Modifications to support dynamic vector dispatch.

This commit is contained in:
Richard Yoo 2014-07-09 16:55:39 -07:00
parent 11a09ef5cc
commit c38023f4e7
11 changed files with 786 additions and 557 deletions

View File

@ -140,15 +140,15 @@ if(CMAKE_COMPILER_IS_GNUCXX)
# SSE3 and further should be disabled under MingW because it generates compiler errors
if(NOT MINGW)
if(ENABLE_AVX)
add_extra_compiler_option(-mavx)
ocv_check_flag_support(CXX "-mavx" _varname)
endif()
if(ENABLE_AVX2)
add_extra_compiler_option(-mavx2)
ocv_check_flag_support(CXX "-mavx2" _varname)
endif()
# GCC depresses SSEx instructions when -mavx is used. Instead, it generates new AVX instructions or AVX equivalence for all SSEx instructions when needed.
if(NOT OPENCV_EXTRA_CXX_FLAGS MATCHES "-m(avx|avx2)")
if(NOT OPENCV_EXTRA_CXX_FLAGS MATCHES "-mavx")
if(ENABLE_SSE3)
add_extra_compiler_option(-msse3)
endif()
@ -169,7 +169,7 @@ if(CMAKE_COMPILER_IS_GNUCXX)
if(X86 OR X86_64)
if(NOT APPLE AND CMAKE_SIZEOF_VOID_P EQUAL 4)
if(OPENCV_EXTRA_CXX_FLAGS MATCHES "-m(sse2|avx|avx2)")
if(OPENCV_EXTRA_CXX_FLAGS MATCHES "-m(sse2|avx)")
add_extra_compiler_option(-mfpmath=sse)# !! important - be on the same wave with x64 compilers
else()
add_extra_compiler_option(-mfpmath=387)

View File

@ -526,6 +526,20 @@ macro(ocv_glob_module_sources)
list(APPEND lib_srcs ${cl_kernels} "${CMAKE_CURRENT_BINARY_DIR}/opencl_kernels.cpp" "${CMAKE_CURRENT_BINARY_DIR}/opencl_kernels.hpp")
endif()
if(ENABLE_AVX)
file(GLOB avx_srcs "src/avx/*.cpp")
foreach(src ${avx_srcs})
set_source_files_properties(${src} PROPERTIES COMPILE_FLAGS -mavx)
endforeach()
endif()
if(ENABLE_AVX2)
file(GLOB avx2_srcs "src/avx2/*.cpp")
foreach(src ${avx2_srcs})
set_source_files_properties(${src} PROPERTIES COMPILE_FLAGS -mavx2)
endforeach()
endif()
source_group("Include" FILES ${lib_hdrs})
source_group("Include\\detail" FILES ${lib_hdrs_detail})

View File

@ -317,6 +317,7 @@ Returns true if the specified feature is supported by the host hardware.
* ``CV_CPU_SSE4_2`` - SSE 4.2
* ``CV_CPU_POPCNT`` - POPCOUNT
* ``CV_CPU_AVX`` - AVX
* ``CV_CPU_AVX2`` - AVX2
The function returns true if the host hardware supports the specified feature. When user calls ``setUseOptimized(false)``, the subsequent calls to ``checkHardwareSupport()`` will return false until ``setUseOptimized(true)`` is called. This way user can dynamically switch on and off the optimized code in OpenCV.

View File

@ -284,6 +284,7 @@ CV_EXPORTS_W int64 getCPUTickCount();
- CV_CPU_SSE4_2 - SSE 4.2
- CV_CPU_POPCNT - POPCOUNT
- CV_CPU_AVX - AVX
- CV_CPU_AVX2 - AVX2
\note {Note that the function output is not static. Once you called cv::useOptimized(false),
most of the hardware acceleration is disabled and thus the function will returns false,

View File

@ -253,7 +253,6 @@ struct HWFeatures
f.have[CV_CPU_AVX] = (((cpuid_data[2] & (1<<28)) != 0)&&((cpuid_data[2] & (1<<27)) != 0));//OS uses XSAVE_XRSTORE and CPU support AVX
}
#if CV_AVX2
#if defined _MSC_VER && (defined _M_IX86 || defined _M_X64)
__cpuidex(cpuid_data, 7, 0);
#elif defined __GNUC__ && (defined __i386__ || defined __x86_64__)
@ -286,7 +285,6 @@ struct HWFeatures
{
f.have[CV_CPU_AVX2] = (cpuid_data[1] & (1<<5)) != 0;
}
#endif
return f;
}

View File

@ -0,0 +1,176 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "imgwarp_avx.hpp"
#if CV_AVX
int VResizeLinearVec_32f_avx(const uchar** _src, uchar* _dst, const uchar* _beta, int width )
{
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1];
float* dst = (float*)_dst;
int x = 0;
__m256 b0 = _mm256_set1_ps(beta[0]), b1 = _mm256_set1_ps(beta[1]);
if( (((size_t)S0|(size_t)S1)&31) == 0 )
for( ; x <= width - 16; x += 16 )
{
__m256 x0, x1, y0, y1;
x0 = _mm256_load_ps(S0 + x);
x1 = _mm256_load_ps(S0 + x + 8);
y0 = _mm256_load_ps(S1 + x);
y1 = _mm256_load_ps(S1 + x + 8);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
x1 = _mm256_add_ps(_mm256_mul_ps(x1, b0), _mm256_mul_ps(y1, b1));
_mm256_storeu_ps( dst + x, x0);
_mm256_storeu_ps( dst + x + 8, x1);
}
else
for( ; x <= width - 16; x += 16 )
{
__m256 x0, x1, y0, y1;
x0 = _mm256_loadu_ps(S0 + x);
x1 = _mm256_loadu_ps(S0 + x + 8);
y0 = _mm256_loadu_ps(S1 + x);
y1 = _mm256_loadu_ps(S1 + x + 8);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
x1 = _mm256_add_ps(_mm256_mul_ps(x1, b0), _mm256_mul_ps(y1, b1));
_mm256_storeu_ps( dst + x, x0);
_mm256_storeu_ps( dst + x + 8, x1);
}
return x;
}
int VResizeCubicVec_32f_avx(const uchar** _src, uchar* _dst, const uchar* _beta, int width )
{
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
float* dst = (float*)_dst;
int x = 0;
__m256 b0 = _mm256_set1_ps(beta[0]), b1 = _mm256_set1_ps(beta[1]),
b2 = _mm256_set1_ps(beta[2]), b3 = _mm256_set1_ps(beta[3]);
if( (((size_t)S0|(size_t)S1|(size_t)S2|(size_t)S3)&31) == 0 )
for( ; x <= width - 16; x += 16 )
{
__m256 x0, x1, y0, y1, s0, s1;
x0 = _mm256_load_ps(S0 + x);
x1 = _mm256_load_ps(S0 + x + 8);
y0 = _mm256_load_ps(S1 + x);
y1 = _mm256_load_ps(S1 + x + 8);
s0 = _mm256_mul_ps(x0, b0);
s1 = _mm256_mul_ps(x1, b0);
y0 = _mm256_mul_ps(y0, b1);
y1 = _mm256_mul_ps(y1, b1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
x0 = _mm256_load_ps(S2 + x);
x1 = _mm256_load_ps(S2 + x + 8);
y0 = _mm256_load_ps(S3 + x);
y1 = _mm256_load_ps(S3 + x + 8);
x0 = _mm256_mul_ps(x0, b2);
x1 = _mm256_mul_ps(x1, b2);
y0 = _mm256_mul_ps(y0, b3);
y1 = _mm256_mul_ps(y1, b3);
s0 = _mm256_add_ps(s0, x0);
s1 = _mm256_add_ps(s1, x1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
_mm256_storeu_ps( dst + x, s0);
_mm256_storeu_ps( dst + x + 8, s1);
}
else
for( ; x <= width - 16; x += 16 )
{
__m256 x0, x1, y0, y1, s0, s1;
x0 = _mm256_loadu_ps(S0 + x);
x1 = _mm256_loadu_ps(S0 + x + 8);
y0 = _mm256_loadu_ps(S1 + x);
y1 = _mm256_loadu_ps(S1 + x + 8);
s0 = _mm256_mul_ps(x0, b0);
s1 = _mm256_mul_ps(x1, b0);
y0 = _mm256_mul_ps(y0, b1);
y1 = _mm256_mul_ps(y1, b1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
x0 = _mm256_loadu_ps(S2 + x);
x1 = _mm256_loadu_ps(S2 + x + 8);
y0 = _mm256_loadu_ps(S3 + x);
y1 = _mm256_loadu_ps(S3 + x + 8);
x0 = _mm256_mul_ps(x0, b2);
x1 = _mm256_mul_ps(x1, b2);
y0 = _mm256_mul_ps(y0, b3);
y1 = _mm256_mul_ps(y1, b3);
s0 = _mm256_add_ps(s0, x0);
s1 = _mm256_add_ps(s1, x1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
_mm256_storeu_ps( dst + x, s0);
_mm256_storeu_ps( dst + x + 8, s1);
}
return x;
}
#else
int VResizeLinearVec_32f_avx(const uchar**, uchar*, const uchar*, int ) { return 0; }
int VResizeCubicVec_32f_avx(const uchar**, uchar*, const uchar*, int ) { return 0; }
#endif
/* End of file. */

View File

@ -0,0 +1,51 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef _CV_IMGWARP_AVX_H_
#define _CV_IMGWARP_AVX_H_
int VResizeLinearVec_32f_avx(const uchar** _src, uchar* _dst, const uchar* _beta, int width );
int VResizeCubicVec_32f_avx(const uchar** _src, uchar* _dst, const uchar* _beta, int width );
#endif
/* End of file. */

View File

@ -0,0 +1,431 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "../precomp.hpp"
#include "imgwarp_avx2.hpp"
const int INTER_RESIZE_COEF_BITS=11;
const int INTER_RESIZE_COEF_SCALE=1 << INTER_RESIZE_COEF_BITS;
#if CV_AVX2
int VResizeLinearVec_32s8u_avx2(const uchar** _src, uchar* dst, const uchar* _beta, int width )
{
const int** src = (const int**)_src;
const short* beta = (const short*)_beta;
const int *S0 = src[0], *S1 = src[1];
int x = 0;
__m256i b0 = _mm256_set1_epi16(beta[0]), b1 = _mm256_set1_epi16(beta[1]);
__m256i delta = _mm256_set1_epi16(2);
const int index[8] = { 0, 4, 1, 5, 2, 6, 3, 7 };
__m256i shuffle = _mm256_load_si256((const __m256i*)index);
if( (((size_t)S0|(size_t)S1)&31) == 0 )
for( ; x <= width - 32; x += 32 )
{
__m256i x0, x1, x2, y0, y1, y2;
x0 = _mm256_load_si256((const __m256i*)(S0 + x));
x1 = _mm256_load_si256((const __m256i*)(S0 + x + 8));
y0 = _mm256_load_si256((const __m256i*)(S1 + x));
y1 = _mm256_load_si256((const __m256i*)(S1 + x + 8));
x0 = _mm256_packs_epi32(_mm256_srai_epi32(x0, 4), _mm256_srai_epi32(x1, 4));
y0 = _mm256_packs_epi32(_mm256_srai_epi32(y0, 4), _mm256_srai_epi32(y1, 4));
x1 = _mm256_load_si256((const __m256i*)(S0 + x + 16));
x2 = _mm256_load_si256((const __m256i*)(S0 + x + 24));
y1 = _mm256_load_si256((const __m256i*)(S1 + x + 16));
y2 = _mm256_load_si256((const __m256i*)(S1 + x + 24));
x1 = _mm256_packs_epi32(_mm256_srai_epi32(x1, 4), _mm256_srai_epi32(x2, 4));
y1 = _mm256_packs_epi32(_mm256_srai_epi32(y1, 4), _mm256_srai_epi32(y2, 4));
x0 = _mm256_adds_epi16(_mm256_mulhi_epi16(x0, b0), _mm256_mulhi_epi16(y0, b1));
x1 = _mm256_adds_epi16(_mm256_mulhi_epi16(x1, b0), _mm256_mulhi_epi16(y1, b1));
x0 = _mm256_srai_epi16(_mm256_adds_epi16(x0, delta), 2);
x1 = _mm256_srai_epi16(_mm256_adds_epi16(x1, delta), 2);
x0 = _mm256_packus_epi16(x0, x1);
x0 = _mm256_permutevar8x32_epi32(x0, shuffle);
_mm256_storeu_si256( (__m256i*)(dst + x), x0);
}
else
for( ; x <= width - 32; x += 32 )
{
__m256i x0, x1, x2, y0, y1, y2;
x0 = _mm256_loadu_si256((const __m256i*)(S0 + x));
x1 = _mm256_loadu_si256((const __m256i*)(S0 + x + 8));
y0 = _mm256_loadu_si256((const __m256i*)(S1 + x));
y1 = _mm256_loadu_si256((const __m256i*)(S1 + x + 8));
x0 = _mm256_packs_epi32(_mm256_srai_epi32(x0, 4), _mm256_srai_epi32(x1, 4));
y0 = _mm256_packs_epi32(_mm256_srai_epi32(y0, 4), _mm256_srai_epi32(y1, 4));
x1 = _mm256_loadu_si256((const __m256i*)(S0 + x + 16));
x2 = _mm256_loadu_si256((const __m256i*)(S0 + x + 24));
y1 = _mm256_loadu_si256((const __m256i*)(S1 + x + 16));
y2 = _mm256_loadu_si256((const __m256i*)(S1 + x + 24));
x1 = _mm256_packs_epi32(_mm256_srai_epi32(x1, 4), _mm256_srai_epi32(x2, 4));
y1 = _mm256_packs_epi32(_mm256_srai_epi32(y1, 4), _mm256_srai_epi32(y2, 4));
x0 = _mm256_adds_epi16(_mm256_mulhi_epi16(x0, b0), _mm256_mulhi_epi16(y0, b1));
x1 = _mm256_adds_epi16(_mm256_mulhi_epi16(x1, b0), _mm256_mulhi_epi16(y1, b1));
x0 = _mm256_srai_epi16(_mm256_adds_epi16(x0, delta), 2);
x1 = _mm256_srai_epi16(_mm256_adds_epi16(x1, delta), 2);
x0 = _mm256_packus_epi16(x0, x1);
x0 = _mm256_permutevar8x32_epi32(x0, shuffle);
_mm256_storeu_si256( (__m256i*)(dst + x), x0);
}
for( ; x < width - 8; x += 8 )
{
__m256i x0, y0;
x0 = _mm256_srai_epi32(_mm256_loadu_si256((const __m256i*)(S0 + x)), 4);
y0 = _mm256_srai_epi32(_mm256_loadu_si256((const __m256i*)(S1 + x)), 4);
x0 = _mm256_packs_epi32(x0, x0);
y0 = _mm256_packs_epi32(y0, y0);
x0 = _mm256_adds_epi16(_mm256_mulhi_epi16(x0, b0), _mm256_mulhi_epi16(y0, b1));
x0 = _mm256_srai_epi16(_mm256_adds_epi16(x0, delta), 2);
x0 = _mm256_packus_epi16(x0, x0);
*(int*)(dst + x) = _mm_cvtsi128_si32(_mm256_extracti128_si256(x0, 0));
*(int*)(dst + x + 4) = _mm_cvtsi128_si32(_mm256_extracti128_si256(x0, 1));
}
return x;
}
template<int shiftval>
int VResizeLinearVec_32f16_avx2(const uchar** _src, uchar* _dst, const uchar* _beta, int width )
{
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1];
ushort* dst = (ushort*)_dst;
int x = 0;
__m256 b0 = _mm256_set1_ps(beta[0]), b1 = _mm256_set1_ps(beta[1]);
__m256i preshift = _mm256_set1_epi32(shiftval);
__m256i postshift = _mm256_set1_epi16((short)shiftval);
if( (((size_t)S0|(size_t)S1)&31) == 0 )
for( ; x <= width - 32; x += 32 )
{
__m256 x0, x1, y0, y1;
__m256i t0, t1, t2;
x0 = _mm256_load_ps(S0 + x);
x1 = _mm256_load_ps(S0 + x + 8);
y0 = _mm256_load_ps(S1 + x);
y1 = _mm256_load_ps(S1 + x + 8);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
x1 = _mm256_add_ps(_mm256_mul_ps(x1, b0), _mm256_mul_ps(y1, b1));
t0 = _mm256_add_epi32(_mm256_cvtps_epi32(x0), preshift);
t2 = _mm256_add_epi32(_mm256_cvtps_epi32(x1), preshift);
t0 = _mm256_add_epi16(_mm256_packs_epi32(t0, t2), postshift);
x0 = _mm256_load_ps(S0 + x + 16);
x1 = _mm256_load_ps(S0 + x + 24);
y0 = _mm256_load_ps(S1 + x + 16);
y1 = _mm256_load_ps(S1 + x + 24);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
x1 = _mm256_add_ps(_mm256_mul_ps(x1, b0), _mm256_mul_ps(y1, b1));
t1 = _mm256_add_epi32(_mm256_cvtps_epi32(x0), preshift);
t2 = _mm256_add_epi32(_mm256_cvtps_epi32(x1), preshift);
t1 = _mm256_add_epi16(_mm256_packs_epi32(t1, t2), postshift);
_mm256_storeu_si256( (__m256i*)(dst + x), t0);
_mm256_storeu_si256( (__m256i*)(dst + x + 16), t1);
}
else
for( ; x <= width - 32; x += 32 )
{
__m256 x0, x1, y0, y1;
__m256i t0, t1, t2;
x0 = _mm256_loadu_ps(S0 + x);
x1 = _mm256_loadu_ps(S0 + x + 8);
y0 = _mm256_loadu_ps(S1 + x);
y1 = _mm256_loadu_ps(S1 + x + 8);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
x1 = _mm256_add_ps(_mm256_mul_ps(x1, b0), _mm256_mul_ps(y1, b1));
t0 = _mm256_add_epi32(_mm256_cvtps_epi32(x0), preshift);
t2 = _mm256_add_epi32(_mm256_cvtps_epi32(x1), preshift);
t0 = _mm256_add_epi16(_mm256_packs_epi32(t0, t2), postshift);
x0 = _mm256_loadu_ps(S0 + x + 16);
x1 = _mm256_loadu_ps(S0 + x + 24);
y0 = _mm256_loadu_ps(S1 + x + 16);
y1 = _mm256_loadu_ps(S1 + x + 24);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
x1 = _mm256_add_ps(_mm256_mul_ps(x1, b0), _mm256_mul_ps(y1, b1));
t1 = _mm256_add_epi32(_mm256_cvtps_epi32(x0), preshift);
t2 = _mm256_add_epi32(_mm256_cvtps_epi32(x1), preshift);
t1 = _mm256_add_epi16(_mm256_packs_epi32(t1, t2), postshift);
_mm256_storeu_si256( (__m256i*)(dst + x), t0);
_mm256_storeu_si256( (__m256i*)(dst + x + 16), t1);
}
for( ; x < width - 8; x += 8 )
{
__m256 x0, y0;
__m256i t0;
x0 = _mm256_loadu_ps(S0 + x);
y0 = _mm256_loadu_ps(S1 + x);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
t0 = _mm256_add_epi32(_mm256_cvtps_epi32(x0), preshift);
t0 = _mm256_add_epi16(_mm256_packs_epi32(t0, t0), postshift);
_mm_storel_epi64( (__m128i*)(dst + x), _mm256_extracti128_si256(t0, 0));
_mm_storel_epi64( (__m128i*)(dst + x + 4), _mm256_extracti128_si256(t0, 1));
}
return x;
}
int VResizeCubicVec_32s8u_avx2(const uchar** _src, uchar* dst, const uchar* _beta, int width )
{
const int** src = (const int**)_src;
const short* beta = (const short*)_beta;
const int *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
int x = 0;
float scale = 1.f/(INTER_RESIZE_COEF_SCALE*INTER_RESIZE_COEF_SCALE);
__m256 b0 = _mm256_set1_ps(beta[0]*scale), b1 = _mm256_set1_ps(beta[1]*scale),
b2 = _mm256_set1_ps(beta[2]*scale), b3 = _mm256_set1_ps(beta[3]*scale);
const int shuffle = 0xd8; // 11 | 01 | 10 | 00
if( (((size_t)S0|(size_t)S1|(size_t)S2|(size_t)S3)&31) == 0 )
for( ; x <= width - 16; x += 16 )
{
__m256i x0, x1, y0, y1;
__m256 s0, s1, f0, f1;
x0 = _mm256_load_si256((const __m256i*)(S0 + x));
x1 = _mm256_load_si256((const __m256i*)(S0 + x + 8));
y0 = _mm256_load_si256((const __m256i*)(S1 + x));
y1 = _mm256_load_si256((const __m256i*)(S1 + x + 8));
s0 = _mm256_mul_ps(_mm256_cvtepi32_ps(x0), b0);
s1 = _mm256_mul_ps(_mm256_cvtepi32_ps(x1), b0);
f0 = _mm256_mul_ps(_mm256_cvtepi32_ps(y0), b1);
f1 = _mm256_mul_ps(_mm256_cvtepi32_ps(y1), b1);
s0 = _mm256_add_ps(s0, f0);
s1 = _mm256_add_ps(s1, f1);
x0 = _mm256_load_si256((const __m256i*)(S2 + x));
x1 = _mm256_load_si256((const __m256i*)(S2 + x + 8));
y0 = _mm256_load_si256((const __m256i*)(S3 + x));
y1 = _mm256_load_si256((const __m256i*)(S3 + x + 8));
f0 = _mm256_mul_ps(_mm256_cvtepi32_ps(x0), b2);
f1 = _mm256_mul_ps(_mm256_cvtepi32_ps(x1), b2);
s0 = _mm256_add_ps(s0, f0);
s1 = _mm256_add_ps(s1, f1);
f0 = _mm256_mul_ps(_mm256_cvtepi32_ps(y0), b3);
f1 = _mm256_mul_ps(_mm256_cvtepi32_ps(y1), b3);
s0 = _mm256_add_ps(s0, f0);
s1 = _mm256_add_ps(s1, f1);
x0 = _mm256_cvtps_epi32(s0);
x1 = _mm256_cvtps_epi32(s1);
x0 = _mm256_packs_epi32(x0, x1);
x0 = _mm256_permute4x64_epi64(x0, shuffle);
x0 = _mm256_packus_epi16(x0, x0);
_mm_storel_epi64( (__m128i*)(dst + x), _mm256_extracti128_si256(x0, 0));
_mm_storel_epi64( (__m128i*)(dst + x + 8), _mm256_extracti128_si256(x0, 1));
}
else
for( ; x <= width - 16; x += 16 )
{
__m256i x0, x1, y0, y1;
__m256 s0, s1, f0, f1;
x0 = _mm256_loadu_si256((const __m256i*)(S0 + x));
x1 = _mm256_loadu_si256((const __m256i*)(S0 + x + 8));
y0 = _mm256_loadu_si256((const __m256i*)(S1 + x));
y1 = _mm256_loadu_si256((const __m256i*)(S1 + x + 8));
s0 = _mm256_mul_ps(_mm256_cvtepi32_ps(x0), b0);
s1 = _mm256_mul_ps(_mm256_cvtepi32_ps(x1), b0);
f0 = _mm256_mul_ps(_mm256_cvtepi32_ps(y0), b1);
f1 = _mm256_mul_ps(_mm256_cvtepi32_ps(y1), b1);
s0 = _mm256_add_ps(s0, f0);
s1 = _mm256_add_ps(s1, f1);
x0 = _mm256_loadu_si256((const __m256i*)(S2 + x));
x1 = _mm256_loadu_si256((const __m256i*)(S2 + x + 8));
y0 = _mm256_loadu_si256((const __m256i*)(S3 + x));
y1 = _mm256_loadu_si256((const __m256i*)(S3 + x + 8));
f0 = _mm256_mul_ps(_mm256_cvtepi32_ps(x0), b2);
f1 = _mm256_mul_ps(_mm256_cvtepi32_ps(x1), b2);
s0 = _mm256_add_ps(s0, f0);
s1 = _mm256_add_ps(s1, f1);
f0 = _mm256_mul_ps(_mm256_cvtepi32_ps(y0), b3);
f1 = _mm256_mul_ps(_mm256_cvtepi32_ps(y1), b3);
s0 = _mm256_add_ps(s0, f0);
s1 = _mm256_add_ps(s1, f1);
x0 = _mm256_cvtps_epi32(s0);
x1 = _mm256_cvtps_epi32(s1);
x0 = _mm256_packs_epi32(x0, x1);
x0 = _mm256_permute4x64_epi64(x0, shuffle);
x0 = _mm256_packus_epi16(x0, x0);
_mm_storel_epi64( (__m128i*)(dst + x), _mm256_extracti128_si256(x0, 0));
_mm_storel_epi64( (__m128i*)(dst + x + 8), _mm256_extracti128_si256(x0, 1));
}
return x;
}
template<int shiftval>
int VResizeCubicVec_32f16_avx2(const uchar** _src, uchar* _dst, const uchar* _beta, int width )
{
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
ushort* dst = (ushort*)_dst;
int x = 0;
__m256 b0 = _mm256_set1_ps(beta[0]), b1 = _mm256_set1_ps(beta[1]),
b2 = _mm256_set1_ps(beta[2]), b3 = _mm256_set1_ps(beta[3]);
__m256i preshift = _mm256_set1_epi32(shiftval);
__m256i postshift = _mm256_set1_epi16((short)shiftval);
const int shuffle = 0xd8; // 11 | 01 | 10 | 00
if( (((size_t)S0|(size_t)S1|(size_t)S2|(size_t)S3)&31) == 0 )
for( ; x <= width - 16; x += 16 )
{
__m256 x0, x1, y0, y1, s0, s1;
__m256i t0, t1;
x0 = _mm256_load_ps(S0 + x);
x1 = _mm256_load_ps(S0 + x + 8);
y0 = _mm256_load_ps(S1 + x);
y1 = _mm256_load_ps(S1 + x + 8);
s0 = _mm256_mul_ps(x0, b0);
s1 = _mm256_mul_ps(x1, b0);
y0 = _mm256_mul_ps(y0, b1);
y1 = _mm256_mul_ps(y1, b1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
x0 = _mm256_load_ps(S2 + x);
x1 = _mm256_load_ps(S2 + x + 8);
y0 = _mm256_load_ps(S3 + x);
y1 = _mm256_load_ps(S3 + x + 8);
x0 = _mm256_mul_ps(x0, b2);
x1 = _mm256_mul_ps(x1, b2);
y0 = _mm256_mul_ps(y0, b3);
y1 = _mm256_mul_ps(y1, b3);
s0 = _mm256_add_ps(s0, x0);
s1 = _mm256_add_ps(s1, x1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
t0 = _mm256_add_epi32(_mm256_cvtps_epi32(s0), preshift);
t1 = _mm256_add_epi32(_mm256_cvtps_epi32(s1), preshift);
t0 = _mm256_add_epi16(_mm256_packs_epi32(t0, t1), postshift);
t0 = _mm256_permute4x64_epi64(t0, shuffle);
_mm256_storeu_si256( (__m256i*)(dst + x), t0);
}
else
for( ; x <= width - 16; x += 16 )
{
__m256 x0, x1, y0, y1, s0, s1;
__m256i t0, t1;
x0 = _mm256_loadu_ps(S0 + x);
x1 = _mm256_loadu_ps(S0 + x + 8);
y0 = _mm256_loadu_ps(S1 + x);
y1 = _mm256_loadu_ps(S1 + x + 8);
s0 = _mm256_mul_ps(x0, b0);
s1 = _mm256_mul_ps(x1, b0);
y0 = _mm256_mul_ps(y0, b1);
y1 = _mm256_mul_ps(y1, b1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
x0 = _mm256_loadu_ps(S2 + x);
x1 = _mm256_loadu_ps(S2 + x + 8);
y0 = _mm256_loadu_ps(S3 + x);
y1 = _mm256_loadu_ps(S3 + x + 8);
x0 = _mm256_mul_ps(x0, b2);
x1 = _mm256_mul_ps(x1, b2);
y0 = _mm256_mul_ps(y0, b3);
y1 = _mm256_mul_ps(y1, b3);
s0 = _mm256_add_ps(s0, x0);
s1 = _mm256_add_ps(s1, x1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
t0 = _mm256_add_epi32(_mm256_cvtps_epi32(s0), preshift);
t1 = _mm256_add_epi32(_mm256_cvtps_epi32(s1), preshift);
t0 = _mm256_add_epi16(_mm256_packs_epi32(t0, t1), postshift);
t0 = _mm256_permute4x64_epi64(t0, shuffle);
_mm256_storeu_si256( (__m256i*)(dst + x), t0);
}
return x;
}
#else
int VResizeLinearVec_32s8u_avx2(const uchar**, uchar*, const uchar*, int ) { return 0; }
template<int shiftval>
int VResizeLinearVec_32f16_avx2(const uchar**, uchar*, const uchar*, int ) { return 0; }
int VResizeCubicVec_32s8u_avx2(const uchar**, uchar*, const uchar*, int ) { return 0; }
template<int shiftval>
int VResizeCubicVec_32f16_avx2(const uchar**, uchar*, const uchar*, int ) { return 0; }
#endif
// Template instantiations.
template int VResizeLinearVec_32f16_avx2<SHRT_MIN>(const uchar** _src, uchar* _dst, const uchar* _beta, int width );
template int VResizeLinearVec_32f16_avx2<0>(const uchar** _src, uchar* _dst, const uchar* _beta, int width );
template int VResizeCubicVec_32f16_avx2<SHRT_MIN>(const uchar** _src, uchar* _dst, const uchar* _beta, int width );
template int VResizeCubicVec_32f16_avx2<0>(const uchar** _src, uchar* _dst, const uchar* _beta, int width );
/* End of file. */

View File

@ -0,0 +1,57 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// Intel License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of Intel Corporation may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef _CV_IMGWARP_AVX2_H_
#define _CV_IMGWARP_AVX2_H_
int VResizeLinearVec_32s8u_avx2(const uchar** _src, uchar* dst, const uchar* _beta, int width );
template<int shiftval>
int VResizeLinearVec_32f16_avx2(const uchar** _src, uchar* _dst, const uchar* _beta, int width );
int VResizeCubicVec_32s8u_avx2(const uchar** _src, uchar* dst, const uchar* _beta, int width );
template<int shiftval>
int VResizeCubicVec_32f16_avx2(const uchar** _src, uchar* _dst, const uchar* _beta, int width );
#endif
/* End of file. */

View File

@ -47,6 +47,8 @@
// */
#include "precomp.hpp"
#include "avx/imgwarp_avx.hpp"
#include "avx2/imgwarp_avx2.hpp"
#include <iostream>
#include <vector>
@ -54,10 +56,6 @@
static IppStatus sts = ippInit();
#endif
#ifdef _MSC_VER
# pragma warning(disable:4752) // Disable warning for mixing SSE and AVX
#endif
namespace cv
{
@ -455,7 +453,7 @@ struct HResizeNoVec
#if CV_SSE2
static int VResizeLinearVec_32s8u_sse2(const uchar** _src, uchar* dst, const uchar* _beta, int width)
static int VResizeLinearVec_32s8u_sse2(const uchar** _src, uchar* dst, const uchar* _beta, int width )
{
const int** src = (const int**)_src;
const short* beta = (const short*)_beta;
@ -531,103 +529,19 @@ static int VResizeLinearVec_32s8u_sse2(const uchar** _src, uchar* dst, const uch
return x;
}
#if CV_AVX2
int VResizeLinearVec_32s8u_avx2(const uchar** _src, uchar* dst, const uchar* _beta, int width )
{
const int** src = (const int**)_src;
const short* beta = (const short*)_beta;
const int *S0 = src[0], *S1 = src[1];
int x = 0;
__m256i b0 = _mm256_set1_epi16(beta[0]), b1 = _mm256_set1_epi16(beta[1]);
__m256i delta = _mm256_set1_epi16(2);
const int index[8] = { 0, 4, 1, 5, 2, 6, 3, 7 };
__m256i shuffle = _mm256_load_si256((const __m256i*)index);
if( (((size_t)S0|(size_t)S1)&31) == 0 )
for( ; x <= width - 32; x += 32 )
{
__m256i x0, x1, x2, y0, y1, y2;
x0 = _mm256_load_si256((const __m256i*)(S0 + x));
x1 = _mm256_load_si256((const __m256i*)(S0 + x + 8));
y0 = _mm256_load_si256((const __m256i*)(S1 + x));
y1 = _mm256_load_si256((const __m256i*)(S1 + x + 8));
x0 = _mm256_packs_epi32(_mm256_srai_epi32(x0, 4), _mm256_srai_epi32(x1, 4));
y0 = _mm256_packs_epi32(_mm256_srai_epi32(y0, 4), _mm256_srai_epi32(y1, 4));
x1 = _mm256_load_si256((const __m256i*)(S0 + x + 16));
x2 = _mm256_load_si256((const __m256i*)(S0 + x + 24));
y1 = _mm256_load_si256((const __m256i*)(S1 + x + 16));
y2 = _mm256_load_si256((const __m256i*)(S1 + x + 24));
x1 = _mm256_packs_epi32(_mm256_srai_epi32(x1, 4), _mm256_srai_epi32(x2, 4));
y1 = _mm256_packs_epi32(_mm256_srai_epi32(y1, 4), _mm256_srai_epi32(y2, 4));
x0 = _mm256_adds_epi16(_mm256_mulhi_epi16(x0, b0), _mm256_mulhi_epi16(y0, b1));
x1 = _mm256_adds_epi16(_mm256_mulhi_epi16(x1, b0), _mm256_mulhi_epi16(y1, b1));
x0 = _mm256_srai_epi16(_mm256_adds_epi16(x0, delta), 2);
x1 = _mm256_srai_epi16(_mm256_adds_epi16(x1, delta), 2);
x0 = _mm256_packus_epi16(x0, x1);
x0 = _mm256_permutevar8x32_epi32(x0, shuffle);
_mm256_storeu_si256( (__m256i*)(dst + x), x0);
}
else
for( ; x <= width - 32; x += 32 )
{
__m256i x0, x1, x2, y0, y1, y2;
x0 = _mm256_loadu_si256((const __m256i*)(S0 + x));
x1 = _mm256_loadu_si256((const __m256i*)(S0 + x + 8));
y0 = _mm256_loadu_si256((const __m256i*)(S1 + x));
y1 = _mm256_loadu_si256((const __m256i*)(S1 + x + 8));
x0 = _mm256_packs_epi32(_mm256_srai_epi32(x0, 4), _mm256_srai_epi32(x1, 4));
y0 = _mm256_packs_epi32(_mm256_srai_epi32(y0, 4), _mm256_srai_epi32(y1, 4));
x1 = _mm256_loadu_si256((const __m256i*)(S0 + x + 16));
x2 = _mm256_loadu_si256((const __m256i*)(S0 + x + 24));
y1 = _mm256_loadu_si256((const __m256i*)(S1 + x + 16));
y2 = _mm256_loadu_si256((const __m256i*)(S1 + x + 24));
x1 = _mm256_packs_epi32(_mm256_srai_epi32(x1, 4), _mm256_srai_epi32(x2, 4));
y1 = _mm256_packs_epi32(_mm256_srai_epi32(y1, 4), _mm256_srai_epi32(y2, 4));
x0 = _mm256_adds_epi16(_mm256_mulhi_epi16(x0, b0), _mm256_mulhi_epi16(y0, b1));
x1 = _mm256_adds_epi16(_mm256_mulhi_epi16(x1, b0), _mm256_mulhi_epi16(y1, b1));
x0 = _mm256_srai_epi16(_mm256_adds_epi16(x0, delta), 2);
x1 = _mm256_srai_epi16(_mm256_adds_epi16(x1, delta), 2);
x0 = _mm256_packus_epi16(x0, x1);
x0 = _mm256_permutevar8x32_epi32(x0, shuffle);
_mm256_storeu_si256( (__m256i*)(dst + x), x0);
}
for( ; x < width - 8; x += 8 )
{
__m256i x0, y0;
x0 = _mm256_srai_epi32(_mm256_loadu_si256((const __m256i*)(S0 + x)), 4);
y0 = _mm256_srai_epi32(_mm256_loadu_si256((const __m256i*)(S1 + x)), 4);
x0 = _mm256_packs_epi32(x0, x0);
y0 = _mm256_packs_epi32(y0, y0);
x0 = _mm256_adds_epi16(_mm256_mulhi_epi16(x0, b0), _mm256_mulhi_epi16(y0, b1));
x0 = _mm256_srai_epi16(_mm256_adds_epi16(x0, delta), 2);
x0 = _mm256_packus_epi16(x0, x0);
*(int*)(dst + x) = _mm_cvtsi128_si32(_mm256_extracti128_si256(x0, 0));
*(int*)(dst + x + 4) = _mm_cvtsi128_si32(_mm256_extracti128_si256(x0, 1));
}
return x;
}
#endif
struct VResizeLinearVec_32s8u
{
int operator()(const uchar** _src, uchar* dst, const uchar* _beta, int width ) const
{
#if CV_AVX2
if( checkHardwareSupport(CV_CPU_AVX2) )
return VResizeLinearVec_32s8u_avx2(_src, dst, _beta, width);
#endif
if( checkHardwareSupport(CV_CPU_SSE2) )
return VResizeLinearVec_32s8u_sse2(_src, dst, _beta, width);
int processed = 0;
return 0;
if( checkHardwareSupport(CV_CPU_AVX2) )
processed += VResizeLinearVec_32s8u_avx2(_src, dst, _beta, width);
if( !processed && checkHardwareSupport(CV_CPU_SSE2) )
processed += VResizeLinearVec_32s8u_sse2(_src, dst, _beta, width);
return processed;
}
};
@ -721,111 +635,19 @@ int VResizeLinearVec_32f16_sse2(const uchar** _src, uchar* _dst, const uchar* _b
return x;
}
#if CV_AVX2
template<int shiftval>
int VResizeLinearVec_32f16_avx2(const uchar** _src, uchar* _dst, const uchar* _beta, int width )
{
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1];
ushort* dst = (ushort*)_dst;
int x = 0;
__m256 b0 = _mm256_set1_ps(beta[0]), b1 = _mm256_set1_ps(beta[1]);
__m256i preshift = _mm256_set1_epi32(shiftval);
__m256i postshift = _mm256_set1_epi16((short)shiftval);
if( (((size_t)S0|(size_t)S1)&31) == 0 )
for( ; x <= width - 32; x += 32 )
{
__m256 x0, x1, y0, y1;
__m256i t0, t1, t2;
x0 = _mm256_load_ps(S0 + x);
x1 = _mm256_load_ps(S0 + x + 8);
y0 = _mm256_load_ps(S1 + x);
y1 = _mm256_load_ps(S1 + x + 8);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
x1 = _mm256_add_ps(_mm256_mul_ps(x1, b0), _mm256_mul_ps(y1, b1));
t0 = _mm256_add_epi32(_mm256_cvtps_epi32(x0), preshift);
t2 = _mm256_add_epi32(_mm256_cvtps_epi32(x1), preshift);
t0 = _mm256_add_epi16(_mm256_packs_epi32(t0, t2), postshift);
x0 = _mm256_load_ps(S0 + x + 16);
x1 = _mm256_load_ps(S0 + x + 24);
y0 = _mm256_load_ps(S1 + x + 16);
y1 = _mm256_load_ps(S1 + x + 24);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
x1 = _mm256_add_ps(_mm256_mul_ps(x1, b0), _mm256_mul_ps(y1, b1));
t1 = _mm256_add_epi32(_mm256_cvtps_epi32(x0), preshift);
t2 = _mm256_add_epi32(_mm256_cvtps_epi32(x1), preshift);
t1 = _mm256_add_epi16(_mm256_packs_epi32(t1, t2), postshift);
_mm256_storeu_si256( (__m256i*)(dst + x), t0);
_mm256_storeu_si256( (__m256i*)(dst + x + 16), t1);
}
else
for( ; x <= width - 32; x += 32 )
{
__m256 x0, x1, y0, y1;
__m256i t0, t1, t2;
x0 = _mm256_loadu_ps(S0 + x);
x1 = _mm256_loadu_ps(S0 + x + 8);
y0 = _mm256_loadu_ps(S1 + x);
y1 = _mm256_loadu_ps(S1 + x + 8);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
x1 = _mm256_add_ps(_mm256_mul_ps(x1, b0), _mm256_mul_ps(y1, b1));
t0 = _mm256_add_epi32(_mm256_cvtps_epi32(x0), preshift);
t2 = _mm256_add_epi32(_mm256_cvtps_epi32(x1), preshift);
t0 = _mm256_add_epi16(_mm256_packs_epi32(t0, t2), postshift);
x0 = _mm256_loadu_ps(S0 + x + 16);
x1 = _mm256_loadu_ps(S0 + x + 24);
y0 = _mm256_loadu_ps(S1 + x + 16);
y1 = _mm256_loadu_ps(S1 + x + 24);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
x1 = _mm256_add_ps(_mm256_mul_ps(x1, b0), _mm256_mul_ps(y1, b1));
t1 = _mm256_add_epi32(_mm256_cvtps_epi32(x0), preshift);
t2 = _mm256_add_epi32(_mm256_cvtps_epi32(x1), preshift);
t1 = _mm256_add_epi16(_mm256_packs_epi32(t1, t2), postshift);
_mm256_storeu_si256( (__m256i*)(dst + x), t0);
_mm256_storeu_si256( (__m256i*)(dst + x + 16), t1);
}
for( ; x < width - 8; x += 8 )
{
__m256 x0, y0;
__m256i t0;
x0 = _mm256_loadu_ps(S0 + x);
y0 = _mm256_loadu_ps(S1 + x);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
t0 = _mm256_add_epi32(_mm256_cvtps_epi32(x0), preshift);
t0 = _mm256_add_epi16(_mm256_packs_epi32(t0, t0), postshift);
_mm_storel_epi64( (__m128i*)(dst + x), _mm256_extracti128_si256(t0, 0));
_mm_storel_epi64( (__m128i*)(dst + x + 4), _mm256_extracti128_si256(t0, 1));
}
return x;
}
#endif
template<int shiftval> struct VResizeLinearVec_32f16
{
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
{
#if CV_AVX2
if( checkHardwareSupport(CV_CPU_AVX2) )
return VResizeLinearVec_32f16_avx2<shiftval>(_src, _dst, _beta, width);
#endif
if( checkHardwareSupport(CV_CPU_SSE2) )
return VResizeLinearVec_32f16_sse2<shiftval>(_src, _dst, _beta, width);
int processed = 0;
return 0;
if( checkHardwareSupport(CV_CPU_AVX2) )
processed += VResizeLinearVec_32f16_avx2<shiftval>(_src, _dst, _beta, width);
if( !processed && checkHardwareSupport(CV_CPU_SSE2) )
processed += VResizeLinearVec_32f16_sse2<shiftval>(_src, _dst, _beta, width);
return processed;
}
};
@ -876,68 +698,22 @@ static int VResizeLinearVec_32f_sse(const uchar** _src, uchar* _dst, const uchar
return x;
}
#if CV_AVX
int VResizeLinearVec_32f_avx(const uchar** _src, uchar* _dst, const uchar* _beta, int width )
{
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1];
float* dst = (float*)_dst;
int x = 0;
__m256 b0 = _mm256_set1_ps(beta[0]), b1 = _mm256_set1_ps(beta[1]);
if( (((size_t)S0|(size_t)S1)&31) == 0 )
for( ; x <= width - 16; x += 16 )
{
__m256 x0, x1, y0, y1;
x0 = _mm256_load_ps(S0 + x);
x1 = _mm256_load_ps(S0 + x + 8);
y0 = _mm256_load_ps(S1 + x);
y1 = _mm256_load_ps(S1 + x + 8);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
x1 = _mm256_add_ps(_mm256_mul_ps(x1, b0), _mm256_mul_ps(y1, b1));
_mm256_storeu_ps( dst + x, x0);
_mm256_storeu_ps( dst + x + 8, x1);
}
else
for( ; x <= width - 16; x += 16 )
{
__m256 x0, x1, y0, y1;
x0 = _mm256_loadu_ps(S0 + x);
x1 = _mm256_loadu_ps(S0 + x + 8);
y0 = _mm256_loadu_ps(S1 + x);
y1 = _mm256_loadu_ps(S1 + x + 8);
x0 = _mm256_add_ps(_mm256_mul_ps(x0, b0), _mm256_mul_ps(y0, b1));
x1 = _mm256_add_ps(_mm256_mul_ps(x1, b0), _mm256_mul_ps(y1, b1));
_mm256_storeu_ps( dst + x, x0);
_mm256_storeu_ps( dst + x + 8, x1);
}
return x;
}
#endif
struct VResizeLinearVec_32f
{
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
{
#if CV_AVX
if( checkHardwareSupport(CV_CPU_AVX) )
return VResizeLinearVec_32f_avx(_src, _dst, _beta, width);
#endif
if( checkHardwareSupport(CV_CPU_SSE) )
return VResizeLinearVec_32f_sse(_src, _dst, _beta, width);
int processed = 0;
return 0;
if( checkHardwareSupport(CV_CPU_AVX) )
processed += VResizeLinearVec_32f_avx(_src, _dst, _beta, width);
if( !processed && checkHardwareSupport(CV_CPU_SSE) )
processed += VResizeLinearVec_32f_sse(_src, _dst, _beta, width);
return processed;
}
};
static int VResizeCubicVec_32s8u_sse2(const uchar** _src, uchar* dst, const uchar* _beta, int width )
{
const int** src = (const int**)_src;
@ -1026,115 +802,19 @@ static int VResizeCubicVec_32s8u_sse2(const uchar** _src, uchar* dst, const ucha
return x;
}
#if CV_AVX2
int VResizeCubicVec_32s8u_avx2(const uchar** _src, uchar* dst, const uchar* _beta, int width )
{
const int** src = (const int**)_src;
const short* beta = (const short*)_beta;
const int *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
int x = 0;
float scale = 1.f/(INTER_RESIZE_COEF_SCALE*INTER_RESIZE_COEF_SCALE);
__m256 b0 = _mm256_set1_ps(beta[0]*scale), b1 = _mm256_set1_ps(beta[1]*scale),
b2 = _mm256_set1_ps(beta[2]*scale), b3 = _mm256_set1_ps(beta[3]*scale);
const int shuffle = 0xd8; // 11 | 01 | 10 | 00
if( (((size_t)S0|(size_t)S1|(size_t)S2|(size_t)S3)&31) == 0 )
for( ; x <= width - 16; x += 16 )
{
__m256i x0, x1, y0, y1;
__m256 s0, s1, f0, f1;
x0 = _mm256_load_si256((const __m256i*)(S0 + x));
x1 = _mm256_load_si256((const __m256i*)(S0 + x + 8));
y0 = _mm256_load_si256((const __m256i*)(S1 + x));
y1 = _mm256_load_si256((const __m256i*)(S1 + x + 8));
s0 = _mm256_mul_ps(_mm256_cvtepi32_ps(x0), b0);
s1 = _mm256_mul_ps(_mm256_cvtepi32_ps(x1), b0);
f0 = _mm256_mul_ps(_mm256_cvtepi32_ps(y0), b1);
f1 = _mm256_mul_ps(_mm256_cvtepi32_ps(y1), b1);
s0 = _mm256_add_ps(s0, f0);
s1 = _mm256_add_ps(s1, f1);
x0 = _mm256_load_si256((const __m256i*)(S2 + x));
x1 = _mm256_load_si256((const __m256i*)(S2 + x + 8));
y0 = _mm256_load_si256((const __m256i*)(S3 + x));
y1 = _mm256_load_si256((const __m256i*)(S3 + x + 8));
f0 = _mm256_mul_ps(_mm256_cvtepi32_ps(x0), b2);
f1 = _mm256_mul_ps(_mm256_cvtepi32_ps(x1), b2);
s0 = _mm256_add_ps(s0, f0);
s1 = _mm256_add_ps(s1, f1);
f0 = _mm256_mul_ps(_mm256_cvtepi32_ps(y0), b3);
f1 = _mm256_mul_ps(_mm256_cvtepi32_ps(y1), b3);
s0 = _mm256_add_ps(s0, f0);
s1 = _mm256_add_ps(s1, f1);
x0 = _mm256_cvtps_epi32(s0);
x1 = _mm256_cvtps_epi32(s1);
x0 = _mm256_packs_epi32(x0, x1);
x0 = _mm256_permute4x64_epi64(x0, shuffle);
x0 = _mm256_packus_epi16(x0, x0);
_mm_storel_epi64( (__m128i*)(dst + x), _mm256_extracti128_si256(x0, 0));
_mm_storel_epi64( (__m128i*)(dst + x + 8), _mm256_extracti128_si256(x0, 1));
}
else
for( ; x <= width - 16; x += 16 )
{
__m256i x0, x1, y0, y1;
__m256 s0, s1, f0, f1;
x0 = _mm256_loadu_si256((const __m256i*)(S0 + x));
x1 = _mm256_loadu_si256((const __m256i*)(S0 + x + 8));
y0 = _mm256_loadu_si256((const __m256i*)(S1 + x));
y1 = _mm256_loadu_si256((const __m256i*)(S1 + x + 8));
s0 = _mm256_mul_ps(_mm256_cvtepi32_ps(x0), b0);
s1 = _mm256_mul_ps(_mm256_cvtepi32_ps(x1), b0);
f0 = _mm256_mul_ps(_mm256_cvtepi32_ps(y0), b1);
f1 = _mm256_mul_ps(_mm256_cvtepi32_ps(y1), b1);
s0 = _mm256_add_ps(s0, f0);
s1 = _mm256_add_ps(s1, f1);
x0 = _mm256_loadu_si256((const __m256i*)(S2 + x));
x1 = _mm256_loadu_si256((const __m256i*)(S2 + x + 8));
y0 = _mm256_loadu_si256((const __m256i*)(S3 + x));
y1 = _mm256_loadu_si256((const __m256i*)(S3 + x + 8));
f0 = _mm256_mul_ps(_mm256_cvtepi32_ps(x0), b2);
f1 = _mm256_mul_ps(_mm256_cvtepi32_ps(x1), b2);
s0 = _mm256_add_ps(s0, f0);
s1 = _mm256_add_ps(s1, f1);
f0 = _mm256_mul_ps(_mm256_cvtepi32_ps(y0), b3);
f1 = _mm256_mul_ps(_mm256_cvtepi32_ps(y1), b3);
s0 = _mm256_add_ps(s0, f0);
s1 = _mm256_add_ps(s1, f1);
x0 = _mm256_cvtps_epi32(s0);
x1 = _mm256_cvtps_epi32(s1);
x0 = _mm256_packs_epi32(x0, x1);
x0 = _mm256_permute4x64_epi64(x0, shuffle);
x0 = _mm256_packus_epi16(x0, x0);
_mm_storel_epi64( (__m128i*)(dst + x), _mm256_extracti128_si256(x0, 0));
_mm_storel_epi64( (__m128i*)(dst + x + 8), _mm256_extracti128_si256(x0, 1));
}
return x;
}
#endif
struct VResizeCubicVec_32s8u
{
int operator()(const uchar** _src, uchar* dst, const uchar* _beta, int width ) const
{
#if CV_AVX2
if( checkHardwareSupport(CV_CPU_AVX2) )
return VResizeCubicVec_32s8u_avx2(_src, dst, _beta, width);
#endif
if( checkHardwareSupport(CV_CPU_SSE2) )
return VResizeCubicVec_32s8u_sse2(_src, dst, _beta, width);
int processed = 0;
return 0;
if( checkHardwareSupport(CV_CPU_AVX2) )
processed += VResizeCubicVec_32s8u_avx2(_src, dst, _beta, width);
if( !processed && checkHardwareSupport(CV_CPU_SSE2) )
processed += VResizeCubicVec_32s8u_sse2(_src, dst, _beta, width);
return processed;
}
};
@ -1230,114 +910,19 @@ int VResizeCubicVec_32f16_sse2(const uchar** _src, uchar* _dst, const uchar* _be
return x;
}
#if CV_AVX2
template<int shiftval>
int VResizeCubicVec_32f16_avx2(const uchar** _src, uchar* _dst, const uchar* _beta, int width )
{
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
ushort* dst = (ushort*)_dst;
int x = 0;
__m256 b0 = _mm256_set1_ps(beta[0]), b1 = _mm256_set1_ps(beta[1]),
b2 = _mm256_set1_ps(beta[2]), b3 = _mm256_set1_ps(beta[3]);
__m256i preshift = _mm256_set1_epi32(shiftval);
__m256i postshift = _mm256_set1_epi16((short)shiftval);
const int shuffle = 0xd8; // 11 | 01 | 10 | 00
if( (((size_t)S0|(size_t)S1|(size_t)S2|(size_t)S3)&31) == 0 )
for( ; x <= width - 16; x += 16 )
{
__m256 x0, x1, y0, y1, s0, s1;
__m256i t0, t1;
x0 = _mm256_load_ps(S0 + x);
x1 = _mm256_load_ps(S0 + x + 8);
y0 = _mm256_load_ps(S1 + x);
y1 = _mm256_load_ps(S1 + x + 8);
s0 = _mm256_mul_ps(x0, b0);
s1 = _mm256_mul_ps(x1, b0);
y0 = _mm256_mul_ps(y0, b1);
y1 = _mm256_mul_ps(y1, b1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
x0 = _mm256_load_ps(S2 + x);
x1 = _mm256_load_ps(S2 + x + 8);
y0 = _mm256_load_ps(S3 + x);
y1 = _mm256_load_ps(S3 + x + 8);
x0 = _mm256_mul_ps(x0, b2);
x1 = _mm256_mul_ps(x1, b2);
y0 = _mm256_mul_ps(y0, b3);
y1 = _mm256_mul_ps(y1, b3);
s0 = _mm256_add_ps(s0, x0);
s1 = _mm256_add_ps(s1, x1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
t0 = _mm256_add_epi32(_mm256_cvtps_epi32(s0), preshift);
t1 = _mm256_add_epi32(_mm256_cvtps_epi32(s1), preshift);
t0 = _mm256_add_epi16(_mm256_packs_epi32(t0, t1), postshift);
t0 = _mm256_permute4x64_epi64(t0, shuffle);
_mm256_storeu_si256( (__m256i*)(dst + x), t0);
}
else
for( ; x <= width - 16; x += 16 )
{
__m256 x0, x1, y0, y1, s0, s1;
__m256i t0, t1;
x0 = _mm256_loadu_ps(S0 + x);
x1 = _mm256_loadu_ps(S0 + x + 8);
y0 = _mm256_loadu_ps(S1 + x);
y1 = _mm256_loadu_ps(S1 + x + 8);
s0 = _mm256_mul_ps(x0, b0);
s1 = _mm256_mul_ps(x1, b0);
y0 = _mm256_mul_ps(y0, b1);
y1 = _mm256_mul_ps(y1, b1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
x0 = _mm256_loadu_ps(S2 + x);
x1 = _mm256_loadu_ps(S2 + x + 8);
y0 = _mm256_loadu_ps(S3 + x);
y1 = _mm256_loadu_ps(S3 + x + 8);
x0 = _mm256_mul_ps(x0, b2);
x1 = _mm256_mul_ps(x1, b2);
y0 = _mm256_mul_ps(y0, b3);
y1 = _mm256_mul_ps(y1, b3);
s0 = _mm256_add_ps(s0, x0);
s1 = _mm256_add_ps(s1, x1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
t0 = _mm256_add_epi32(_mm256_cvtps_epi32(s0), preshift);
t1 = _mm256_add_epi32(_mm256_cvtps_epi32(s1), preshift);
t0 = _mm256_add_epi16(_mm256_packs_epi32(t0, t1), postshift);
t0 = _mm256_permute4x64_epi64(t0, shuffle);
_mm256_storeu_si256( (__m256i*)(dst + x), t0);
}
return x;
}
#endif
template<int shiftval> struct VResizeCubicVec_32f16
{
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
{
#if CV_AVX2
if( checkHardwareSupport(CV_CPU_AVX2) )
return VResizeCubicVec_32f16_avx2<shiftval>(_src, _dst, _beta, width);
#endif
if( checkHardwareSupport(CV_CPU_SSE2) )
return VResizeCubicVec_32f16_sse2<shiftval>(_src, _dst, _beta, width);
int processed = 0;
return 0;
if( checkHardwareSupport(CV_CPU_AVX2) )
processed += VResizeCubicVec_32f16_avx2<shiftval>(_src, _dst, _beta, width);
if( !processed && checkHardwareSupport(CV_CPU_SSE2) )
processed += VResizeCubicVec_32f16_sse2<shiftval>(_src, _dst, _beta, width);
return processed;
}
};
@ -1424,100 +1009,19 @@ static int VResizeCubicVec_32f_sse(const uchar** _src, uchar* _dst, const uchar*
return x;
}
#if CV_AVX
int VResizeCubicVec_32f_avx(const uchar** _src, uchar* _dst, const uchar* _beta, int width )
{
const float** src = (const float**)_src;
const float* beta = (const float*)_beta;
const float *S0 = src[0], *S1 = src[1], *S2 = src[2], *S3 = src[3];
float* dst = (float*)_dst;
int x = 0;
__m256 b0 = _mm256_set1_ps(beta[0]), b1 = _mm256_set1_ps(beta[1]),
b2 = _mm256_set1_ps(beta[2]), b3 = _mm256_set1_ps(beta[3]);
if( (((size_t)S0|(size_t)S1|(size_t)S2|(size_t)S3)&31) == 0 )
for( ; x <= width - 16; x += 16 )
{
__m256 x0, x1, y0, y1, s0, s1;
x0 = _mm256_load_ps(S0 + x);
x1 = _mm256_load_ps(S0 + x + 8);
y0 = _mm256_load_ps(S1 + x);
y1 = _mm256_load_ps(S1 + x + 8);
s0 = _mm256_mul_ps(x0, b0);
s1 = _mm256_mul_ps(x1, b0);
y0 = _mm256_mul_ps(y0, b1);
y1 = _mm256_mul_ps(y1, b1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
x0 = _mm256_load_ps(S2 + x);
x1 = _mm256_load_ps(S2 + x + 8);
y0 = _mm256_load_ps(S3 + x);
y1 = _mm256_load_ps(S3 + x + 8);
x0 = _mm256_mul_ps(x0, b2);
x1 = _mm256_mul_ps(x1, b2);
y0 = _mm256_mul_ps(y0, b3);
y1 = _mm256_mul_ps(y1, b3);
s0 = _mm256_add_ps(s0, x0);
s1 = _mm256_add_ps(s1, x1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
_mm256_storeu_ps( dst + x, s0);
_mm256_storeu_ps( dst + x + 8, s1);
}
else
for( ; x <= width - 16; x += 16 )
{
__m256 x0, x1, y0, y1, s0, s1;
x0 = _mm256_loadu_ps(S0 + x);
x1 = _mm256_loadu_ps(S0 + x + 8);
y0 = _mm256_loadu_ps(S1 + x);
y1 = _mm256_loadu_ps(S1 + x + 8);
s0 = _mm256_mul_ps(x0, b0);
s1 = _mm256_mul_ps(x1, b0);
y0 = _mm256_mul_ps(y0, b1);
y1 = _mm256_mul_ps(y1, b1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
x0 = _mm256_loadu_ps(S2 + x);
x1 = _mm256_loadu_ps(S2 + x + 8);
y0 = _mm256_loadu_ps(S3 + x);
y1 = _mm256_loadu_ps(S3 + x + 8);
x0 = _mm256_mul_ps(x0, b2);
x1 = _mm256_mul_ps(x1, b2);
y0 = _mm256_mul_ps(y0, b3);
y1 = _mm256_mul_ps(y1, b3);
s0 = _mm256_add_ps(s0, x0);
s1 = _mm256_add_ps(s1, x1);
s0 = _mm256_add_ps(s0, y0);
s1 = _mm256_add_ps(s1, y1);
_mm256_storeu_ps( dst + x, s0);
_mm256_storeu_ps( dst + x + 8, s1);
}
return x;
}
#endif
struct VResizeCubicVec_32f
{
int operator()(const uchar** _src, uchar* _dst, const uchar* _beta, int width ) const
{
#if CV_AVX
if( checkHardwareSupport(CV_CPU_AVX) )
return VResizeCubicVec_32f_avx(_src, _dst, _beta, width);
#endif
if( checkHardwareSupport(CV_CPU_SSE) )
return VResizeCubicVec_32f_sse(_src, _dst, _beta, width);
int processed = 0;
return 0;
if( checkHardwareSupport(CV_CPU_AVX) )
processed += VResizeCubicVec_32f_avx(_src, _dst, _beta, width);
if( !processed && checkHardwareSupport(CV_CPU_SSE) )
processed += VResizeCubicVec_32f_sse(_src, _dst, _beta, width);
return processed;
}
};

View File

@ -3002,12 +3002,8 @@ void printVersionInfo(bool useStdOut)
#if CV_SSE4_2
if (checkHardwareSupport(CV_CPU_SSE4_2)) cpu_features += " sse4.2";
#endif
#if CV_AVX
if (checkHardwareSupport(CV_CPU_AVX)) cpu_features += " avx";
#endif
#if CV_AVX2
if (checkHardwareSupport(CV_CPU_AVX2)) cpu_features += " avx2";
#endif
#if CV_NEON
cpu_features += " neon"; // NEON is currently not checked at runtime
#endif