mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
Tutorial for Generalized Hough Ballard and Guil Transform
This commit is contained in:
parent
e24382691f
commit
c3b83b8354
@ -0,0 +1,177 @@
|
||||
Object detection with Generalized Ballard and Guil Hough Transform {#tutorial_generalized_hough_ballard_guil}
|
||||
==================================================================
|
||||
|
||||
@tableofcontents
|
||||
|
||||
@prev_tutorial{tutorial_traincascade}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
In this tutorial you will lern how to:
|
||||
|
||||
- Use @ref cv::GeneralizedHoughBallard and @ref cv::GeneralizedHoughGuil to detect an object
|
||||
|
||||
Example
|
||||
-------
|
||||
|
||||
### What does this program do?
|
||||
|
||||
1. Load the image and template
|
||||
|
||||
![image](images/generalized_hough_mini_image.jpg)
|
||||
![template](images/generalized_hough_mini_template.jpg)
|
||||
|
||||
2. Instantiate @ref cv::GeneralizedHoughBallard with the help of `createGeneralizedHoughBallard()`
|
||||
3. Instantiate @ref cv::GeneralizedHoughGuil with the help of `createGeneralizedHoughGuil()`
|
||||
4. Set the required parameters for both GeneralizedHough variants
|
||||
5. Detect and show found results
|
||||
|
||||
Note:
|
||||
|
||||
- Both variants can't be instantiated directly. Using the create methods is required.
|
||||
- Guil Hough is very slow. Calculating the results for the "mini" files used in this tutorial
|
||||
takes only a few seconds. With image and template in a higher resolution, as shown below,
|
||||
my notebook requires about 5 minutes to calculate a result.
|
||||
|
||||
![image](images/generalized_hough_image.jpg)
|
||||
![template](images/generalized_hough_template.jpg)
|
||||
|
||||
### Code
|
||||
|
||||
The complete code for this tutorial is shown below.
|
||||
@include generalizedHoughTransform.cpp
|
||||
|
||||
Explanation
|
||||
-----------
|
||||
|
||||
### Load image, template and setup variables
|
||||
|
||||
```c++
|
||||
// load source images
|
||||
Mat image = imread("images/generalized_hough_mini_image.jpg");
|
||||
Mat imgTemplate = imread("images/generalized_hough_mini_template.jpg");
|
||||
|
||||
// create grayscale image and template
|
||||
Mat templ = Mat(imgTemplate.rows, imgTemplate.cols, CV_8UC1);
|
||||
Mat grayImage;
|
||||
cvtColor(imgTemplate, templ, COLOR_RGB2GRAY);
|
||||
cvtColor(image, grayImage, COLOR_RGB2GRAY);
|
||||
|
||||
// create variable for location, scale and rotation of detected templates
|
||||
vector<Vec4f> positionBallard, positionGuil;
|
||||
|
||||
// template width and height
|
||||
int w = templ.cols;
|
||||
int h = templ.rows;
|
||||
```
|
||||
|
||||
The position vectors will contain the matches the detectors will find.
|
||||
Every entry contains four floating point values:
|
||||
position vector
|
||||
|
||||
- *[0]*: x coordinate of center point
|
||||
- *[1]*: y coordinate of center point
|
||||
- *[2]*: scale of detected object compared to template
|
||||
- *[3]*: rotation of detected object in degree in relation to template
|
||||
|
||||
An example could look as follows: `[200, 100, 0.9, 120]`
|
||||
|
||||
### Setup parameters
|
||||
|
||||
```c++
|
||||
// create ballard and set options
|
||||
Ptr<GeneralizedHoughBallard> ballard = createGeneralizedHoughBallard();
|
||||
ballard->setMinDist(10);
|
||||
ballard->setLevels(360);
|
||||
ballard->setDp(2);
|
||||
ballard->setMaxBufferSize(1000);
|
||||
ballard->setVotesThreshold(40);
|
||||
|
||||
ballard->setCannyLowThresh(30);
|
||||
ballard->setCannyHighThresh(110);
|
||||
ballard->setTemplate(templ);
|
||||
|
||||
|
||||
// create guil and set options
|
||||
Ptr<GeneralizedHoughGuil> guil = createGeneralizedHoughGuil();
|
||||
guil->setMinDist(10);
|
||||
guil->setLevels(360);
|
||||
guil->setDp(3);
|
||||
guil->setMaxBufferSize(1000);
|
||||
|
||||
guil->setMinAngle(0);
|
||||
guil->setMaxAngle(360);
|
||||
guil->setAngleStep(1);
|
||||
guil->setAngleThresh(1500);
|
||||
|
||||
guil->setMinScale(0.5);
|
||||
guil->setMaxScale(2.0);
|
||||
guil->setScaleStep(0.05);
|
||||
guil->setScaleThresh(50);
|
||||
|
||||
guil->setPosThresh(10);
|
||||
|
||||
guil->setCannyLowThresh(30);
|
||||
guil->setCannyHighThresh(110);
|
||||
|
||||
guil->setTemplate(templ);
|
||||
```
|
||||
|
||||
Finding the optimal values can end up in trial and error and depends on many factors, such as the image resolution.
|
||||
|
||||
### Run detection
|
||||
|
||||
```c++
|
||||
// execute ballard detection
|
||||
ballard->detect(grayImage, positionBallard);
|
||||
// execute guil detection
|
||||
guil->detect(grayImage, positionGuil);
|
||||
```
|
||||
|
||||
As mentioned above, this step will take some time, especially with larger images and when using Guil.
|
||||
|
||||
### Draw results and show image
|
||||
|
||||
```c++
|
||||
// draw ballard
|
||||
for (vector<Vec4f>::iterator iter = positionBallard.begin(); iter != positionBallard.end(); ++iter) {
|
||||
RotatedRect rRect = RotatedRect(Point2f((*iter)[0], (*iter)[1]),
|
||||
Size2f(w * (*iter)[2], h * (*iter)[2]),
|
||||
(*iter)[3]);
|
||||
Point2f vertices[4];
|
||||
rRect.points(vertices);
|
||||
for (int i = 0; i < 4; i++)
|
||||
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(255, 0, 0), 6);
|
||||
}
|
||||
|
||||
// draw guil
|
||||
for (vector<Vec4f>::iterator iter = positionGuil.begin(); iter != positionGuil.end(); ++iter) {
|
||||
RotatedRect rRect = RotatedRect(Point2f((*iter)[0], (*iter)[1]),
|
||||
Size2f(w * (*iter)[2], h * (*iter)[2]),
|
||||
(*iter)[3]);
|
||||
Point2f vertices[4];
|
||||
rRect.points(vertices);
|
||||
for (int i = 0; i < 4; i++)
|
||||
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(0, 255, 0), 2);
|
||||
}
|
||||
|
||||
imshow("result_img", image);
|
||||
waitKey();
|
||||
return EXIT_SUCCESS;
|
||||
```
|
||||
|
||||
Result
|
||||
------
|
||||
|
||||
![result image](images/generalized_hough_result_img.jpg)
|
||||
|
||||
The blue rectangle shows the result of @ref cv::GeneralizedHoughBallard and the green rectangles the results of @ref
|
||||
cv::GeneralizedHoughGuil.
|
||||
|
||||
Getting perfect results like in this example is unlikely if the parameters are not perfectly adapted to the sample.
|
||||
An example with less perfect parameters is shown below.
|
||||
For the Ballard variant, only the center of the result is marked as a black dot on this image. The rectangle would be
|
||||
the same as on the previous image.
|
||||
|
||||
![less perfect result](images/generalized_hough_less_perfect_result_img.jpg)
|
Binary file not shown.
After Width: | Height: | Size: 79 KiB |
Binary file not shown.
After Width: | Height: | Size: 35 KiB |
Binary file not shown.
After Width: | Height: | Size: 39 KiB |
Binary file not shown.
After Width: | Height: | Size: 31 KiB |
Binary file not shown.
After Width: | Height: | Size: 21 KiB |
Binary file not shown.
After Width: | Height: | Size: 42 KiB |
@ -16,3 +16,13 @@ Ever wondered how your digital camera detects peoples and faces? Look here to fi
|
||||
- @subpage tutorial_traincascade
|
||||
|
||||
This tutorial describes _opencv_traincascade_ application and its parameters.
|
||||
|
||||
- @subpage tutorial_generalized_hough_ballard_guil
|
||||
|
||||
Detect an object in a picture with the help of GeneralizedHoughBallard and GeneralizedHoughGuil.
|
||||
|
||||
*Languages:* C++
|
||||
|
||||
*Compatibility:* \> OpenCV 3.4
|
||||
|
||||
*Author:* Markus Heck
|
@ -2,6 +2,8 @@ Cascade Classifier Training {#tutorial_traincascade}
|
||||
===========================
|
||||
|
||||
@prev_tutorial{tutorial_cascade_classifier}
|
||||
@next_tutorial{tutorial_generalized_hough_ballard_guil}
|
||||
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
@ -0,0 +1,100 @@
|
||||
/**
|
||||
@file generalizedHoughTransform.cpp
|
||||
@author Markus Heck
|
||||
@brief Detects an object, given by a template, in an image using GeneralizedHoughBallard and GeneralizedHoughGuil.
|
||||
*/
|
||||
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
int main() {
|
||||
// load source images
|
||||
Mat image = imread("images/generalized_hough_mini_image.jpg");
|
||||
Mat imgTemplate = imread("images/generalized_hough_mini_template.jpg");
|
||||
|
||||
// create grayscale image and template
|
||||
Mat templ = Mat(imgTemplate.rows, imgTemplate.cols, CV_8UC1);
|
||||
Mat grayImage;
|
||||
cvtColor(imgTemplate, templ, COLOR_RGB2GRAY);
|
||||
cvtColor(image, grayImage, COLOR_RGB2GRAY);
|
||||
|
||||
// create variable for location, scale and rotation of detected templates
|
||||
vector<Vec4f> positionBallard, positionGuil;
|
||||
|
||||
// template width and height
|
||||
int w = templ.cols;
|
||||
int h = templ.rows;
|
||||
|
||||
// create ballard and set options
|
||||
Ptr<GeneralizedHoughBallard> ballard = createGeneralizedHoughBallard();
|
||||
ballard->setMinDist(10);
|
||||
ballard->setLevels(360);
|
||||
ballard->setDp(2);
|
||||
ballard->setMaxBufferSize(1000);
|
||||
ballard->setVotesThreshold(40);
|
||||
|
||||
ballard->setCannyLowThresh(30);
|
||||
ballard->setCannyHighThresh(110);
|
||||
ballard->setTemplate(templ);
|
||||
|
||||
|
||||
// create guil and set options
|
||||
Ptr<GeneralizedHoughGuil> guil = createGeneralizedHoughGuil();
|
||||
guil->setMinDist(10);
|
||||
guil->setLevels(360);
|
||||
guil->setDp(3);
|
||||
guil->setMaxBufferSize(1000);
|
||||
|
||||
guil->setMinAngle(0);
|
||||
guil->setMaxAngle(360);
|
||||
guil->setAngleStep(1);
|
||||
guil->setAngleThresh(1500);
|
||||
|
||||
guil->setMinScale(0.5);
|
||||
guil->setMaxScale(2.0);
|
||||
guil->setScaleStep(0.05);
|
||||
guil->setScaleThresh(50);
|
||||
|
||||
guil->setPosThresh(10);
|
||||
|
||||
guil->setCannyLowThresh(30);
|
||||
guil->setCannyHighThresh(110);
|
||||
|
||||
guil->setTemplate(templ);
|
||||
|
||||
|
||||
// execute ballard detection
|
||||
ballard->detect(grayImage, positionBallard);
|
||||
// execute guil detection
|
||||
guil->detect(grayImage, positionGuil);
|
||||
|
||||
|
||||
// draw ballard
|
||||
for (vector<Vec4f>::iterator iter = positionBallard.begin(); iter != positionBallard.end(); ++iter) {
|
||||
RotatedRect rRect = RotatedRect(Point2f((*iter)[0], (*iter)[1]),
|
||||
Size2f(w * (*iter)[2], h * (*iter)[2]),
|
||||
(*iter)[3]);
|
||||
Point2f vertices[4];
|
||||
rRect.points(vertices);
|
||||
for (int i = 0; i < 4; i++)
|
||||
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(255, 0, 0), 6);
|
||||
}
|
||||
|
||||
// draw guil
|
||||
for (vector<Vec4f>::iterator iter = positionGuil.begin(); iter != positionGuil.end(); ++iter) {
|
||||
RotatedRect rRect = RotatedRect(Point2f((*iter)[0], (*iter)[1]),
|
||||
Size2f(w * (*iter)[2], h * (*iter)[2]),
|
||||
(*iter)[3]);
|
||||
Point2f vertices[4];
|
||||
rRect.points(vertices);
|
||||
for (int i = 0; i < 4; i++)
|
||||
line(image, vertices[i], vertices[(i + 1) % 4], Scalar(0, 255, 0), 2);
|
||||
}
|
||||
|
||||
imshow("result_img", image);
|
||||
waitKey();
|
||||
return EXIT_SUCCESS;
|
||||
}
|
Loading…
Reference in New Issue
Block a user