Fixed build issues

This commit is contained in:
Ilya Krylov 2014-05-13 13:34:46 +04:00
parent e4a9c0f184
commit c30fef1f9d
5 changed files with 73 additions and 97 deletions

View File

@ -1536,7 +1536,11 @@ The methods in this class use a so-called fisheye camera model. ::
OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(), OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
double balance = 0.0, double fov_scale = 1.0); double balance = 0.0, double fov_scale = 1.0);
... //! performs stereo calibration
static double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2,
InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize,
OutputArray R, OutputArray T, int flags = CALIB_FIX_INTRINSIC,
TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON));
}; };
@ -1576,7 +1580,7 @@ Fisheye distortion:
The distorted point coordinates are [x'; y'] where The distorted point coordinates are [x'; y'] where
.. class:: center ..class:: center
.. math:: .. math::
x' = (\theta_d / r) x \\ x' = (\theta_d / r) x \\
@ -1596,31 +1600,25 @@ Projects points using fisheye model
.. ocv:function:: void Fisheye::projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine, InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray()) .. ocv:function:: void Fisheye::projectPoints(InputArray objectPoints, OutputArray imagePoints, const Affine3d& affine, InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray())
.. ocv:function:: void Fisheye::projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec, .. ocv:function:: void Fisheye::projectPoints(InputArray objectPoints, OutputArray imagePoints, InputArray rvec, InputArray tvec, InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray())
InputArray K, InputArray D, double alpha = 0, OutputArray jacobian = noArray())
:param objectPoints: Array of object points, 1xN/Nx1 3-channel (or ``vector<Point3f>`` ), where N is the number of points in the view. :param objectPoints: Array of object points, 1xN/Nx1 3-channel (or ``vector<Point3f>`` ), where N is the number of points in the view.
:param rvec: Rotation vector. See :ocv:func:`Rodrigues` for details. :param rvec: Rotation vector. See :ocv:func:`Rodrigues` for details.
:param tvec: Translation vector. :param tvec: Translation vector.
:param K: Camera matrix :math:`K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}` . :param K: Camera matrix :math:`K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}`.
:param D: Input vector of distortion coefficients :math:`(k_1, k_2, k_3, k_4)`. :param D: Input vector of distortion coefficients :math:`(k_1, k_2, k_3, k_4)`.
:param alpha: The skew coefficient. :param alpha: The skew coefficient.
:param imagePoints: Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or ``vector<Point2f>`` . :param imagePoints: Output array of image points, 2xN/Nx2 1-channel or 1xN/Nx1 2-channel, or ``vector<Point2f>``.
:param jacobian: Optional output 2Nx15 jacobian matrix of derivatives of image points with respect to components of the focal lengths, coordinates of the principal point, distortion coefficients, rotation vector, translation vector, and the skew. In the old interface different components of the jacobian are returned via different output parameters. :param jacobian: Optional output 2Nx15 jacobian matrix of derivatives of image points with respect to components of the focal lengths, coordinates of the principal point, distortion coefficients, rotation vector, translation vector, and the skew. In the old interface different components of the jacobian are returned via different output parameters.
The function computes projections of 3D The function computes projections of 3D points to the image plane given intrinsic and extrinsic camera parameters. Optionally, the function computes Jacobians - matrices of partial derivatives of image points coordinates (as functions of all the input parameters) with respect to the particular parameters, intrinsic and/or extrinsic.
points to the image plane given intrinsic and extrinsic camera
parameters. Optionally, the function computes Jacobians - matrices
of partial derivatives of image points coordinates (as functions of all the
input parameters) with respect to the particular parameters, intrinsic and/or
extrinsic.
Fisheye::distortPoints Fisheye::distortPoints
------------------------- -------------------------
@ -1642,8 +1640,7 @@ Fisheye::undistortPoints
----------------------------- -----------------------------
Undistorts 2D points using fisheye model Undistorts 2D points using fisheye model
.. ocv:function:: void Fisheye::undistortPoints(InputArray distorted, OutputArray undistorted, .. ocv:function:: void Fisheye::undistortPoints(InputArray distorted, OutputArray undistorted, InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray())
InputArray K, InputArray D, InputArray R = noArray(), InputArray P = noArray())
:param distorted: Array of object points, 1xN/Nx1 2-channel (or ``vector<Point2f>`` ), where N is the number of points in the view. :param distorted: Array of object points, 1xN/Nx1 2-channel (or ``vector<Point2f>`` ), where N is the number of points in the view.
@ -1655,15 +1652,14 @@ Undistorts 2D points using fisheye model
:param P: New camera matrix (3x3) or new projection matrix (3x4) :param P: New camera matrix (3x3) or new projection matrix (3x4)
:param undistorted: Output array of image points, 1xN/Nx1 2-channel, or ``vector<Point2f>`` . :param undistorted: Output array of image points, 1xN/Nx1 2-channel, or ``vector<Point2f>`` .
Fisheye::initUndistortRectifyMap Fisheye::initUndistortRectifyMap
------------------------------------- -------------------------------------
Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero distortion is used, if R or P is empty identity matrixes are used. Computes undistortion and rectification maps for image transform by cv::remap(). If D is empty zero distortion is used, if R or P is empty identity matrixes are used.
.. ocv:function:: void Fisheye::initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P, .. ocv:function:: void Fisheye::initUndistortRectifyMap(InputArray K, InputArray D, InputArray R, InputArray P, const cv::Size& size, int m1type, OutputArray map1, OutputArray map2)
const cv::Size& size, int m1type, OutputArray map1, OutputArray map2)
:param K: Camera matrix :math:`K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}`. :param K: Camera matrix :math:`K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}`.
@ -1682,11 +1678,10 @@ Computes undistortion and rectification maps for image transform by cv::remap().
:param map2: The second output map. :param map2: The second output map.
Fisheye::undistortImage Fisheye::undistortImage
------------- -----------------------
Transforms an image to compensate for fisheye lens distortion. Transforms an image to compensate for fisheye lens distortion.
.. ocv:function:: void Fisheye::undistortImage(InputArray distorted, OutputArray undistorted, .. ocv:function:: void Fisheye::undistortImage(InputArray distorted, OutputArray undistorted, InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size())
InputArray K, InputArray D, InputArray Knew = cv::noArray(), const Size& new_size = Size())
:param distorted: image with fisheye lens distortion. :param distorted: image with fisheye lens distortion.
@ -1706,7 +1701,7 @@ The function is simply a combination of
See below the results of undistortImage. See below the results of undistortImage.
* a\) result of :ocv:func:`undistort` of perspective camera model (all possible coefficients (k_1, k_2, k_3, k_4, k_5, k_6) of distortion were optimized under calibration) * a\) result of :ocv:func:`undistort` of perspective camera model (all possible coefficients (k_1, k_2, k_3, k_4, k_5, k_6) of distortion were optimized under calibration)
* b\) result of :ocv:func:`Fisheye::undistrortImage` of fisheye camera model (all possible coefficients (k_1, k_2, k_3, k_4) of fisheye distortion were optimized under calibration) * b\) result of :ocv:func:`Fisheye::undistortImage` of fisheye camera model (all possible coefficients (k_1, k_2, k_3, k_4) of fisheye distortion were optimized under calibration)
* c\) original image was captured with fisheye lens * c\) original image was captured with fisheye lens
Pictures a) and b) almost the same. But if we consider points of image located far from the center of image, we can notice that on image a) these points are distorted. Pictures a) and b) almost the same. But if we consider points of image located far from the center of image, we can notice that on image a) these points are distorted.
@ -1718,8 +1713,7 @@ Fisheye::estimateNewCameraMatrixForUndistortRectify
---------------------------------------------------------- ----------------------------------------------------------
Estimates new camera matrix for undistortion or rectification. Estimates new camera matrix for undistortion or rectification.
.. ocv:function:: void Fisheye::estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R, .. ocv:function:: void Fisheye::estimateNewCameraMatrixForUndistortRectify(InputArray K, InputArray D, const Size &image_size, InputArray R, OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0)
OutputArray P, double balance = 0.0, const Size& new_size = Size(), double fov_scale = 1.0);
:param K: Camera matrix :math:`K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}`. :param K: Camera matrix :math:`K = \vecthreethree{f_x}{0}{c_x}{0}{f_y}{c_y}{0}{0}{_1}`.
@ -1737,9 +1731,7 @@ Fisheye::stereoRectify
------------------------------ ------------------------------
Stereo rectification for fisheye camera model Stereo rectification for fisheye camera model
.. ocv:function:: void Fisheye::stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec, .. ocv:function:: void Fisheye::stereoRectify(InputArray K1, InputArray D1, InputArray K2, InputArray D2, const Size &imageSize, InputArray R, InputArray tvec, OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(), double balance = 0.0, double fov_scale = 1.0)
OutputArray R1, OutputArray R2, OutputArray P1, OutputArray P2, OutputArray Q, int flags, const Size &newImageSize = Size(),
double balance = 0.0, double fov_scale = 1.0)
:param K1: First camera matrix. :param K1: First camera matrix.
@ -1785,9 +1777,7 @@ Fisheye::calibrate
---------------------------- ----------------------------
Performs camera calibaration Performs camera calibaration
.. ocv:function:: double Fisheye::calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size, .. ocv:function:: double Fisheye::calibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, const Size& image_size, InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0, TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON))
InputOutputArray K, InputOutputArray D, OutputArrayOfArrays rvecs, OutputArrayOfArrays tvecs, int flags = 0,
TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON))
:param objectPoints: vector of vectors of calibration pattern points in the calibration pattern coordinate space. :param objectPoints: vector of vectors of calibration pattern points in the calibration pattern coordinate space.
@ -1820,9 +1810,9 @@ Performs camera calibaration
Fisheye::stereoCalibrate Fisheye::stereoCalibrate
---------------------------- ----------------------------
Performs stereo calibration calibaration Performs stereo calibration
.. ocv:function:: double stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize, OutputArray R, OutputArray T, int flags = CALIB_FIX_INTRINSIC, TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON)) .. ocv:function:: double Fisheye::stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints1, InputArrayOfArrays imagePoints2, InputOutputArray K1, InputOutputArray D1, InputOutputArray K2, InputOutputArray D2, Size imageSize, OutputArray R, OutputArray T, int flags = CALIB_FIX_INTRINSIC, TermCriteria criteria = TermCriteria(TermCriteria::COUNT + TermCriteria::EPS, 100, DBL_EPSILON))
:param objectPoints: Vector of vectors of the calibration pattern points. :param objectPoints: Vector of vectors of the calibration pattern points.

View File

@ -745,7 +745,7 @@ CV_EXPORTS_W int estimateAffine3D(InputArray src, InputArray dst,
OutputArray out, OutputArray inliers, OutputArray out, OutputArray inliers,
double ransacThreshold=3, double confidence=0.99); double ransacThreshold=3, double confidence=0.99);
class Fisheye class CV_EXPORTS Fisheye
{ {
public: public:

View File

@ -1,8 +1,4 @@
#include "opencv2/opencv.hpp"
#include "opencv2/core/affine.hpp"
#include "opencv2/core/affine.hpp"
#include "fisheye.hpp" #include "fisheye.hpp"
#include "iomanip"
namespace cv { namespace namespace cv { namespace
{ {
@ -46,6 +42,7 @@ void cv::Fisheye::projectPoints(InputArray objectPoints, OutputArray imagePoints
cv::Vec2d f, c; cv::Vec2d f, c;
if (_K.depth() == CV_32F) if (_K.depth() == CV_32F)
{ {
Matx33f K = _K.getMat(); Matx33f K = _K.getMat();
f = Vec2f(K(0, 0), K(1, 1)); f = Vec2f(K(0, 0), K(1, 1));
c = Vec2f(K(0, 2), K(1, 2)); c = Vec2f(K(0, 2), K(1, 2));
@ -786,8 +783,8 @@ double cv::Fisheye::stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayO
const double thresh_cond = 1e6; const double thresh_cond = 1e6;
const int check_cond = 1; const int check_cond = 1;
size_t n_points = objectPoints.getMat(0).total(); int n_points = (int)objectPoints.getMat(0).total();
size_t n_images = objectPoints.total(); int n_images = (int)objectPoints.total();
double change = 1; double change = 1;
@ -856,7 +853,7 @@ double cv::Fisheye::stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayO
//Init values for rotation and translation between two views //Init values for rotation and translation between two views
cv::Mat om_list(1, n_images, CV_64FC3), T_list(1, n_images, CV_64FC3); cv::Mat om_list(1, n_images, CV_64FC3), T_list(1, n_images, CV_64FC3);
cv::Mat om_ref, R_ref, T_ref, R1, R2; cv::Mat om_ref, R_ref, T_ref, R1, R2;
for (size_t image_idx = 0; image_idx < n_images; ++image_idx) for (int image_idx = 0; image_idx < n_images; ++image_idx)
{ {
cv::Rodrigues(rvecs1[image_idx], R1); cv::Rodrigues(rvecs1[image_idx], R1);
cv::Rodrigues(rvecs2[image_idx], R2); cv::Rodrigues(rvecs2[image_idx], R2);
@ -887,7 +884,7 @@ double cv::Fisheye::stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayO
cv::Mat omr, Tr, domrdomckk, domrdTckk, domrdom, domrdT, dTrdomckk, dTrdTckk, dTrdom, dTrdT; cv::Mat omr, Tr, domrdomckk, domrdTckk, domrdom, domrdT, dTrdomckk, dTrdTckk, dTrdom, dTrdT;
for (size_t image_idx = 0; image_idx < n_images; ++image_idx) for (int image_idx = 0; image_idx < n_images; ++image_idx)
{ {
Jkk = cv::Mat::zeros(4 * n_points, 18 + 6 * (n_images + 1), CV_64FC1); Jkk = cv::Mat::zeros(4 * n_points, 18 + 6 * (n_images + 1), CV_64FC1);
@ -931,22 +928,18 @@ double cv::Fisheye::stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayO
//check goodness of sterepair //check goodness of sterepair
double abs_max = 0; double abs_max = 0;
for (size_t i = 0; i < 4 * n_points; i++) for (int i = 0; i < 4 * n_points; i++)
{ {
if (fabs(ekk.at<double>(i)) > abs_max) if (fabs(ekk.at<double>(i)) > abs_max)
{ {
abs_max = fabs(ekk.at<double>(i)); abs_max = fabs(ekk.at<double>(i));
} }
} }
if (abs_max < threshold)
{ CV_Assert(abs_max < threshold); // bad stereo pair
Jkk.copyTo(J.rowRange(image_idx * 4 * n_points, (image_idx + 1) * 4 * n_points));
ekk.copyTo(e.rowRange(image_idx * 4 * n_points, (image_idx + 1) * 4 * n_points)); Jkk.copyTo(J.rowRange(image_idx * 4 * n_points, (image_idx + 1) * 4 * n_points));
} ekk.copyTo(e.rowRange(image_idx * 4 * n_points, (image_idx + 1) * 4 * n_points));
else
{
CV_Assert(!"Bad stereo pair");
}
} }
cv::Vec6d oldTom(Tcur[0], Tcur[1], Tcur[2], omcur[0], omcur[1], omcur[2]); cv::Vec6d oldTom(Tcur[0], Tcur[1], Tcur[2], omcur[0], omcur[1], omcur[2]);
@ -962,7 +955,7 @@ double cv::Fisheye::stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayO
intrinsicRight = intrinsicRight + deltas.rowRange(a, a + b); intrinsicRight = intrinsicRight + deltas.rowRange(a, a + b);
omcur = omcur + cv::Vec3d(deltas.rowRange(a + b, a + b + 3)); omcur = omcur + cv::Vec3d(deltas.rowRange(a + b, a + b + 3));
Tcur = Tcur + cv::Vec3d(deltas.rowRange(a + b + 3, a + b + 6)); Tcur = Tcur + cv::Vec3d(deltas.rowRange(a + b + 3, a + b + 6));
for (size_t image_idx = 0; image_idx < n_images; ++image_idx) for (int image_idx = 0; image_idx < n_images; ++image_idx)
{ {
rvecs1[image_idx] = cv::Mat(cv::Mat(rvecs1[image_idx]) + deltas.rowRange(a + b + 6 + image_idx * 6, a + b + 9 + image_idx * 6)); rvecs1[image_idx] = cv::Mat(cv::Mat(rvecs1[image_idx]) + deltas.rowRange(a + b + 6 + image_idx * 6, a + b + 9 + image_idx * 6));
tvecs1[image_idx] = cv::Mat(cv::Mat(tvecs1[image_idx]) + deltas.rowRange(a + b + 9 + image_idx * 6, a + b + 12 + image_idx * 6)); tvecs1[image_idx] = cv::Mat(cv::Mat(tvecs1[image_idx]) + deltas.rowRange(a + b + 9 + image_idx * 6, a + b + 12 + image_idx * 6));
@ -979,7 +972,7 @@ double cv::Fisheye::stereoCalibrate(InputArrayOfArrays objectPoints, InputArrayO
rms += ptr_e[i][0] * ptr_e[i][0] + ptr_e[i][1] * ptr_e[i][1]; rms += ptr_e[i][0] * ptr_e[i][0] + ptr_e[i][1] * ptr_e[i][1];
} }
rms /= (e.total() / 2); rms /= ((double)e.total() / 2.0);
rms = sqrt(rms); rms = sqrt(rms);
_K1 = Matx33d(intrinsicLeft.f[0], intrinsicLeft.f[0] * intrinsicLeft.alpha, intrinsicLeft.c[0], _K1 = Matx33d(intrinsicLeft.f[0], intrinsicLeft.f[0] * intrinsicLeft.alpha, intrinsicLeft.c[0],
@ -1011,7 +1004,7 @@ void subMatrix(const Mat& src, Mat& dst, const vector<int>& cols, const vector<i
int nonzeros_cols = cv::countNonZero(cols); int nonzeros_cols = cv::countNonZero(cols);
Mat tmp(src.rows, nonzeros_cols, CV_64FC1); Mat tmp(src.rows, nonzeros_cols, CV_64FC1);
for (size_t i = 0, j = 0; i < cols.size(); i++) for (int i = 0, j = 0; i < (int)cols.size(); i++)
{ {
if (cols[i]) if (cols[i])
{ {
@ -1021,7 +1014,7 @@ void subMatrix(const Mat& src, Mat& dst, const vector<int>& cols, const vector<i
int nonzeros_rows = cv::countNonZero(rows); int nonzeros_rows = cv::countNonZero(rows);
Mat tmp1(nonzeros_rows, nonzeros_cols, CV_64FC1); Mat tmp1(nonzeros_rows, nonzeros_cols, CV_64FC1);
for (size_t i = 0, j = 0; i < rows.size(); i++) for (int i = 0, j = 0; i < (int)rows.size(); i++)
{ {
if (rows[i]) if (rows[i])
{ {
@ -1328,10 +1321,7 @@ void cv::internal::CalibrateExtrinsics(InputArrayOfArrays objectPoints, InputArr
if (check_cond) if (check_cond)
{ {
SVD svd(JJ_kk, SVD::NO_UV); SVD svd(JJ_kk, SVD::NO_UV);
if (svd.w.at<double>(0) / svd.w.at<double>((int)svd.w.total() - 1) > thresh_cond) CV_Assert(svd.w.at<double>(0) / svd.w.at<double>((int)svd.w.total() - 1) < thresh_cond);
{
CV_Assert(!"cond > thresh_cond");
}
} }
omckk.reshape(3,1).copyTo(omc.getMat().col(image_idx)); omckk.reshape(3,1).copyTo(omc.getMat().col(image_idx));
Tckk.reshape(3,1).copyTo(Tc.getMat().col(image_idx)); Tckk.reshape(3,1).copyTo(Tc.getMat().col(image_idx));
@ -1392,11 +1382,7 @@ void cv::internal::ComputeJacobians(InputArrayOfArrays objectPoints, InputArrayO
{ {
Mat JJ_kk = B.t(); Mat JJ_kk = B.t();
SVD svd(JJ_kk, SVD::NO_UV); SVD svd(JJ_kk, SVD::NO_UV);
double cond = svd.w.at<double>(0) / svd.w.at<double>(svd.w.rows - 1); CV_Assert(svd.w.at<double>(0) / svd.w.at<double>(svd.w.rows - 1) < thresh_cond);
if (cond > thresh_cond)
{
CV_Assert(!"cond > thresh_cond");
}
} }
} }
@ -1420,7 +1406,7 @@ void cv::internal::EstimateUncertainties(InputArrayOfArrays objectPoints, InputA
Mat ex((int)(objectPoints.getMat(0).total() * objectPoints.total()), 1, CV_64FC2); Mat ex((int)(objectPoints.getMat(0).total() * objectPoints.total()), 1, CV_64FC2);
for (size_t image_idx = 0; image_idx < objectPoints.total(); ++image_idx) for (int image_idx = 0; image_idx < (int)objectPoints.total(); ++image_idx)
{ {
Mat image, object; Mat image, object;
objectPoints.getMat(image_idx).convertTo(object, CV_64FC3); objectPoints.getMat(image_idx).convertTo(object, CV_64FC3);
@ -1435,11 +1421,11 @@ void cv::internal::EstimateUncertainties(InputArrayOfArrays objectPoints, InputA
} }
meanStdDev(ex, noArray(), std_err); meanStdDev(ex, noArray(), std_err);
std_err *= sqrt(ex.total()/(ex.total() - 1.0)); std_err *= sqrt((double)ex.total()/((double)ex.total() - 1.0));
Mat sigma_x; Mat sigma_x;
meanStdDev(ex.reshape(1, 1), noArray(), sigma_x); meanStdDev(ex.reshape(1, 1), noArray(), sigma_x);
sigma_x *= sqrt(2 * ex.total()/(2 * ex.total() - 1.0)); sigma_x *= sqrt(2.0 * (double)ex.total()/(2.0 * (double)ex.total() - 1.0));
Mat _JJ2_inv, ex3; Mat _JJ2_inv, ex3;
ComputeJacobians(objectPoints, imagePoints, params, omc, Tc, check_cond, thresh_cond, _JJ2_inv, ex3); ComputeJacobians(objectPoints, imagePoints, params, omc, Tc, check_cond, thresh_cond, _JJ2_inv, ex3);
@ -1459,7 +1445,7 @@ void cv::internal::EstimateUncertainties(InputArrayOfArrays objectPoints, InputA
rms += ptr_ex[i][0] * ptr_ex[i][0] + ptr_ex[i][1] * ptr_ex[i][1]; rms += ptr_ex[i][0] * ptr_ex[i][0] + ptr_ex[i][1] * ptr_ex[i][1];
} }
rms /= ex.total(); rms /= (double)ex.total();
rms = sqrt(rms); rms = sqrt(rms);
} }
@ -1468,9 +1454,9 @@ void cv::internal::dAB(InputArray A, InputArray B, OutputArray dABdA, OutputArra
CV_Assert(A.getMat().cols == B.getMat().rows); CV_Assert(A.getMat().cols == B.getMat().rows);
CV_Assert(A.type() == CV_64FC1 && B.type() == CV_64FC1); CV_Assert(A.type() == CV_64FC1 && B.type() == CV_64FC1);
size_t p = A.getMat().rows; int p = A.getMat().rows;
size_t n = A.getMat().cols; int n = A.getMat().cols;
size_t q = B.getMat().cols; int q = B.getMat().cols;
dABdA.create(p * q, p * n, CV_64FC1); dABdA.create(p * q, p * n, CV_64FC1);
dABdB.create(p * q, q * n, CV_64FC1); dABdB.create(p * q, q * n, CV_64FC1);
@ -1478,20 +1464,20 @@ void cv::internal::dAB(InputArray A, InputArray B, OutputArray dABdA, OutputArra
dABdA.getMat() = Mat::zeros(p * q, p * n, CV_64FC1); dABdA.getMat() = Mat::zeros(p * q, p * n, CV_64FC1);
dABdB.getMat() = Mat::zeros(p * q, q * n, CV_64FC1); dABdB.getMat() = Mat::zeros(p * q, q * n, CV_64FC1);
for (size_t i = 0; i < q; ++i) for (int i = 0; i < q; ++i)
{ {
for (size_t j = 0; j < p; ++j) for (int j = 0; j < p; ++j)
{ {
size_t ij = j + i * p; int ij = j + i * p;
for (size_t k = 0; k < n; ++k) for (int k = 0; k < n; ++k)
{ {
size_t kj = j + k * p; int kj = j + k * p;
dABdA.getMat().at<double>(ij, kj) = B.getMat().at<double>(k, i); dABdA.getMat().at<double>(ij, kj) = B.getMat().at<double>(k, i);
} }
} }
} }
for (size_t i = 0; i < q; ++i) for (int i = 0; i < q; ++i)
{ {
A.getMat().copyTo(dABdB.getMat().rowRange(i * p, i * p + p).colRange(i * n, i * n + n)); A.getMat().copyTo(dABdB.getMat().rowRange(i * p, i * p + p).colRange(i * n, i * n + n));
} }
@ -1571,8 +1557,8 @@ double cv::internal::median(const Mat& row)
CV_Assert(!row.empty() && row.rows == 1); CV_Assert(!row.empty() && row.rows == 1);
Mat tmp = row.clone(); Mat tmp = row.clone();
sort(tmp, tmp, 0); sort(tmp, tmp, 0);
if (tmp.total() % 2) return tmp.at<double>(tmp.total() / 2); if ((int)tmp.total() % 2) return tmp.at<double>((int)tmp.total() / 2);
else return 0.5 *(tmp.at<double>(tmp.total() / 2) + tmp.at<double>(tmp.total() / 2 - 1)); else return 0.5 *(tmp.at<double>((int)tmp.total() / 2) + tmp.at<double>((int)tmp.total() / 2 - 1));
} }
cv::Vec3d cv::internal::median3d(InputArray m) cv::Vec3d cv::internal::median3d(InputArray m)

View File

@ -1,9 +1,10 @@
#ifndef FISHEYE_INTERNAL_H #ifndef FISHEYE_INTERNAL_H
#define FISHEYE_INTERNAL_H #define FISHEYE_INTERNAL_H
#include "precomp.hpp"
namespace cv { namespace internal { namespace cv { namespace internal {
struct IntrinsicParams struct CV_EXPORTS IntrinsicParams
{ {
Vec2d f; Vec2d f;
Vec2d c; Vec2d c;
@ -25,9 +26,9 @@ void projectPoints(cv::InputArray objectPoints, cv::OutputArray imagePoints,
void ComputeExtrinsicRefine(const Mat& imagePoints, const Mat& objectPoints, Mat& rvec, void ComputeExtrinsicRefine(const Mat& imagePoints, const Mat& objectPoints, Mat& rvec,
Mat& tvec, Mat& J, const int MaxIter, Mat& tvec, Mat& J, const int MaxIter,
const IntrinsicParams& param, const double thresh_cond); const IntrinsicParams& param, const double thresh_cond);
Mat ComputeHomography(Mat m, Mat M); CV_EXPORTS Mat ComputeHomography(Mat m, Mat M);
Mat NormalizePixels(const Mat& imagePoints, const IntrinsicParams& param); CV_EXPORTS Mat NormalizePixels(const Mat& imagePoints, const IntrinsicParams& param);
void InitExtrinsics(const Mat& _imagePoints, const Mat& _objectPoints, const IntrinsicParams& param, Mat& omckk, Mat& Tckk); void InitExtrinsics(const Mat& _imagePoints, const Mat& _objectPoints, const IntrinsicParams& param, Mat& omckk, Mat& Tckk);
@ -39,7 +40,7 @@ void ComputeJacobians(InputArrayOfArrays objectPoints, InputArrayOfArrays imageP
const IntrinsicParams& param, InputArray omc, InputArray Tc, const IntrinsicParams& param, InputArray omc, InputArray Tc,
const int& check_cond, const double& thresh_cond, Mat& JJ2_inv, Mat& ex3); const int& check_cond, const double& thresh_cond, Mat& JJ2_inv, Mat& ex3);
void EstimateUncertainties(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints, CV_EXPORTS void EstimateUncertainties(InputArrayOfArrays objectPoints, InputArrayOfArrays imagePoints,
const IntrinsicParams& params, InputArray omc, InputArray Tc, const IntrinsicParams& params, InputArray omc, InputArray Tc,
IntrinsicParams& errors, Vec2d& std_err, double thresh_cond, int check_cond, double& rms); IntrinsicParams& errors, Vec2d& std_err, double thresh_cond, int check_cond, double& rms);

View File

@ -1,5 +1,4 @@
#include "test_precomp.hpp" #include "test_precomp.hpp"
#include <fstream>
#include <opencv2/ts/gpu_test.hpp> #include <opencv2/ts/gpu_test.hpp>
#include "../src/fisheye.hpp" #include "../src/fisheye.hpp"