
BatchNormNoGammaSubgraph() BatchNormNoGammaSubgraph()
@ -366,20 +251,21 @@ public:
setFusedNode("Relu6", input); setFusedNode("Relu6", input);
} }
virtual bool match(const tensorflow::GraphDef& net, int nodeId, virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds, std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE std::vector<int>& targetNodesIds) CV_OVERRIDE
{ {
if (!Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds)) if (!Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds))
return false; return false;
Mat maxValue = getTensorContent(net.node(matchedNodesIds.front() + 1).attr().at("value").tensor()); tensorflow::NodeDef* node = net->getNode(matchedNodesIds.front() + 1).dynamicCast<TFNodeWrapper>()->node;
Mat maxValue = getTensorContent(node->attr().at("value").tensor());
return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at<float>(0) == 6; return maxValue.type() == CV_32FC1 && maxValue.total() == 1 && maxValue.at<float>(0) == 6;
} }
}; };
// Keras' reshape stores output shape in separate Const nodes by one value. // Keras' reshape stores output shape in separate Const nodes by one value.
// Need to merge them into a single Const node. // Need to merge them into a single Const node.
class ReshapeKerasSubgraph : public Subgraph class ReshapeKerasSubgraph : public TFSubgraph
{ {
public: public:
ReshapeKerasSubgraph(int _numOutDims) : numOutDims(_numOutDims) ReshapeKerasSubgraph(int _numOutDims) : numOutDims(_numOutDims)
@ -402,15 +288,15 @@ public:
setFusedNode("Reshape", ids); setFusedNode("Reshape", ids);
} }
virtual bool match(const tensorflow::GraphDef& net, int nodeId, virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
std::vector<int>& matchedNodesIds, std::vector<int>& matchedNodesIds,
std::vector<int>& targetNodesIds) CV_OVERRIDE std::vector<int>& targetNodesIds) CV_OVERRIDE
{ {
const tensorflow::NodeDef& node = net.node(nodeId); Ptr<ImportNodeWrapper> node = net->getNode(nodeId);
if (node.input_size() == 0) if (node->getNumInputs() == 0)
return false; return false;
inpName = node.input(0); inpName = node->getInputName(0);
return Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds); return Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds);
} }
@ -457,7 +343,7 @@ public:
} }
}; };
class DeconvolutionValidKerasSubgraph : public Subgraph class DeconvolutionValidKerasSubgraph : public TFSubgraph
{ {
public: public:
DeconvolutionValidKerasSubgraph() DeconvolutionValidKerasSubgraph()
@ -518,7 +404,7 @@ public:
} }
}; };
class DeconvolutionSameKerasSubgraph : public Subgraph class DeconvolutionSameKerasSubgraph : public TFSubgraph
{ {
public: public:
DeconvolutionSameKerasSubgraph() DeconvolutionSameKerasSubgraph()
@ -608,7 +494,7 @@ public:
}; };
// In case of resizing by factor. // In case of resizing by factor.
class UpsamplingKerasSubgraph : public Subgraph class UpsamplingKerasSubgraph : public TFSubgraph
{ {
public: public:
UpsamplingKerasSubgraph(const std::string& type) UpsamplingKerasSubgraph(const std::string& type)
@ -703,7 +589,7 @@ public:
} }
}; };
class KerasMVNSubgraph : public Subgraph class KerasMVNSubgraph : public TFSubgraph
{ {
public: public:
KerasMVNSubgraph() KerasMVNSubgraph()
@ -758,20 +644,7 @@ void simplifySubgraphs(tensorflow::GraphDef& net)
subgraphs.push_back(Ptr<Subgraph>(new ReshapeAsShapeSubgraph())); subgraphs.push_back(Ptr<Subgraph>(new ReshapeAsShapeSubgraph()));
subgraphs.push_back(Ptr<Subgraph>(new KerasMVNSubgraph())); subgraphs.push_back(Ptr<Subgraph>(new KerasMVNSubgraph()));
int numNodes = net.node_size(); simplifySubgraphs(Ptr<ImportGraphWrapper>(new TFGraphWrapper(net)), subgraphs);
std::vector<int> matchedNodesIds, targetNodesIds;
for (int i = 0; i < numNodes; ++i)
{
for (int j = 0; j < subgraphs.size(); ++j)
{
if (subgraphs[j]->match(net, i, matchedNodesIds, targetNodesIds))
{
subgraphs[j]->replace(net, matchedNodesIds, targetNodesIds);
numNodes -= matchedNodesIds.size() - 1; // #matchedNodes removed and one added.
break;
}
}
}
} }
void RemoveIdentityOps(tensorflow::GraphDef& net) void RemoveIdentityOps(tensorflow::GraphDef& net)

View File

@ -396,6 +396,7 @@ TEST_P(Test_ONNX_layers, Softmax)
{ {
testONNXModels("softmax"); testONNXModels("softmax");
testONNXModels("log_softmax", npy, 0, 0, false, false); testONNXModels("log_softmax", npy, 0, 0, false, false);
testONNXModels("softmax_unfused");
} }
TEST_P(Test_ONNX_layers, Split_EltwiseMax) TEST_P(Test_ONNX_layers, Split_EltwiseMax)