gpu version of HoughCircles

This commit is contained in:
Vladislav Vinogradov 2012-08-23 16:54:48 +04:00
parent e60a50c43c
commit c3f277b7bc
7 changed files with 596 additions and 118 deletions

View File

@ -893,7 +893,7 @@ Finds lines in a binary image using the classical Hough transform.
.. ocv:function:: void gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096) .. ocv:function:: void gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096)
.. ocv:function:: void gpu::HoughLines(const GpuMat& src, GpuMat& lines, GpuMat& accum, GpuMat& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096) .. ocv:function:: void gpu::HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096)
:param src: 8-bit, single-channel binary source image. :param src: 8-bit, single-channel binary source image.
@ -909,60 +909,12 @@ Finds lines in a binary image using the classical Hough transform.
:param maxLines: Maximum number of output lines. :param maxLines: Maximum number of output lines.
:param accum: Optional buffer for accumulator to avoid extra memory allocations (for many calls with the same sizes).
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes). :param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes).
.. seealso:: :ocv:func:`HoughLines` .. seealso:: :ocv:func:`HoughLines`
gpu::HoughLinesTransform
------------------------
Performs classical Hough transform for line detection.
.. ocv:function:: void gpu::HoughLinesTransform(const GpuMat& src, GpuMat& accum, GpuMat& buf, float rho, float theta)
:param src: 8-bit, single-channel binary source image.
:param accum: Output accumulator array.
:param buf: Buffer to avoid extra memory allocations (for many calls with the same sizes).
:param rho: Distance resolution of the accumulator in pixels.
:param theta: Angle resolution of the accumulator in radians.
:param threshold: Accumulator threshold parameter. Only those lines are returned that get enough votes ( :math:`>\texttt{threshold}` ).
.. seealso:: :ocv:func:`gpu::HoughLines`
gpu::HoughLinesGet
------------------
Finds lines in Hough space.
.. ocv:function:: void gpu::HoughLinesGet(const GpuMat& accum, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096)
:param accum: Accumulator array.
:param lines: Output vector of lines. Each line is represented by a two-element vector :math:`(\rho, \theta)` . :math:`\rho` is the distance from the coordinate origin :math:`(0,0)` (top-left corner of the image). :math:`\theta` is the line rotation angle in radians ( :math:`0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}` ).
:param rho: Distance resolution of the accumulator in pixels.
:param theta: Angle resolution of the accumulator in radians.
:param threshold: Accumulator threshold parameter. Only those lines are returned that get enough votes ( :math:`>\texttt{threshold}` ).
:param doSort: Performs lines sort by votes.
:param maxLines: Maximum number of output lines.
.. seealso:: :ocv:func:`gpu::HoughLines`
gpu::HoughLinesDownload gpu::HoughLinesDownload
----------------------- -----------------------
Downloads results from :ocv:func:`gpu::HoughLines` to host memory. Downloads results from :ocv:func:`gpu::HoughLines` to host memory.
@ -976,3 +928,51 @@ Downloads results from :ocv:func:`gpu::HoughLines` to host memory.
:param h_votes: Optional output array for line's votes. :param h_votes: Optional output array for line's votes.
.. seealso:: :ocv:func:`gpu::HoughLines` .. seealso:: :ocv:func:`gpu::HoughLines`
gpu::HoughCircles
-----------------
Finds circles in a grayscale image using the Hough transform.
.. ocv:function:: void gpu::HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096)
.. ocv:function:: void gpu::HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096)
:param src: 8-bit, single-channel grayscale input image.
:param circles: Output vector of found circles. Each vector is encoded as a 3-element floating-point vector :math:`(x, y, radius)` .
:param method: Detection method to use. Currently, the only implemented method is ``CV_HOUGH_GRADIENT`` , which is basically *21HT* , described in [Yuen90]_.
:param dp: Inverse ratio of the accumulator resolution to the image resolution. For example, if ``dp=1`` , the accumulator has the same resolution as the input image. If ``dp=2`` , the accumulator has half as big width and height.
:param minDist: Minimum distance between the centers of the detected circles. If the parameter is too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is too large, some circles may be missed.
:param cannyThreshold: The higher threshold of the two passed to the :ocv:func:`gpu::Canny` edge detector (the lower one is twice smaller).
:param votesThreshold: The accumulator threshold for the circle centers at the detection stage. The smaller it is, the more false circles may be detected.
:param minRadius: Minimum circle radius.
:param maxRadius: Maximum circle radius.
:param maxCircles: Maximum number of output circles.
:param buf: Optional buffer to avoid extra memory allocations (for many calls with the same sizes).
.. seealso:: :ocv:func:`HoughCircles`
gpu::HoughCirclesDownload
-------------------------
Downloads results from :ocv:func:`gpu::HoughCircles` to host memory.
.. ocv:function:: void gpu::HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles)
:param d_circles: Result of :ocv:func:`gpu::HoughCircles` .
:param h_circles: Output host array.
.. seealso:: :ocv:func:`gpu::HoughCircles`

View File

@ -821,12 +821,31 @@ private:
}; };
//! HoughLines //! HoughLines
struct HoughLinesBuf
{
GpuMat accum;
GpuMat list;
};
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096); CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, GpuMat& accum, GpuMat& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096); CV_EXPORTS void HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLinesTransform(const GpuMat& src, GpuMat& accum, GpuMat& buf, float rho, float theta);
CV_EXPORTS void HoughLinesGet(const GpuMat& accum, GpuMat& lines, float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096);
CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray()); CV_EXPORTS void HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines, OutputArray h_votes = noArray());
//! HoughCircles
struct HoughCirclesBuf
{
GpuMat edges;
GpuMat accum;
GpuMat list;
CannyBuf cannyBuf;
};
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
CV_EXPORTS void HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096);
CV_EXPORTS void HoughCirclesDownload(const GpuMat& d_circles, OutputArray h_circles);
////////////////////////////// Matrix reductions ////////////////////////////// ////////////////////////////// Matrix reductions //////////////////////////////
//! computes mean value and standard deviation of all or selected array elements //! computes mean value and standard deviation of all or selected array elements

View File

@ -1609,14 +1609,11 @@ PERF_TEST_P(Sz_Depth_Cn, ImgProc_ImagePyramidGetLayer, Combine(GPU_TYPICAL_MAT_S
////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////
// HoughLines // HoughLines
DEF_PARAM_TEST(Sz_DoSort, cv::Size, bool); PERF_TEST_P(Sz, ImgProc_HoughLines, GPU_TYPICAL_MAT_SIZES)
PERF_TEST_P(Sz_DoSort, ImgProc_HoughLines, Combine(GPU_TYPICAL_MAT_SIZES, Bool()))
{ {
declare.time(30.0); declare.time(30.0);
const cv::Size size = GET_PARAM(0); const cv::Size size = GetParam();
const bool doSort = GET_PARAM(1);
const float rho = 1.0f; const float rho = 1.0f;
const float theta = static_cast<float>(CV_PI / 180.0); const float theta = static_cast<float>(CV_PI / 180.0);
@ -1638,14 +1635,13 @@ PERF_TEST_P(Sz_DoSort, ImgProc_HoughLines, Combine(GPU_TYPICAL_MAT_SIZES, Bool()
{ {
cv::gpu::GpuMat d_src(src); cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_lines; cv::gpu::GpuMat d_lines;
cv::gpu::GpuMat d_accum; cv::gpu::HoughLinesBuf d_buf;
cv::gpu::GpuMat d_buf;
cv::gpu::HoughLines(d_src, d_lines, d_accum, d_buf, rho, theta, threshold, doSort); cv::gpu::HoughLines(d_src, d_lines, d_buf, rho, theta, threshold);
TEST_CYCLE() TEST_CYCLE()
{ {
cv::gpu::HoughLines(d_src, d_lines, d_accum, d_buf, rho, theta, threshold, doSort); cv::gpu::HoughLines(d_src, d_lines, d_buf, rho, theta, threshold);
} }
} }
else else
@ -1660,4 +1656,61 @@ PERF_TEST_P(Sz_DoSort, ImgProc_HoughLines, Combine(GPU_TYPICAL_MAT_SIZES, Bool()
} }
} }
//////////////////////////////////////////////////////////////////////
// HoughCircles
DEF_PARAM_TEST(Sz_Dp_MinDist, cv::Size, float, float);
PERF_TEST_P(Sz_Dp_MinDist, ImgProc_HoughCircles, Combine(GPU_TYPICAL_MAT_SIZES, Values(1.0f, 2.0f, 4.0f), Values(1.0f, 10.0f)))
{
declare.time(30.0);
const cv::Size size = GET_PARAM(0);
const float dp = GET_PARAM(1);
const float minDist = GET_PARAM(2);
const int minRadius = 10;
const int maxRadius = 30;
const int cannyThreshold = 100;
const int votesThreshold = 15;
cv::RNG rng(123456789);
cv::Mat src(size, CV_8UC1, cv::Scalar::all(0));
const int numCircles = rng.uniform(50, 100);
for (int i = 0; i < numCircles; ++i)
{
cv::Point center(rng.uniform(0, src.cols), rng.uniform(0, src.rows));
const int radius = rng.uniform(minRadius, maxRadius + 1);
cv::circle(src, center, radius, cv::Scalar::all(255), -1);
}
if (runOnGpu)
{
cv::gpu::GpuMat d_src(src);
cv::gpu::GpuMat d_circles;
cv::gpu::HoughCirclesBuf d_buf;
cv::gpu::HoughCircles(d_src, d_circles, d_buf, CV_HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
TEST_CYCLE()
{
cv::gpu::HoughCircles(d_src, d_circles, d_buf, CV_HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
}
}
else
{
std::vector<cv::Vec3f> circles;
cv::HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
TEST_CYCLE()
{
cv::HoughCircles(src, circles, CV_HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
}
}
}
} // namespace } // namespace

View File

@ -40,6 +40,6 @@ typedef perf::Size_MatType Sz_Type;
DEF_PARAM_TEST(Sz_Depth, cv::Size, MatDepth); DEF_PARAM_TEST(Sz_Depth, cv::Size, MatDepth);
DEF_PARAM_TEST(Sz_Depth_Cn, cv::Size, MatDepth, int); DEF_PARAM_TEST(Sz_Depth_Cn, cv::Size, MatDepth, int);
#define GPU_TYPICAL_MAT_SIZES testing::Values(perf::szSXGA, perf::sz720p, perf::sz1080p) #define GPU_TYPICAL_MAT_SIZES testing::Values(perf::sz720p, perf::szSXGA, perf::sz1080p)
#endif // __OPENCV_PERF_GPU_UTILITY_HPP__ #endif // __OPENCV_PERF_GPU_UTILITY_HPP__

View File

@ -57,7 +57,7 @@ namespace cv { namespace gpu { namespace device
__global__ void buildPointList(const DevMem2Db src, unsigned int* list) __global__ void buildPointList(const DevMem2Db src, unsigned int* list)
{ {
__shared__ int s_queues[4][32 * PIXELS_PER_THREAD]; __shared__ unsigned int s_queues[4][32 * PIXELS_PER_THREAD];
__shared__ int s_qsize[4]; __shared__ int s_qsize[4];
__shared__ int s_globStart[4]; __shared__ int s_globStart[4];
@ -211,8 +211,6 @@ namespace cv { namespace gpu { namespace device
const dim3 block(has20 ? 1024 : 512); const dim3 block(has20 ? 1024 : 512);
const dim3 grid(accum.rows - 2); const dim3 grid(accum.rows - 2);
cudaSafeCall( cudaFuncSetCacheConfig(linesAccumShared, cudaFuncCachePreferShared) );
size_t smemSize = (accum.cols - 1) * sizeof(int); size_t smemSize = (accum.cols - 1) * sizeof(int);
if (smemSize < sharedMemPerBlock - 1000) if (smemSize < sharedMemPerBlock - 1000)
@ -230,28 +228,19 @@ namespace cv { namespace gpu { namespace device
__global__ void linesGetResult(const DevMem2Di accum, float2* out, int* votes, const int maxSize, const float rho, const float theta, const float threshold, const int numrho) __global__ void linesGetResult(const DevMem2Di accum, float2* out, int* votes, const int maxSize, const float rho, const float theta, const float threshold, const int numrho)
{ {
__shared__ int smem[8][32]; const int r = blockIdx.x * blockDim.x + threadIdx.x;
const int n = blockIdx.y * blockDim.y + threadIdx.y;
const int x = blockIdx.x * (blockDim.x - 2) + threadIdx.x; if (r >= accum.cols - 2 && n >= accum.rows - 2)
const int y = blockIdx.y * (blockDim.y - 2) + threadIdx.y;
if (x >= accum.cols || y >= accum.rows)
return; return;
smem[threadIdx.y][threadIdx.x] = accum(y, x); const int curVotes = accum(n + 1, r + 1);
__syncthreads();
const int r = x - 1; if (curVotes > threshold &&
const int n = y - 1; curVotes > accum(n + 1, r) &&
curVotes >= accum(n + 1, r + 2) &&
if (threadIdx.x == 0 || threadIdx.x == blockDim.x - 1 || threadIdx.y == 0 || threadIdx.y == blockDim.y - 1 || r >= accum.cols - 2 || n >= accum.rows - 2) curVotes > accum(n, r + 1) &&
return; curVotes >= accum(n + 2, r + 1))
if (smem[threadIdx.y][threadIdx.x] > threshold &&
smem[threadIdx.y][threadIdx.x] > smem[threadIdx.y - 1][threadIdx.x] &&
smem[threadIdx.y][threadIdx.x] >= smem[threadIdx.y + 1][threadIdx.x] &&
smem[threadIdx.y][threadIdx.x] > smem[threadIdx.y][threadIdx.x - 1] &&
smem[threadIdx.y][threadIdx.x] >= smem[threadIdx.y][threadIdx.x + 1])
{ {
const float radius = (r - (numrho - 1) * 0.5f) * rho; const float radius = (r - (numrho - 1) * 0.5f) * rho;
const float angle = n * theta; const float angle = n * theta;
@ -260,7 +249,7 @@ namespace cv { namespace gpu { namespace device
if (ind < maxSize) if (ind < maxSize)
{ {
out[ind] = make_float2(radius, angle); out[ind] = make_float2(radius, angle);
votes[ind] = smem[threadIdx.y][threadIdx.x]; votes[ind] = curVotes;
} }
} }
} }
@ -273,7 +262,9 @@ namespace cv { namespace gpu { namespace device
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) ); cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
const dim3 block(32, 8); const dim3 block(32, 8);
const dim3 grid(divUp(accum.cols, block.x - 2), divUp(accum.rows, block.y - 2)); const dim3 grid(divUp(accum.cols - 2, block.x), divUp(accum.rows - 2, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(linesGetResult, cudaFuncCachePreferL1) );
linesGetResult<<<grid, block>>>(accum, out, votes, maxSize, rho, theta, threshold, accum.cols - 2); linesGetResult<<<grid, block>>>(accum, out, votes, maxSize, rho, theta, threshold, accum.cols - 2);
cudaSafeCall( cudaGetLastError() ); cudaSafeCall( cudaGetLastError() );
@ -294,5 +285,202 @@ namespace cv { namespace gpu { namespace device
return totalCount; return totalCount;
} }
////////////////////////////////////////////////////////////////////////
// circlesAccumCenters
__global__ void circlesAccumCenters(const unsigned int* list, const int count, const PtrStepi dx, const PtrStepi dy,
PtrStepi accum, const int width, const int height, const int minRadius, const int maxRadius, const float idp)
{
const int SHIFT = 10;
const int ONE = 1 << SHIFT;
const int tid = blockIdx.x * blockDim.x + threadIdx.x;
if (tid >= count)
return;
const unsigned int val = list[tid];
const int x = (val & 0xFFFF);
const int y = (val >> 16) & 0xFFFF;
const int vx = dx(y, x);
const int vy = dy(y, x);
if (vx == 0 && vy == 0)
return;
const float mag = ::sqrtf(vx * vx + vy * vy);
const int x0 = __float2int_rn((x * idp) * ONE);
const int y0 = __float2int_rn((y * idp) * ONE);
int sx = __float2int_rn((vx * idp) * ONE / mag);
int sy = __float2int_rn((vy * idp) * ONE / mag);
// Step from minRadius to maxRadius in both directions of the gradient
for (int k1 = 0; k1 < 2; ++k1)
{
int x1 = x0 + minRadius * sx;
int y1 = y0 + minRadius * sy;
for (int r = minRadius; r <= maxRadius; x1 += sx, y1 += sy, ++r)
{
const int x2 = x1 >> SHIFT;
const int y2 = y1 >> SHIFT;
if (x2 < 0 || x2 >= width || y2 < 0 || y2 >= height)
break;
::atomicAdd(accum.ptr(y2 + 1) + x2 + 1, 1);
}
sx = -sx;
sy = -sy;
}
}
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, DevMem2Di accum, int minRadius, int maxRadius, float idp)
{
const dim3 block(256);
const dim3 grid(divUp(count, block.x));
cudaSafeCall( cudaFuncSetCacheConfig(circlesAccumCenters, cudaFuncCachePreferL1) );
circlesAccumCenters<<<grid, block>>>(list, count, dx, dy, accum, accum.cols - 2, accum.rows - 2, minRadius, maxRadius, idp);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
}
////////////////////////////////////////////////////////////////////////
// buildCentersList
__global__ void buildCentersList(const DevMem2Di accum, unsigned int* centers, const int threshold)
{
const int x = blockIdx.x * blockDim.x + threadIdx.x;
const int y = blockIdx.y * blockDim.y + threadIdx.y;
if (x < accum.cols - 2 && y < accum.rows - 2)
{
const int top = accum(y, x + 1);
const int left = accum(y + 1, x);
const int cur = accum(y + 1, x + 1);
const int right = accum(y + 1, x + 2);
const int bottom = accum(y + 2, x + 1);
if (cur > threshold && cur > top && cur >= bottom && cur > left && cur >= right)
{
const unsigned int val = (y << 16) | x;
const int idx = ::atomicAdd(&g_counter, 1);
centers[idx] = val;
}
}
}
int buildCentersList_gpu(DevMem2Di accum, unsigned int* centers, int threshold)
{
void* counterPtr;
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
const dim3 block(32, 8);
const dim3 grid(divUp(accum.cols - 2, block.x), divUp(accum.rows - 2, block.y));
cudaSafeCall( cudaFuncSetCacheConfig(buildCentersList, cudaFuncCachePreferL1) );
buildCentersList<<<grid, block>>>(accum, centers, threshold);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
int totalCount;
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
return totalCount;
}
////////////////////////////////////////////////////////////////////////
// circlesAccumRadius
__global__ void circlesAccumRadius(const unsigned int* centers, const unsigned int* list, const int count,
float3* circles, const int maxCircles, const float dp,
const int minRadius, const int maxRadius, const int histSize, const int threshold)
{
extern __shared__ int smem[];
for (int i = threadIdx.x; i < histSize + 2; i += blockDim.x)
smem[i] = 0;
__syncthreads();
unsigned int val = centers[blockIdx.x];
float cx = (val & 0xFFFF);
float cy = (val >> 16) & 0xFFFF;
cx = (cx + 0.5f) * dp;
cy = (cy + 0.5f) * dp;
for (int i = threadIdx.x; i < count; i += blockDim.x)
{
val = list[i];
const int x = (val & 0xFFFF);
const int y = (val >> 16) & 0xFFFF;
const float rad = ::sqrtf((cx - x) * (cx - x) + (cy - y) * (cy - y));
if (rad >= minRadius && rad <= maxRadius)
{
const int r = __float2int_rn(rad - minRadius);
Emulation::smem::atomicAdd(&smem[r + 1], 1);
}
}
__syncthreads();
for (int i = threadIdx.x; i < histSize; i += blockDim.x)
{
const int curVotes = smem[i + 1];
if (curVotes >= threshold && curVotes > smem[i] && curVotes >= smem[i + 2])
{
const int ind = ::atomicAdd(&g_counter, 1);
if (ind < maxCircles)
circles[ind] = make_float3(cx, cy, i + minRadius);
}
}
}
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count,
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20)
{
void* counterPtr;
cudaSafeCall( cudaGetSymbolAddress(&counterPtr, g_counter) );
cudaSafeCall( cudaMemset(counterPtr, 0, sizeof(int)) );
const dim3 block(has20 ? 1024 : 512);
const dim3 grid(centersCount);
const int histSize = ::ceil(maxRadius - minRadius + 1);
size_t smemSize = (histSize + 2) * sizeof(int);
circlesAccumRadius<<<grid, block, smemSize>>>(centers, list, count, circles, maxCircles, dp, minRadius, maxRadius, histSize, threshold);
cudaSafeCall( cudaGetLastError() );
cudaSafeCall( cudaDeviceSynchronize() );
int totalCount;
cudaSafeCall( cudaMemcpy(&totalCount, counterPtr, sizeof(int), cudaMemcpyDeviceToHost) );
totalCount = ::min(totalCount, maxCircles);
return totalCount;
}
} }
}}} }}}

View File

@ -44,12 +44,14 @@
#if !defined (HAVE_CUDA) #if !defined (HAVE_CUDA)
void cv::gpu::HoughLinesTransform(const GpuMat&, GpuMat&, GpuMat&, float, float) { throw_nogpu(); }
void cv::gpu::HoughLinesGet(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); }
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); } void cv::gpu::HoughLines(const GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); }
void cv::gpu::HoughLines(const GpuMat&, GpuMat&, GpuMat&, GpuMat&, float, float, int, bool, int) { throw_nogpu(); } void cv::gpu::HoughLines(const GpuMat&, GpuMat&, HoughLinesBuf&, float, float, int, bool, int) { throw_nogpu(); }
void cv::gpu::HoughLinesDownload(const GpuMat&, OutputArray, OutputArray) { throw_nogpu(); } void cv::gpu::HoughLinesDownload(const GpuMat&, OutputArray, OutputArray) { throw_nogpu(); }
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, int, float, float, int, int, int, int, int) { throw_nogpu(); }
void cv::gpu::HoughCircles(const GpuMat&, GpuMat&, HoughCirclesBuf&, int, float, float, int, int, int, int, int) { throw_nogpu(); }
void cv::gpu::HoughCirclesDownload(const GpuMat&, OutputArray) { throw_nogpu(); }
#else /* !defined (HAVE_CUDA) */ #else /* !defined (HAVE_CUDA) */
namespace cv { namespace gpu { namespace device namespace cv { namespace gpu { namespace device
@ -60,6 +62,11 @@ namespace cv { namespace gpu { namespace device
void linesAccum_gpu(const unsigned int* list, int count, DevMem2Di accum, float rho, float theta, size_t sharedMemPerBlock, bool has20); void linesAccum_gpu(const unsigned int* list, int count, DevMem2Di accum, float rho, float theta, size_t sharedMemPerBlock, bool has20);
int linesGetResult_gpu(DevMem2Di accum, float2* out, int* votes, int maxSize, float rho, float theta, float threshold, bool doSort); int linesGetResult_gpu(DevMem2Di accum, float2* out, int* votes, int maxSize, float rho, float theta, float threshold, bool doSort);
void circlesAccumCenters_gpu(const unsigned int* list, int count, PtrStepi dx, PtrStepi dy, DevMem2Di accum, int minRadius, int maxRadius, float idp);
int buildCentersList_gpu(DevMem2Di accum, unsigned int* centers, int threshold);
int circlesAccumRadius_gpu(const unsigned int* centers, int centersCount, const unsigned int* list, int count,
float3* circles, int maxCircles, float dp, int minRadius, int maxRadius, int threshold, bool has20);
} }
}}} }}}
@ -68,17 +75,11 @@ namespace cv { namespace gpu { namespace device
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines) void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines)
{ {
GpuMat accum, buf; HoughLinesBuf buf;
HoughLines(src, lines, accum, buf, rho, theta, threshold, doSort, maxLines); HoughLines(src, lines, buf, rho, theta, threshold, doSort, maxLines);
} }
void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, GpuMat& accum, GpuMat& buf, float rho, float theta, int threshold, bool doSort, int maxLines) void cv::gpu::HoughLines(const GpuMat& src, GpuMat& lines, HoughLinesBuf& buf, float rho, float theta, int threshold, bool doSort, int maxLines)
{
HoughLinesTransform(src, accum, buf, rho, theta);
HoughLinesGet(accum, lines, rho, theta, threshold, doSort, maxLines);
}
void cv::gpu::HoughLinesTransform(const GpuMat& src, GpuMat& accum, GpuMat& buf, float rho, float theta)
{ {
using namespace cv::gpu::device::hough; using namespace cv::gpu::device::hough;
@ -86,36 +87,31 @@ void cv::gpu::HoughLinesTransform(const GpuMat& src, GpuMat& accum, GpuMat& buf,
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max()); CV_Assert(src.cols < std::numeric_limits<unsigned short>::max());
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max()); CV_Assert(src.rows < std::numeric_limits<unsigned short>::max());
ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf); ensureSizeIsEnough(1, src.size().area(), CV_32SC1, buf.list);
unsigned int* srcPoints = buf.list.ptr<unsigned int>();
const int count = buildPointList_gpu(src, buf.ptr<unsigned int>()); const int pointsCount = buildPointList_gpu(src, srcPoints);
if (pointsCount == 0)
{
lines.release();
return;
}
const int numangle = cvRound(CV_PI / theta); const int numangle = cvRound(CV_PI / theta);
const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho); const int numrho = cvRound(((src.cols + src.rows) * 2 + 1) / rho);
CV_Assert(numangle > 0 && numrho > 0); CV_Assert(numangle > 0 && numrho > 0);
ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, accum); ensureSizeIsEnough(numangle + 2, numrho + 2, CV_32SC1, buf.accum);
accum.setTo(Scalar::all(0)); buf.accum.setTo(Scalar::all(0));
DeviceInfo devInfo; DeviceInfo devInfo;
linesAccum_gpu(srcPoints, pointsCount, buf.accum, rho, theta, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
if (count > 0)
linesAccum_gpu(buf.ptr<unsigned int>(), count, accum, rho, theta, devInfo.sharedMemPerBlock(), devInfo.supports(FEATURE_SET_COMPUTE_20));
}
void cv::gpu::HoughLinesGet(const GpuMat& accum, GpuMat& lines, float rho, float theta, int threshold, bool doSort, int maxLines)
{
using namespace cv::gpu::device::hough;
CV_Assert(accum.type() == CV_32SC1);
ensureSizeIsEnough(2, maxLines, CV_32FC2, lines); ensureSizeIsEnough(2, maxLines, CV_32FC2, lines);
int count = linesGetResult_gpu(accum, lines.ptr<float2>(0), lines.ptr<int>(1), maxLines, rho, theta, (float)threshold, doSort); int linesCount = linesGetResult_gpu(buf.accum, lines.ptr<float2>(0), lines.ptr<int>(1), maxLines, rho, theta, threshold, doSort);
if (linesCount > 0)
if (count > 0) lines.cols = linesCount;
lines.cols = count;
else else
lines.release(); lines.release();
} }
@ -145,4 +141,155 @@ void cv::gpu::HoughLinesDownload(const GpuMat& d_lines, OutputArray h_lines_, Ou
} }
} }
//////////////////////////////////////////////////////////
// HoughCircles
void cv::gpu::HoughCircles(const GpuMat& src, GpuMat& circles, int method, float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
{
HoughCirclesBuf buf;
HoughCircles(src, circles, buf, method, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius, maxCircles);
}
void cv::gpu::HoughCircles(const GpuMat& src, GpuMat& circles, HoughCirclesBuf& buf, int method,
float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles)
{
using namespace cv::gpu::device::hough;
CV_Assert(src.type() == CV_8UC1);
CV_Assert(src.cols < std::numeric_limits<unsigned short>::max());
CV_Assert(src.rows < std::numeric_limits<unsigned short>::max());
CV_Assert(method == CV_HOUGH_GRADIENT);
CV_Assert(dp > 0);
CV_Assert(minRadius > 0 && maxRadius > minRadius);
CV_Assert(cannyThreshold > 0);
CV_Assert(votesThreshold > 0);
CV_Assert(maxCircles > 0);
const float idp = 1.0f / dp;
cv::gpu::Canny(src, buf.cannyBuf, buf.edges, std::max(cannyThreshold / 2, 1), cannyThreshold);
ensureSizeIsEnough(2, src.size().area(), CV_32SC1, buf.list);
unsigned int* srcPoints = buf.list.ptr<unsigned int>(0);
unsigned int* centers = buf.list.ptr<unsigned int>(1);
const int pointsCount = buildPointList_gpu(buf.edges, srcPoints);
if (pointsCount == 0)
{
circles.release();
return;
}
ensureSizeIsEnough(cvCeil(src.rows * idp) + 2, cvCeil(src.cols * idp) + 2, CV_32SC1, buf.accum);
buf.accum.setTo(Scalar::all(0));
circlesAccumCenters_gpu(srcPoints, pointsCount, buf.cannyBuf.dx, buf.cannyBuf.dy, buf.accum, minRadius, maxRadius, idp);
int centersCount = buildCentersList_gpu(buf.accum, centers, votesThreshold);
if (centersCount == 0)
{
circles.release();
return;
}
if (minDist > 1)
{
cv::AutoBuffer<ushort2> oldBuf_(centersCount);
cv::AutoBuffer<ushort2> newBuf_(centersCount);
int newCount = 0;
ushort2* oldBuf = oldBuf_;
ushort2* newBuf = newBuf_;
cudaSafeCall( cudaMemcpy(oldBuf, centers, centersCount * sizeof(ushort2), cudaMemcpyDeviceToHost) );
const int cellSize = cvRound(minDist);
const int gridWidth = (src.cols + cellSize - 1) / cellSize;
const int gridHeight = (src.rows + cellSize - 1) / cellSize;
std::vector< std::vector<ushort2> > grid(gridWidth * gridHeight);
minDist *= minDist;
for (int i = 0; i < centersCount; ++i)
{
ushort2 p = oldBuf[i];
bool good = true;
int xCell = static_cast<int>(p.x / cellSize);
int yCell = static_cast<int>(p.y / cellSize);
int x1 = xCell - 1;
int y1 = yCell - 1;
int x2 = xCell + 1;
int y2 = yCell + 1;
// boundary check
x1 = std::max(0, x1);
y1 = std::max(0, y1);
x2 = std::min(gridWidth - 1, x2);
y2 = std::min(gridHeight - 1, y2);
for (int yy = y1; yy <= y2; ++yy)
{
for (int xx = x1; xx <= x2; ++xx)
{
vector<ushort2>& m = grid[yy * gridWidth + xx];
for(size_t j = 0; j < m.size(); ++j)
{
float dx = p.x - m[j].x;
float dy = p.y - m[j].y;
if (dx * dx + dy * dy < minDist)
{
good = false;
goto break_out;
}
}
}
}
break_out:
if(good)
{
grid[yCell * gridWidth + xCell].push_back(p);
newBuf[newCount++] = p;
}
}
cudaSafeCall( cudaMemcpy(centers, newBuf, newCount * sizeof(unsigned int), cudaMemcpyHostToDevice) );
centersCount = newCount;
}
ensureSizeIsEnough(1, maxCircles, CV_32FC3, circles);
DeviceInfo devInfo;
const int circlesCount = circlesAccumRadius_gpu(centers, centersCount, srcPoints, pointsCount, circles.ptr<float3>(), maxCircles,
dp, minRadius, maxRadius, votesThreshold, devInfo.supports(FEATURE_SET_COMPUTE_20));
if (circlesCount > 0)
circles.cols = circlesCount;
else
circles.release();
}
void cv::gpu::HoughCirclesDownload(const GpuMat& d_circles, cv::OutputArray h_circles_)
{
if (d_circles.empty())
{
h_circles_.release();
return;
}
CV_Assert(d_circles.rows == 1 && d_circles.type() == CV_32FC3);
h_circles_.create(1, d_circles.cols, CV_32FC3);
Mat h_circles = h_circles_.getMat();
d_circles.download(h_circles);
}
#endif /* !defined (HAVE_CUDA) */ #endif /* !defined (HAVE_CUDA) */

View File

@ -1131,7 +1131,7 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, CornerMinEigen, testing::Combine(
PARAM_TEST_CASE(HoughLines, cv::gpu::DeviceInfo, cv::Size, UseRoi) PARAM_TEST_CASE(HoughLines, cv::gpu::DeviceInfo, cv::Size, UseRoi)
{ {
void generateLines(cv::Mat& img) static void generateLines(cv::Mat& img)
{ {
img.setTo(cv::Scalar::all(0)); img.setTo(cv::Scalar::all(0));
@ -1141,7 +1141,7 @@ PARAM_TEST_CASE(HoughLines, cv::gpu::DeviceInfo, cv::Size, UseRoi)
cv::line(img, cv::Point(img.cols, 0), cv::Point(0, img.rows), cv::Scalar::all(255)); cv::line(img, cv::Point(img.cols, 0), cv::Point(0, img.rows), cv::Scalar::all(255));
} }
void drawLines(cv::Mat& dst, const std::vector<cv::Vec2f>& lines) static void drawLines(cv::Mat& dst, const std::vector<cv::Vec2f>& lines)
{ {
dst.setTo(cv::Scalar::all(0)); dst.setTo(cv::Scalar::all(0));
@ -1191,6 +1191,77 @@ INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughLines, testing::Combine(
DIFFERENT_SIZES, DIFFERENT_SIZES,
WHOLE_SUBMAT)); WHOLE_SUBMAT));
///////////////////////////////////////////////////////////////////////////////////////////////////////
// HoughCircles
PARAM_TEST_CASE(HoughCircles, cv::gpu::DeviceInfo, cv::Size, UseRoi)
{
static void drawCircles(cv::Mat& dst, const std::vector<cv::Vec3f>& circles, bool fill)
{
dst.setTo(cv::Scalar::all(0));
for (size_t i = 0; i < circles.size(); ++i)
cv::circle(dst, cv::Point(circles[i][0], circles[i][1]), circles[i][2], cv::Scalar::all(255), fill ? -1 : 1);
}
};
TEST_P(HoughCircles, Accuracy)
{
const cv::gpu::DeviceInfo devInfo = GET_PARAM(0);
cv::gpu::setDevice(devInfo.deviceID());
const cv::Size size = GET_PARAM(1);
const bool useRoi = GET_PARAM(2);
const float dp = 2.0f;
const float minDist = 10.0f;
const int minRadius = 10;
const int maxRadius = 20;
const int cannyThreshold = 100;
const int votesThreshold = 20;
std::vector<cv::Vec3f> circles_gold(4);
circles_gold[0] = cv::Vec3f(20, 20, minRadius);
circles_gold[1] = cv::Vec3f(90, 87, minRadius + 3);
circles_gold[2] = cv::Vec3f(30, 70, minRadius + 8);
circles_gold[3] = cv::Vec3f(80, 10, maxRadius);
cv::Mat src(size, CV_8UC1);
drawCircles(src, circles_gold, true);
cv::gpu::GpuMat d_circles;
cv::gpu::HoughCircles(loadMat(src, useRoi), d_circles, CV_HOUGH_GRADIENT, dp, minDist, cannyThreshold, votesThreshold, minRadius, maxRadius);
std::vector<cv::Vec3f> circles;
cv::gpu::HoughCirclesDownload(d_circles, circles);
ASSERT_FALSE(circles.empty());
for (size_t i = 0; i < circles.size(); ++i)
{
cv::Vec3f cur = circles[i];
bool found = false;
for (size_t j = 0; j < circles_gold.size(); ++j)
{
cv::Vec3f gold = circles_gold[j];
if (std::fabs(cur[0] - gold[0]) < minDist && std::fabs(cur[1] - gold[1]) < minDist && std::fabs(cur[2] - gold[2]) < minDist)
{
found = true;
break;
}
}
ASSERT_TRUE(found);
}
}
INSTANTIATE_TEST_CASE_P(GPU_ImgProc, HoughCircles, testing::Combine(
ALL_DEVICES,
DIFFERENT_SIZES,
WHOLE_SUBMAT));
} // namespace } // namespace
#endif // HAVE_CUDA #endif // HAVE_CUDA