mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
Merge pull request #930 from pengx17:2.4_haar_ext
This commit is contained in:
commit
c3f5e73769
@ -817,7 +817,7 @@ namespace cv
|
||||
OclCascadeClassifierBuf() :
|
||||
m_flags(0), initialized(false), m_scaleFactor(0), buffers(NULL) {}
|
||||
|
||||
~OclCascadeClassifierBuf() {}
|
||||
~OclCascadeClassifierBuf() { release(); }
|
||||
|
||||
void detectMultiScale(oclMat &image, CV_OUT std::vector<cv::Rect>& faces,
|
||||
double scaleFactor = 1.1, int minNeighbors = 3, int flags = 0,
|
||||
|
@ -137,47 +137,22 @@ struct CvHidHaarClassifierCascade
|
||||
};
|
||||
typedef struct
|
||||
{
|
||||
//int rows;
|
||||
//int ystep;
|
||||
int width_height;
|
||||
//int height;
|
||||
int grpnumperline_totalgrp;
|
||||
//int totalgrp;
|
||||
int imgoff;
|
||||
float factor;
|
||||
} detect_piramid_info;
|
||||
|
||||
#if defined WIN32 && !defined __MINGW__ && !defined __MINGW32__
|
||||
#ifdef WIN32
|
||||
#define _ALIGNED_ON(_ALIGNMENT) __declspec(align(_ALIGNMENT))
|
||||
typedef _ALIGNED_ON(128) struct GpuHidHaarFeature
|
||||
{
|
||||
_ALIGNED_ON(32) struct
|
||||
{
|
||||
_ALIGNED_ON(4) int p0 ;
|
||||
_ALIGNED_ON(4) int p1 ;
|
||||
_ALIGNED_ON(4) int p2 ;
|
||||
_ALIGNED_ON(4) int p3 ;
|
||||
_ALIGNED_ON(4) float weight ;
|
||||
}
|
||||
/*_ALIGNED_ON(32)*/ rect[CV_HAAR_FEATURE_MAX] ;
|
||||
}
|
||||
GpuHidHaarFeature;
|
||||
|
||||
|
||||
typedef _ALIGNED_ON(128) struct GpuHidHaarTreeNode
|
||||
{
|
||||
_ALIGNED_ON(64) int p[CV_HAAR_FEATURE_MAX][4];
|
||||
//_ALIGNED_ON(16) int p1[CV_HAAR_FEATURE_MAX] ;
|
||||
//_ALIGNED_ON(16) int p2[CV_HAAR_FEATURE_MAX] ;
|
||||
//_ALIGNED_ON(16) int p3[CV_HAAR_FEATURE_MAX] ;
|
||||
/*_ALIGNED_ON(16)*/
|
||||
float weight[CV_HAAR_FEATURE_MAX] ;
|
||||
/*_ALIGNED_ON(4)*/
|
||||
float threshold ;
|
||||
_ALIGNED_ON(8) float alpha[2] ;
|
||||
_ALIGNED_ON(16) float alpha[3] ;
|
||||
_ALIGNED_ON(4) int left ;
|
||||
_ALIGNED_ON(4) int right ;
|
||||
// GpuHidHaarFeature feature __attribute__((aligned (128)));
|
||||
}
|
||||
GpuHidHaarTreeNode;
|
||||
|
||||
@ -185,7 +160,6 @@ GpuHidHaarTreeNode;
|
||||
typedef _ALIGNED_ON(32) struct GpuHidHaarClassifier
|
||||
{
|
||||
_ALIGNED_ON(4) int count;
|
||||
//CvHaarFeature* orig_feature;
|
||||
_ALIGNED_ON(8) GpuHidHaarTreeNode *node ;
|
||||
_ALIGNED_ON(8) float *alpha ;
|
||||
}
|
||||
@ -220,32 +194,16 @@ typedef _ALIGNED_ON(64) struct GpuHidHaarClassifierCascade
|
||||
_ALIGNED_ON(4) int p2 ;
|
||||
_ALIGNED_ON(4) int p3 ;
|
||||
_ALIGNED_ON(4) float inv_window_area ;
|
||||
// GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8)));
|
||||
} GpuHidHaarClassifierCascade;
|
||||
#else
|
||||
#define _ALIGNED_ON(_ALIGNMENT) __attribute__((aligned(_ALIGNMENT) ))
|
||||
|
||||
typedef struct _ALIGNED_ON(128) GpuHidHaarFeature
|
||||
{
|
||||
struct _ALIGNED_ON(32)
|
||||
{
|
||||
int p0 _ALIGNED_ON(4);
|
||||
int p1 _ALIGNED_ON(4);
|
||||
int p2 _ALIGNED_ON(4);
|
||||
int p3 _ALIGNED_ON(4);
|
||||
float weight _ALIGNED_ON(4);
|
||||
}
|
||||
rect[CV_HAAR_FEATURE_MAX] _ALIGNED_ON(32);
|
||||
}
|
||||
GpuHidHaarFeature;
|
||||
|
||||
|
||||
typedef struct _ALIGNED_ON(128) GpuHidHaarTreeNode
|
||||
{
|
||||
int p[CV_HAAR_FEATURE_MAX][4] _ALIGNED_ON(64);
|
||||
float weight[CV_HAAR_FEATURE_MAX];// _ALIGNED_ON(16);
|
||||
float threshold;// _ALIGNED_ON(4);
|
||||
float alpha[2] _ALIGNED_ON(8);
|
||||
float alpha[3] _ALIGNED_ON(16);
|
||||
int left _ALIGNED_ON(4);
|
||||
int right _ALIGNED_ON(4);
|
||||
}
|
||||
@ -288,7 +246,6 @@ typedef struct _ALIGNED_ON(64) GpuHidHaarClassifierCascade
|
||||
int p2 _ALIGNED_ON(4);
|
||||
int p3 _ALIGNED_ON(4);
|
||||
float inv_window_area _ALIGNED_ON(4);
|
||||
// GpuHidHaarStageClassifier* stage_classifier __attribute__((aligned (8)));
|
||||
} GpuHidHaarClassifierCascade;
|
||||
#endif
|
||||
|
||||
@ -296,36 +253,6 @@ const int icv_object_win_border = 1;
|
||||
const float icv_stage_threshold_bias = 0.0001f;
|
||||
double globaltime = 0;
|
||||
|
||||
|
||||
// static CvHaarClassifierCascade * gpuCreateHaarClassifierCascade( int stage_count )
|
||||
// {
|
||||
// CvHaarClassifierCascade *cascade = 0;
|
||||
|
||||
// int block_size = sizeof(*cascade) + stage_count * sizeof(*cascade->stage_classifier);
|
||||
|
||||
// if( stage_count <= 0 )
|
||||
// CV_Error( CV_StsOutOfRange, "Number of stages should be positive" );
|
||||
|
||||
// cascade = (CvHaarClassifierCascade *)cvAlloc( block_size );
|
||||
// memset( cascade, 0, block_size );
|
||||
|
||||
// cascade->stage_classifier = (CvHaarStageClassifier *)(cascade + 1);
|
||||
// cascade->flags = CV_HAAR_MAGIC_VAL;
|
||||
// cascade->count = stage_count;
|
||||
|
||||
// return cascade;
|
||||
// }
|
||||
|
||||
//static int globalcounter = 0;
|
||||
|
||||
// static void gpuReleaseHidHaarClassifierCascade( GpuHidHaarClassifierCascade **_cascade )
|
||||
// {
|
||||
// if( _cascade && *_cascade )
|
||||
// {
|
||||
// cvFree( _cascade );
|
||||
// }
|
||||
// }
|
||||
|
||||
/* create more efficient internal representation of haar classifier cascade */
|
||||
static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarClassifierCascade *cascade, int *size, int *totalclassifier)
|
||||
{
|
||||
@ -441,24 +368,12 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl
|
||||
hid_stage_classifier->two_rects = 1;
|
||||
haar_classifier_ptr += stage_classifier->count;
|
||||
|
||||
/*
|
||||
hid_stage_classifier->parent = (stage_classifier->parent == -1)
|
||||
? NULL : stage_classifier_ptr + stage_classifier->parent;
|
||||
hid_stage_classifier->next = (stage_classifier->next == -1)
|
||||
? NULL : stage_classifier_ptr + stage_classifier->next;
|
||||
hid_stage_classifier->child = (stage_classifier->child == -1)
|
||||
? NULL : stage_classifier_ptr + stage_classifier->child;
|
||||
|
||||
out->is_tree |= hid_stage_classifier->next != NULL;
|
||||
*/
|
||||
|
||||
for( j = 0; j < stage_classifier->count; j++ )
|
||||
{
|
||||
CvHaarClassifier *classifier = stage_classifier->classifier + j;
|
||||
GpuHidHaarClassifier *hid_classifier = hid_stage_classifier->classifier + j;
|
||||
int node_count = classifier->count;
|
||||
|
||||
// float* alpha_ptr = (float*)(haar_node_ptr + node_count);
|
||||
float *alpha_ptr = &haar_node_ptr->alpha[0];
|
||||
|
||||
hid_classifier->count = node_count;
|
||||
@ -485,16 +400,12 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl
|
||||
node->p[2][3] = 0;
|
||||
node->weight[2] = 0;
|
||||
}
|
||||
// memset( &(node->feature.rect[2]), 0, sizeof(node->feature.rect[2]) );
|
||||
else
|
||||
hid_stage_classifier->two_rects = 0;
|
||||
|
||||
memcpy( node->alpha, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0]));
|
||||
haar_node_ptr = haar_node_ptr + 1;
|
||||
}
|
||||
|
||||
memcpy( alpha_ptr, classifier->alpha, (node_count + 1)*sizeof(alpha_ptr[0]));
|
||||
haar_node_ptr = haar_node_ptr + 1;
|
||||
// (GpuHidHaarTreeNode*)cvAlignPtr(alpha_ptr+node_count+1, sizeof(void*));
|
||||
// (GpuHidHaarTreeNode*)(alpha_ptr+node_count+1);
|
||||
|
||||
out->is_stump_based &= node_count == 1;
|
||||
}
|
||||
}
|
||||
@ -507,25 +418,19 @@ static GpuHidHaarClassifierCascade * gpuCreateHidHaarClassifierCascade( CvHaarCl
|
||||
|
||||
|
||||
#define sum_elem_ptr(sum,row,col) \
|
||||
((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype)))
|
||||
((sumtype*)CV_MAT_ELEM_PTR_FAST((sum),(row),(col),sizeof(sumtype)))
|
||||
|
||||
#define sqsum_elem_ptr(sqsum,row,col) \
|
||||
((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype)))
|
||||
((sqsumtype*)CV_MAT_ELEM_PTR_FAST((sqsum),(row),(col),sizeof(sqsumtype)))
|
||||
|
||||
#define calc_sum(rect,offset) \
|
||||
((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
|
||||
((rect).p0[offset] - (rect).p1[offset] - (rect).p2[offset] + (rect).p3[offset])
|
||||
|
||||
|
||||
static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_cascade,
|
||||
/* const CvArr* _sum,
|
||||
const CvArr* _sqsum,
|
||||
const CvArr* _tilted_sum,*/
|
||||
double scale,
|
||||
int step)
|
||||
{
|
||||
// CvMat sum_stub, *sum = (CvMat*)_sum;
|
||||
// CvMat sqsum_stub, *sqsum = (CvMat*)_sqsum;
|
||||
// CvMat tilted_stub, *tilted = (CvMat*)_tilted_sum;
|
||||
GpuHidHaarClassifierCascade *cascade;
|
||||
int coi0 = 0, coi1 = 0;
|
||||
int i;
|
||||
@ -541,61 +446,25 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc
|
||||
if( scale <= 0 )
|
||||
CV_Error( CV_StsOutOfRange, "Scale must be positive" );
|
||||
|
||||
// sum = cvGetMat( sum, &sum_stub, &coi0 );
|
||||
// sqsum = cvGetMat( sqsum, &sqsum_stub, &coi1 );
|
||||
|
||||
if( coi0 || coi1 )
|
||||
CV_Error( CV_BadCOI, "COI is not supported" );
|
||||
|
||||
// if( !CV_ARE_SIZES_EQ( sum, sqsum ))
|
||||
// CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );
|
||||
|
||||
// if( CV_MAT_TYPE(sqsum->type) != CV_64FC1 ||
|
||||
// CV_MAT_TYPE(sum->type) != CV_32SC1 )
|
||||
// CV_Error( CV_StsUnsupportedFormat,
|
||||
// "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
|
||||
|
||||
if( !_cascade->hid_cascade )
|
||||
gpuCreateHidHaarClassifierCascade(_cascade, &datasize, &total);
|
||||
|
||||
cascade = (GpuHidHaarClassifierCascade *) _cascade->hid_cascade;
|
||||
stage_classifier = (GpuHidHaarStageClassifier *) (cascade + 1);
|
||||
|
||||
if( cascade->has_tilted_features )
|
||||
{
|
||||
// tilted = cvGetMat( tilted, &tilted_stub, &coi1 );
|
||||
|
||||
// if( CV_MAT_TYPE(tilted->type) != CV_32SC1 )
|
||||
// CV_Error( CV_StsUnsupportedFormat,
|
||||
// "Only (32s, 64f, 32s) combination of (sum,sqsum,tilted_sum) formats is allowed" );
|
||||
|
||||
// if( sum->step != tilted->step )
|
||||
// CV_Error( CV_StsUnmatchedSizes,
|
||||
// "Sum and tilted_sum must have the same stride (step, widthStep)" );
|
||||
|
||||
// if( !CV_ARE_SIZES_EQ( sum, tilted ))
|
||||
// CV_Error( CV_StsUnmatchedSizes, "All integral images must have the same size" );
|
||||
// cascade->tilted = *tilted;
|
||||
}
|
||||
|
||||
_cascade->scale = scale;
|
||||
_cascade->real_window_size.width = cvRound( _cascade->orig_window_size.width * scale );
|
||||
_cascade->real_window_size.height = cvRound( _cascade->orig_window_size.height * scale );
|
||||
|
||||
//cascade->sum = *sum;
|
||||
//cascade->sqsum = *sqsum;
|
||||
|
||||
equRect.x = equRect.y = cvRound(scale);
|
||||
equRect.width = cvRound((_cascade->orig_window_size.width - 2) * scale);
|
||||
equRect.height = cvRound((_cascade->orig_window_size.height - 2) * scale);
|
||||
weight_scale = 1. / (equRect.width * equRect.height);
|
||||
cascade->inv_window_area = weight_scale;
|
||||
|
||||
// cascade->pq0 = equRect.y * step + equRect.x;
|
||||
// cascade->pq1 = equRect.y * step + equRect.x + equRect.width ;
|
||||
// cascade->pq2 = (equRect.y + equRect.height)*step + equRect.x;
|
||||
// cascade->pq3 = (equRect.y + equRect.height)*step + equRect.x + equRect.width ;
|
||||
|
||||
cascade->pq0 = equRect.x;
|
||||
cascade->pq1 = equRect.y;
|
||||
cascade->pq2 = equRect.x + equRect.width;
|
||||
@ -618,10 +487,6 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc
|
||||
{
|
||||
CvHaarFeature *feature =
|
||||
&_cascade->stage_classifier[i].classifier[j].haar_feature[l];
|
||||
/* GpuHidHaarClassifier* classifier =
|
||||
cascade->stage_classifier[i].classifier + j; */
|
||||
//GpuHidHaarFeature* hidfeature =
|
||||
// &cascade->stage_classifier[i].classifier[j].node[l].feature;
|
||||
GpuHidHaarTreeNode *hidnode = &stage_classifier[i].classifier[j].node[l];
|
||||
double sum0 = 0, area0 = 0;
|
||||
CvRect r[3];
|
||||
@ -636,8 +501,6 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc
|
||||
/* align blocks */
|
||||
for( k = 0; k < CV_HAAR_FEATURE_MAX; k++ )
|
||||
{
|
||||
//if( !hidfeature->rect[k].p0 )
|
||||
// break;
|
||||
if(!hidnode->p[k][0])
|
||||
break;
|
||||
r[k] = feature->rect[k].r;
|
||||
@ -717,15 +580,6 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc
|
||||
|
||||
if( !feature->tilted )
|
||||
{
|
||||
/* hidfeature->rect[k].p0 = tr.y * sum->cols + tr.x;
|
||||
hidfeature->rect[k].p1 = tr.y * sum->cols + tr.x + tr.width;
|
||||
hidfeature->rect[k].p2 = (tr.y + tr.height) * sum->cols + tr.x;
|
||||
hidfeature->rect[k].p3 = (tr.y + tr.height) * sum->cols + tr.x + tr.width;
|
||||
*/
|
||||
/*hidnode->p0[k] = tr.y * step + tr.x;
|
||||
hidnode->p1[k] = tr.y * step + tr.x + tr.width;
|
||||
hidnode->p2[k] = (tr.y + tr.height) * step + tr.x;
|
||||
hidnode->p3[k] = (tr.y + tr.height) * step + tr.x + tr.width;*/
|
||||
hidnode->p[k][0] = tr.x;
|
||||
hidnode->p[k][1] = tr.y;
|
||||
hidnode->p[k][2] = tr.x + tr.width;
|
||||
@ -733,37 +587,24 @@ static void gpuSetImagesForHaarClassifierCascade( CvHaarClassifierCascade *_casc
|
||||
}
|
||||
else
|
||||
{
|
||||
/* hidfeature->rect[k].p2 = (tr.y + tr.width) * tilted->cols + tr.x + tr.width;
|
||||
hidfeature->rect[k].p3 = (tr.y + tr.width + tr.height) * tilted->cols + tr.x + tr.width - tr.height;
|
||||
hidfeature->rect[k].p0 = tr.y * tilted->cols + tr.x;
|
||||
hidfeature->rect[k].p1 = (tr.y + tr.height) * tilted->cols + tr.x - tr.height;
|
||||
*/
|
||||
|
||||
hidnode->p[k][2] = (tr.y + tr.width) * step + tr.x + tr.width;
|
||||
hidnode->p[k][3] = (tr.y + tr.width + tr.height) * step + tr.x + tr.width - tr.height;
|
||||
hidnode->p[k][0] = tr.y * step + tr.x;
|
||||
hidnode->p[k][1] = (tr.y + tr.height) * step + tr.x - tr.height;
|
||||
}
|
||||
|
||||
//hidfeature->rect[k].weight = (float)(feature->rect[k].weight * correction_ratio);
|
||||
hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio);
|
||||
if( k == 0 )
|
||||
area0 = tr.width * tr.height;
|
||||
else
|
||||
//sum0 += hidfeature->rect[k].weight * tr.width * tr.height;
|
||||
sum0 += hidnode->weight[k] * tr.width * tr.height;
|
||||
}
|
||||
|
||||
// hidfeature->rect[0].weight = (float)(-sum0/area0);
|
||||
hidnode->weight[0] = (float)(-sum0 / area0);
|
||||
} /* l */
|
||||
} /* j */
|
||||
}
|
||||
}
|
||||
|
||||
static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade
|
||||
/*double scale=0.0,*/
|
||||
/*int step*/)
|
||||
static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade)
|
||||
{
|
||||
GpuHidHaarClassifierCascade *cascade;
|
||||
int i;
|
||||
@ -817,11 +658,7 @@ static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade
|
||||
if(!hidnode->p[k][0])
|
||||
break;
|
||||
r[k] = feature->rect[k].r;
|
||||
// base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].width-1) );
|
||||
// base_w = (int)CV_IMIN( (unsigned)base_w, (unsigned)(r[k].x - r[0].x-1) );
|
||||
// base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].height-1) );
|
||||
// base_h = (int)CV_IMIN( (unsigned)base_h, (unsigned)(r[k].y - r[0].y-1) );
|
||||
}
|
||||
}
|
||||
|
||||
nr = k;
|
||||
for( k = 0; k < nr; k++ )
|
||||
@ -839,7 +676,6 @@ static void gpuSetHaarClassifierCascade( CvHaarClassifierCascade *_cascade
|
||||
hidnode->p[k][3] = tr.height;
|
||||
hidnode->weight[k] = (float)(feature->rect[k].weight * correction_ratio);
|
||||
}
|
||||
//hidnode->weight[0]=(float)(-sum0/area0);
|
||||
} /* l */
|
||||
} /* j */
|
||||
}
|
||||
@ -852,7 +688,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
|
||||
const double GROUP_EPS = 0.2;
|
||||
CvSeq *result_seq = 0;
|
||||
cv::Ptr<CvMemStorage> temp_storage;
|
||||
|
||||
cv::ConcurrentRectVector allCandidates;
|
||||
std::vector<cv::Rect> rectList;
|
||||
@ -910,6 +745,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
if( gimg.cols < minSize.width || gimg.rows < minSize.height )
|
||||
CV_Error(CV_StsError, "Image too small");
|
||||
|
||||
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue());
|
||||
if( (flags & CV_HAAR_SCALE_IMAGE) )
|
||||
{
|
||||
CvSize winSize0 = cascade->orig_window_size;
|
||||
@ -952,7 +788,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
|
||||
size_t blocksize = 8;
|
||||
size_t localThreads[3] = { blocksize, blocksize , 1 };
|
||||
size_t globalThreads[3] = { grp_per_CU * gsum.clCxt->computeUnits() *localThreads[0],
|
||||
size_t globalThreads[3] = { grp_per_CU *(gsum.clCxt->computeUnits()) *localThreads[0],
|
||||
localThreads[1], 1
|
||||
};
|
||||
int outputsz = 256 * globalThreads[0] / localThreads[0];
|
||||
@ -997,7 +833,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 );
|
||||
|
||||
stagebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, sizeof(GpuHidHaarStageClassifier) * gcascade->count);
|
||||
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue();
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
|
||||
|
||||
nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY, nodenum * sizeof(GpuHidHaarTreeNode));
|
||||
@ -1044,7 +879,9 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq ));
|
||||
args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction ));
|
||||
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1);
|
||||
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
|
||||
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options);
|
||||
|
||||
openCLReadBuffer( gsum.clCxt, candidatebuffer, candidate, 4 * sizeof(int)*outputsz );
|
||||
|
||||
@ -1059,6 +896,7 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
openCLSafeCall(clReleaseMemObject(scaleinfobuffer));
|
||||
openCLSafeCall(clReleaseMemObject(nodebuffer));
|
||||
openCLSafeCall(clReleaseMemObject(candidatebuffer));
|
||||
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -1118,7 +956,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
sizeof(GpuHidHaarStageClassifier) * gcascade->count - sizeof(GpuHidHaarClassifier) * totalclassifier) / sizeof(GpuHidHaarTreeNode);
|
||||
nodebuffer = openCLCreateBuffer(gsum.clCxt, CL_MEM_READ_ONLY,
|
||||
nodenum * sizeof(GpuHidHaarTreeNode));
|
||||
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue();
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, nodebuffer, 1, 0,
|
||||
nodenum * sizeof(GpuHidHaarTreeNode),
|
||||
node, 0, NULL, NULL));
|
||||
@ -1160,7 +997,6 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
args1.push_back ( make_pair(sizeof(cl_int) , (void *)&startnodenum ));
|
||||
|
||||
size_t globalThreads2[3] = {nodenum, 1, 1};
|
||||
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
|
||||
}
|
||||
|
||||
@ -1195,8 +1031,8 @@ CvSeq *cv::ocl::OclCascadeClassifier::oclHaarDetectObjects( oclMat &gimg, CvMemS
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&pbuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&correctionbuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&nodenum ));
|
||||
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1);
|
||||
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options);
|
||||
|
||||
candidate = (int *)clEnqueueMapBuffer(qu, candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, &status);
|
||||
|
||||
@ -1284,7 +1120,7 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
|
||||
int blocksize = 8;
|
||||
int grp_per_CU = 12;
|
||||
size_t localThreads[3] = { blocksize, blocksize, 1 };
|
||||
size_t globalThreads[3] = { grp_per_CU * Context::getContext()->computeUnits() * localThreads[0],
|
||||
size_t globalThreads[3] = { grp_per_CU * cv::ocl::Context::getContext()->computeUnits() *localThreads[0],
|
||||
localThreads[1],
|
||||
1 };
|
||||
int outputsz = 256 * globalThreads[0] / localThreads[0];
|
||||
@ -1300,8 +1136,6 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
|
||||
CvHaarClassifierCascade *cascade = oldCascade;
|
||||
GpuHidHaarClassifierCascade *gcascade;
|
||||
GpuHidHaarStageClassifier *stage;
|
||||
GpuHidHaarClassifier *classifier;
|
||||
GpuHidHaarTreeNode *node;
|
||||
|
||||
if( CV_MAT_DEPTH(gimg.type()) != CV_8U )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit images are supported" );
|
||||
@ -1314,7 +1148,7 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
|
||||
}
|
||||
|
||||
int *candidate;
|
||||
|
||||
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue());
|
||||
if( (flags & CV_HAAR_SCALE_IMAGE) )
|
||||
{
|
||||
int indexy = 0;
|
||||
@ -1340,19 +1174,6 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
|
||||
|
||||
gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade);
|
||||
stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
|
||||
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
|
||||
node = (GpuHidHaarTreeNode *)(classifier->node);
|
||||
|
||||
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 );
|
||||
|
||||
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue();
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0,
|
||||
sizeof(GpuHidHaarStageClassifier) * gcascade->count,
|
||||
stage, 0, NULL, NULL));
|
||||
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
|
||||
m_nodenum * sizeof(GpuHidHaarTreeNode),
|
||||
node, 0, NULL, NULL));
|
||||
|
||||
int startstage = 0;
|
||||
int endstage = gcascade->count;
|
||||
@ -1389,17 +1210,23 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
|
||||
args.push_back ( make_pair(sizeof(cl_int4) , (void *)&pq ));
|
||||
args.push_back ( make_pair(sizeof(cl_float) , (void *)&correction ));
|
||||
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1);
|
||||
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
|
||||
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect, "gpuRunHaarClassifierCascade", globalThreads, localThreads, args, -1, -1, build_options);
|
||||
|
||||
candidate = (int *)malloc(4 * sizeof(int) * outputsz);
|
||||
memset(candidate, 0, 4 * sizeof(int) * outputsz);
|
||||
|
||||
openCLReadBuffer( gsum.clCxt, ((OclBuffers *)buffers)->candidatebuffer, candidate, 4 * sizeof(int)*outputsz );
|
||||
|
||||
for(int i = 0; i < outputsz; i++)
|
||||
{
|
||||
if(candidate[4 * i + 2] != 0)
|
||||
{
|
||||
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
|
||||
candidate[4 * i + 2], candidate[4 * i + 3]));
|
||||
|
||||
}
|
||||
}
|
||||
free((void *)candidate);
|
||||
candidate = NULL;
|
||||
}
|
||||
@ -1407,6 +1234,132 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
|
||||
{
|
||||
cv::ocl::integral(gimg, gsum, gsqsum);
|
||||
|
||||
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
|
||||
|
||||
int step = gsum.step / 4;
|
||||
int startnode = 0;
|
||||
int splitstage = 3;
|
||||
|
||||
int startstage = 0;
|
||||
int endstage = gcascade->count;
|
||||
|
||||
vector<pair<size_t, const void *> > args;
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&step ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->pbuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum ));
|
||||
|
||||
const char * build_options = gcascade->is_stump_based ? "-D STUMP_BASED=1" : "-D STUMP_BASED=0";
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1, build_options);
|
||||
|
||||
candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL);
|
||||
|
||||
for(int i = 0; i < outputsz; i++)
|
||||
{
|
||||
if(candidate[4 * i + 2] != 0)
|
||||
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
|
||||
candidate[4 * i + 2], candidate[4 * i + 3]));
|
||||
}
|
||||
clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0);
|
||||
}
|
||||
rectList.resize(allCandidates.size());
|
||||
if(!allCandidates.empty())
|
||||
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());
|
||||
|
||||
if( minNeighbors != 0 || findBiggestObject )
|
||||
groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS);
|
||||
else
|
||||
rweights.resize(rectList.size(), 0);
|
||||
|
||||
GenResult(faces, rectList, rweights);
|
||||
}
|
||||
|
||||
void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols,
|
||||
double scaleFactor, int flags,
|
||||
const int outputsz, const size_t localThreads[],
|
||||
CvSize minSize, CvSize maxSize)
|
||||
{
|
||||
if(initialized)
|
||||
{
|
||||
return; // we only allow one time initialization
|
||||
}
|
||||
CvHaarClassifierCascade *cascade = oldCascade;
|
||||
|
||||
if( !CV_IS_HAAR_CLASSIFIER(cascade) )
|
||||
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
|
||||
|
||||
if( scaleFactor <= 1 )
|
||||
CV_Error( CV_StsOutOfRange, "scale factor must be > 1" );
|
||||
|
||||
if( cols < minSize.width || rows < minSize.height )
|
||||
CV_Error(CV_StsError, "Image too small");
|
||||
|
||||
int datasize=0;
|
||||
int totalclassifier=0;
|
||||
|
||||
if( !cascade->hid_cascade )
|
||||
{
|
||||
gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier);
|
||||
}
|
||||
|
||||
if( maxSize.height == 0 || maxSize.width == 0 )
|
||||
{
|
||||
maxSize.height = rows;
|
||||
maxSize.width = cols;
|
||||
}
|
||||
|
||||
findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
|
||||
if( findBiggestObject )
|
||||
flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING);
|
||||
|
||||
CreateBaseBufs(datasize, totalclassifier, flags, outputsz);
|
||||
CreateFactorRelatedBufs(rows, cols, flags, scaleFactor, localThreads, minSize, maxSize);
|
||||
|
||||
m_scaleFactor = scaleFactor;
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
m_flags = flags;
|
||||
m_minSize = minSize;
|
||||
m_maxSize = maxSize;
|
||||
|
||||
// initialize nodes
|
||||
GpuHidHaarClassifierCascade *gcascade;
|
||||
GpuHidHaarStageClassifier *stage;
|
||||
GpuHidHaarClassifier *classifier;
|
||||
GpuHidHaarTreeNode *node;
|
||||
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue());
|
||||
if( (flags & CV_HAAR_SCALE_IMAGE) )
|
||||
{
|
||||
gcascade = (GpuHidHaarClassifierCascade *)(cascade->hid_cascade);
|
||||
stage = (GpuHidHaarStageClassifier *)(gcascade + 1);
|
||||
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
|
||||
node = (GpuHidHaarTreeNode *)(classifier->node);
|
||||
|
||||
gpuSetImagesForHaarClassifierCascade( cascade, 1., gsum.step / 4 );
|
||||
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0,
|
||||
sizeof(GpuHidHaarStageClassifier) * gcascade->count,
|
||||
stage, 0, NULL, NULL));
|
||||
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
|
||||
m_nodenum * sizeof(GpuHidHaarTreeNode),
|
||||
node, 0, NULL, NULL));
|
||||
}
|
||||
else
|
||||
{
|
||||
gpuSetHaarClassifierCascade(cascade);
|
||||
|
||||
gcascade = (GpuHidHaarClassifierCascade *)cascade->hid_cascade;
|
||||
@ -1414,15 +1367,12 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
|
||||
classifier = (GpuHidHaarClassifier *)(stage + gcascade->count);
|
||||
node = (GpuHidHaarTreeNode *)(classifier->node);
|
||||
|
||||
cl_command_queue qu = (cl_command_queue)gsum.clCxt->oclCommandQueue();
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->nodebuffer, 1, 0,
|
||||
m_nodenum * sizeof(GpuHidHaarTreeNode),
|
||||
node, 0, NULL, NULL));
|
||||
m_nodenum * sizeof(GpuHidHaarTreeNode),
|
||||
node, 0, NULL, NULL));
|
||||
|
||||
cl_int4 *p = (cl_int4 *)malloc(sizeof(cl_int4) * m_loopcount);
|
||||
float *correction = (float *)malloc(sizeof(float) * m_loopcount);
|
||||
int startstage = 0;
|
||||
int endstage = gcascade->count;
|
||||
double factor;
|
||||
for(int i = 0; i < m_loopcount; i++)
|
||||
{
|
||||
@ -1448,105 +1398,15 @@ void cv::ocl::OclCascadeClassifierBuf::detectMultiScale(oclMat &gimg, CV_OUT std
|
||||
|
||||
size_t globalThreads2[3] = {m_nodenum, 1, 1};
|
||||
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
|
||||
openCLExecuteKernel(Context::getContext(), &haarobjectdetect_scaled2, "gpuscaleclassifier", globalThreads2, NULL/*localThreads2*/, args1, -1, -1);
|
||||
}
|
||||
|
||||
int step = gsum.step / 4;
|
||||
int startnode = 0;
|
||||
int splitstage = 3;
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->stagebuffer, 1, 0, sizeof(GpuHidHaarStageClassifier)*gcascade->count, stage, 0, NULL, NULL));
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->pbuffer, 1, 0, sizeof(cl_int4)*m_loopcount, p, 0, NULL, NULL));
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->correctionbuffer, 1, 0, sizeof(cl_float)*m_loopcount, correction, 0, NULL, NULL));
|
||||
|
||||
vector<pair<size_t, const void *> > args;
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->stagebuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->scaleinfobuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->newnodebuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsum.data ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&gsqsum.data ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->candidatebuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.rows ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&gsum.cols ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&step ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_loopcount ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startstage ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&splitstage ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&endstage ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&startnode ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->pbuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_mem) , (void *)&((OclBuffers *)buffers)->correctionbuffer ));
|
||||
args.push_back ( make_pair(sizeof(cl_int) , (void *)&m_nodenum ));
|
||||
|
||||
openCLExecuteKernel(gsum.clCxt, &haarobjectdetect_scaled2, "gpuRunHaarClassifierCascade_scaled2", globalThreads, localThreads, args, -1, -1);
|
||||
|
||||
candidate = (int *)clEnqueueMapBuffer(qu, ((OclBuffers *)buffers)->candidatebuffer, 1, CL_MAP_READ, 0, 4 * sizeof(int) * outputsz, 0, 0, 0, NULL);
|
||||
|
||||
for(int i = 0; i < outputsz; i++)
|
||||
{
|
||||
if(candidate[4 * i + 2] != 0)
|
||||
allCandidates.push_back(Rect(candidate[4 * i], candidate[4 * i + 1],
|
||||
candidate[4 * i + 2], candidate[4 * i + 3]));
|
||||
}
|
||||
|
||||
free(p);
|
||||
free(correction);
|
||||
clEnqueueUnmapMemObject(qu, ((OclBuffers *)buffers)->candidatebuffer, candidate, 0, 0, 0);
|
||||
}
|
||||
|
||||
rectList.resize(allCandidates.size());
|
||||
if(!allCandidates.empty())
|
||||
std::copy(allCandidates.begin(), allCandidates.end(), rectList.begin());
|
||||
|
||||
if( minNeighbors != 0 || findBiggestObject )
|
||||
groupRectangles(rectList, rweights, std::max(minNeighbors, 1), GROUP_EPS);
|
||||
else
|
||||
rweights.resize(rectList.size(), 0);
|
||||
|
||||
GenResult(faces, rectList, rweights);
|
||||
}
|
||||
|
||||
void cv::ocl::OclCascadeClassifierBuf::Init(const int rows, const int cols,
|
||||
double scaleFactor, int flags,
|
||||
const int outputsz, const size_t localThreads[],
|
||||
CvSize minSize, CvSize maxSize)
|
||||
{
|
||||
CvHaarClassifierCascade *cascade = oldCascade;
|
||||
|
||||
if( !CV_IS_HAAR_CLASSIFIER(cascade) )
|
||||
CV_Error( !cascade ? CV_StsNullPtr : CV_StsBadArg, "Invalid classifier cascade" );
|
||||
|
||||
if( scaleFactor <= 1 )
|
||||
CV_Error( CV_StsOutOfRange, "scale factor must be > 1" );
|
||||
|
||||
if( cols < minSize.width || rows < minSize.height )
|
||||
CV_Error(CV_StsError, "Image too small");
|
||||
|
||||
int datasize=0;
|
||||
int totalclassifier=0;
|
||||
|
||||
if( !cascade->hid_cascade )
|
||||
gpuCreateHidHaarClassifierCascade(cascade, &datasize, &totalclassifier);
|
||||
|
||||
if( maxSize.height == 0 || maxSize.width == 0 )
|
||||
{
|
||||
maxSize.height = rows;
|
||||
maxSize.width = cols;
|
||||
}
|
||||
|
||||
findBiggestObject = (flags & CV_HAAR_FIND_BIGGEST_OBJECT) != 0;
|
||||
if( findBiggestObject )
|
||||
flags &= ~(CV_HAAR_SCALE_IMAGE | CV_HAAR_DO_CANNY_PRUNING);
|
||||
|
||||
CreateBaseBufs(datasize, totalclassifier, flags, outputsz);
|
||||
CreateFactorRelatedBufs(rows, cols, flags, scaleFactor, localThreads, minSize, maxSize);
|
||||
|
||||
m_scaleFactor = scaleFactor;
|
||||
m_rows = rows;
|
||||
m_cols = cols;
|
||||
m_flags = flags;
|
||||
m_minSize = minSize;
|
||||
m_maxSize = maxSize;
|
||||
|
||||
initialized = true;
|
||||
}
|
||||
|
||||
@ -1645,6 +1505,7 @@ void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs(
|
||||
CvSize sz;
|
||||
CvSize winSize0 = oldCascade->orig_window_size;
|
||||
detect_piramid_info *scaleinfo;
|
||||
cl_command_queue qu = reinterpret_cast<cl_command_queue>(Context::getContext()->oclCommandQueue());
|
||||
if (flags & CV_HAAR_SCALE_IMAGE)
|
||||
{
|
||||
for(factor = 1.f;; factor *= scaleFactor)
|
||||
@ -1746,7 +1607,7 @@ void cv::ocl::OclCascadeClassifierBuf::CreateFactorRelatedBufs(
|
||||
((OclBuffers *)buffers)->scaleinfobuffer = openCLCreateBuffer(cv::ocl::Context::getContext(), CL_MEM_READ_ONLY, sizeof(detect_piramid_info) * loopcount);
|
||||
}
|
||||
|
||||
openCLSafeCall(clEnqueueWriteBuffer((cl_command_queue)cv::ocl::Context::getContext()->oclCommandQueue(), ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0,
|
||||
openCLSafeCall(clEnqueueWriteBuffer(qu, ((OclBuffers *)buffers)->scaleinfobuffer, 1, 0,
|
||||
sizeof(detect_piramid_info)*loopcount,
|
||||
scaleinfo, 0, NULL, NULL));
|
||||
free(scaleinfo);
|
||||
@ -1758,7 +1619,8 @@ void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector<cv::Rect>& f
|
||||
const std::vector<cv::Rect> &rectList,
|
||||
const std::vector<int> &rweights)
|
||||
{
|
||||
CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), cvCreateMemStorage(0) );
|
||||
MemStorage tempStorage(cvCreateMemStorage(0));
|
||||
CvSeq *result_seq = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvAvgComp), tempStorage );
|
||||
|
||||
if( findBiggestObject && rectList.size() )
|
||||
{
|
||||
@ -1794,167 +1656,30 @@ void cv::ocl::OclCascadeClassifierBuf::GenResult(CV_OUT std::vector<cv::Rect>& f
|
||||
|
||||
void cv::ocl::OclCascadeClassifierBuf::release()
|
||||
{
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer));
|
||||
|
||||
if( (m_flags & CV_HAAR_SCALE_IMAGE) )
|
||||
if(initialized)
|
||||
{
|
||||
cvFree(&oldCascade->hid_cascade);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer));
|
||||
}
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->stagebuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->scaleinfobuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->nodebuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->candidatebuffer));
|
||||
|
||||
free(buffers);
|
||||
buffers = NULL;
|
||||
if( (m_flags & CV_HAAR_SCALE_IMAGE) )
|
||||
{
|
||||
cvFree(&oldCascade->hid_cascade);
|
||||
}
|
||||
else
|
||||
{
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->newnodebuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->correctionbuffer));
|
||||
openCLSafeCall(clReleaseMemObject(((OclBuffers *)buffers)->pbuffer));
|
||||
}
|
||||
|
||||
free(buffers);
|
||||
buffers = NULL;
|
||||
initialized = false;
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef _MAX_PATH
|
||||
#define _MAX_PATH 1024
|
||||
#endif
|
||||
|
||||
|
||||
/****************************************************************************************\
|
||||
* Persistence functions *
|
||||
\****************************************************************************************/
|
||||
|
||||
/* field names */
|
||||
|
||||
#define ICV_HAAR_SIZE_NAME "size"
|
||||
#define ICV_HAAR_STAGES_NAME "stages"
|
||||
#define ICV_HAAR_TREES_NAME "trees"
|
||||
#define ICV_HAAR_FEATURE_NAME "feature"
|
||||
#define ICV_HAAR_RECTS_NAME "rects"
|
||||
#define ICV_HAAR_TILTED_NAME "tilted"
|
||||
#define ICV_HAAR_THRESHOLD_NAME "threshold"
|
||||
#define ICV_HAAR_LEFT_NODE_NAME "left_node"
|
||||
#define ICV_HAAR_LEFT_VAL_NAME "left_val"
|
||||
#define ICV_HAAR_RIGHT_NODE_NAME "right_node"
|
||||
#define ICV_HAAR_RIGHT_VAL_NAME "right_val"
|
||||
#define ICV_HAAR_STAGE_THRESHOLD_NAME "stage_threshold"
|
||||
#define ICV_HAAR_PARENT_NAME "parent"
|
||||
#define ICV_HAAR_NEXT_NAME "next"
|
||||
|
||||
static int gpuRunHaarClassifierCascade( /*const CvHaarClassifierCascade *_cascade, CvPoint pt, int start_stage */)
|
||||
{
|
||||
return 1;
|
||||
}
|
||||
|
||||
namespace cv
|
||||
{
|
||||
namespace ocl
|
||||
{
|
||||
|
||||
struct gpuHaarDetectObjects_ScaleImage_Invoker
|
||||
{
|
||||
gpuHaarDetectObjects_ScaleImage_Invoker( const CvHaarClassifierCascade *_cascade,
|
||||
int _stripSize, double _factor,
|
||||
const Mat &_sum1, const Mat &_sqsum1, Mat *_norm1,
|
||||
Mat *_mask1, Rect _equRect, ConcurrentRectVector &_vec )
|
||||
{
|
||||
cascade = _cascade;
|
||||
stripSize = _stripSize;
|
||||
factor = _factor;
|
||||
sum1 = _sum1;
|
||||
sqsum1 = _sqsum1;
|
||||
norm1 = _norm1;
|
||||
mask1 = _mask1;
|
||||
equRect = _equRect;
|
||||
vec = &_vec;
|
||||
}
|
||||
|
||||
void operator()( const BlockedRange &range ) const
|
||||
{
|
||||
Size winSize0 = cascade->orig_window_size;
|
||||
Size winSize(cvRound(winSize0.width * factor), cvRound(winSize0.height * factor));
|
||||
int y1 = range.begin() * stripSize, y2 = min(range.end() * stripSize, sum1.rows - 1 - winSize0.height);
|
||||
Size ssz(sum1.cols - 1 - winSize0.width, y2 - y1);
|
||||
int x, y, ystep = factor > 2 ? 1 : 2;
|
||||
|
||||
for( y = y1; y < y2; y += ystep )
|
||||
for( x = 0; x < ssz.width; x += ystep )
|
||||
{
|
||||
if( gpuRunHaarClassifierCascade( /*cascade, cvPoint(x, y), 0*/ ) > 0 )
|
||||
vec->push_back(Rect(cvRound(x * factor), cvRound(y * factor),
|
||||
winSize.width, winSize.height));
|
||||
}
|
||||
}
|
||||
|
||||
const CvHaarClassifierCascade *cascade;
|
||||
int stripSize;
|
||||
double factor;
|
||||
Mat sum1, sqsum1, *norm1, *mask1;
|
||||
Rect equRect;
|
||||
ConcurrentRectVector *vec;
|
||||
};
|
||||
|
||||
|
||||
struct gpuHaarDetectObjects_ScaleCascade_Invoker
|
||||
{
|
||||
gpuHaarDetectObjects_ScaleCascade_Invoker( const CvHaarClassifierCascade *_cascade,
|
||||
Size _winsize, const Range &_xrange, double _ystep,
|
||||
size_t _sumstep, const int **_p, const int **_pq,
|
||||
ConcurrentRectVector &_vec )
|
||||
{
|
||||
cascade = _cascade;
|
||||
winsize = _winsize;
|
||||
xrange = _xrange;
|
||||
ystep = _ystep;
|
||||
sumstep = _sumstep;
|
||||
p = _p;
|
||||
pq = _pq;
|
||||
vec = &_vec;
|
||||
}
|
||||
|
||||
void operator()( const BlockedRange &range ) const
|
||||
{
|
||||
int iy, startY = range.begin(), endY = range.end();
|
||||
const int *p0 = p[0], *p1 = p[1], *p2 = p[2], *p3 = p[3];
|
||||
const int *pq0 = pq[0], *pq1 = pq[1], *pq2 = pq[2], *pq3 = pq[3];
|
||||
bool doCannyPruning = p0 != 0;
|
||||
int sstep = (int)(sumstep / sizeof(p0[0]));
|
||||
|
||||
for( iy = startY; iy < endY; iy++ )
|
||||
{
|
||||
int ix, y = cvRound(iy * ystep), ixstep = 1;
|
||||
for( ix = xrange.start; ix < xrange.end; ix += ixstep )
|
||||
{
|
||||
int x = cvRound(ix * ystep); // it should really be ystep, not ixstep
|
||||
|
||||
if( doCannyPruning )
|
||||
{
|
||||
int offset = y * sstep + x;
|
||||
int s = p0[offset] - p1[offset] - p2[offset] + p3[offset];
|
||||
int sq = pq0[offset] - pq1[offset] - pq2[offset] + pq3[offset];
|
||||
if( s < 100 || sq < 20 )
|
||||
{
|
||||
ixstep = 2;
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
int result = gpuRunHaarClassifierCascade(/* cascade, cvPoint(x, y), 0 */);
|
||||
if( result > 0 )
|
||||
vec->push_back(Rect(x, y, winsize.width, winsize.height));
|
||||
ixstep = result != 0 ? 1 : 2;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const CvHaarClassifierCascade *cascade;
|
||||
double ystep;
|
||||
size_t sumstep;
|
||||
Size winsize;
|
||||
Range xrange;
|
||||
const int **p;
|
||||
const int **pq;
|
||||
ConcurrentRectVector *vec;
|
||||
};
|
||||
|
||||
}
|
||||
}
|
||||
|
@ -10,6 +10,7 @@
|
||||
// Wang Weiyan, wangweiyanster@gmail.com
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
// Nathan, liujun@multicorewareinc.com
|
||||
// Peng Xiao, pengxiao@outlook.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
@ -45,27 +46,16 @@
|
||||
typedef int sumtype;
|
||||
typedef float sqsumtype;
|
||||
|
||||
typedef struct __attribute__((aligned (128))) GpuHidHaarFeature
|
||||
{
|
||||
struct __attribute__((aligned (32)))
|
||||
{
|
||||
int p0 __attribute__((aligned (4)));
|
||||
int p1 __attribute__((aligned (4)));
|
||||
int p2 __attribute__((aligned (4)));
|
||||
int p3 __attribute__((aligned (4)));
|
||||
float weight __attribute__((aligned (4)));
|
||||
}
|
||||
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned (32)));
|
||||
}
|
||||
GpuHidHaarFeature;
|
||||
|
||||
#ifndef STUMP_BASED
|
||||
#define STUMP_BASED 1
|
||||
#endif
|
||||
|
||||
typedef struct __attribute__((aligned (128) )) GpuHidHaarTreeNode
|
||||
{
|
||||
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned (64)));
|
||||
float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/;
|
||||
float threshold /*__attribute__((aligned (4)))*/;
|
||||
float alpha[2] __attribute__((aligned (8)));
|
||||
float weight[CV_HAAR_FEATURE_MAX];
|
||||
float threshold;
|
||||
float alpha[3] __attribute__((aligned (16)));
|
||||
int left __attribute__((aligned (4)));
|
||||
int right __attribute__((aligned (4)));
|
||||
}
|
||||
@ -111,7 +101,6 @@ typedef struct __attribute__((aligned (64))) GpuHidHaarClassifierCascade
|
||||
float inv_window_area __attribute__((aligned (4)));
|
||||
} GpuHidHaarClassifierCascade;
|
||||
|
||||
|
||||
__kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCascade(
|
||||
global GpuHidHaarStageClassifier * stagecascadeptr,
|
||||
global int4 * info,
|
||||
@ -234,7 +223,7 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
float stage_sum = 0.f;
|
||||
int2 stageinfo = *(global int2*)(stagecascadeptr+stageloop);
|
||||
float stagethreshold = as_float(stageinfo.y);
|
||||
for(int nodeloop = 0; nodeloop < stageinfo.x; nodeloop++ )
|
||||
for(int nodeloop = 0; nodeloop < stageinfo.x; )
|
||||
{
|
||||
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter);
|
||||
|
||||
@ -242,7 +231,8 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||||
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
|
||||
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
|
||||
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
|
||||
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
|
||||
|
||||
float nodethreshold = w.w * variance_norm_factor;
|
||||
|
||||
info1.x +=lcl_off;
|
||||
@ -261,8 +251,34 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
||||
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
||||
|
||||
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
||||
bool passThres = classsum >= nodethreshold;
|
||||
#if STUMP_BASED
|
||||
stage_sum += passThres ? alpha3.y : alpha3.x;
|
||||
nodecounter++;
|
||||
nodeloop++;
|
||||
#else
|
||||
bool isRootNode = (nodecounter & 1) == 0;
|
||||
if(isRootNode)
|
||||
{
|
||||
if( (passThres && currentnodeptr->right) ||
|
||||
(!passThres && currentnodeptr->left))
|
||||
{
|
||||
nodecounter ++;
|
||||
}
|
||||
else
|
||||
{
|
||||
stage_sum += alpha3.x;
|
||||
nodecounter += 2;
|
||||
nodeloop ++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
stage_sum += passThres ? alpha3.z : alpha3.y;
|
||||
nodecounter ++;
|
||||
nodeloop ++;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
result = (stage_sum >= stagethreshold);
|
||||
@ -301,18 +317,20 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
|
||||
if(lcl_compute_win_id < queuecount)
|
||||
{
|
||||
|
||||
int tempnodecounter = lcl_compute_id;
|
||||
float part_sum = 0.f;
|
||||
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x; lcl_loop++)
|
||||
const int stump_factor = STUMP_BASED ? 1 : 2;
|
||||
int root_offset = 0;
|
||||
for(int lcl_loop=0; lcl_loop<lcl_loops && tempnodecounter<stageinfo.x;)
|
||||
{
|
||||
__global GpuHidHaarTreeNode* currentnodeptr = (nodeptr + nodecounter + tempnodecounter);
|
||||
__global GpuHidHaarTreeNode* currentnodeptr =
|
||||
nodeptr + (nodecounter + tempnodecounter) * stump_factor + root_offset;
|
||||
|
||||
int4 info1 = *(__global int4*)(&(currentnodeptr->p[0][0]));
|
||||
int4 info2 = *(__global int4*)(&(currentnodeptr->p[1][0]));
|
||||
int4 info3 = *(__global int4*)(&(currentnodeptr->p[2][0]));
|
||||
float4 w = *(__global float4*)(&(currentnodeptr->weight[0]));
|
||||
float2 alpha2 = *(__global float2*)(&(currentnodeptr->alpha[0]));
|
||||
float3 alpha3 = *(__global float3*)(&(currentnodeptr->alpha[0]));
|
||||
float nodethreshold = w.w * variance_norm_factor;
|
||||
|
||||
info1.x +=queue_pixel;
|
||||
@ -332,8 +350,34 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
classsum += (lcldata[mad24(info3.y,readwidth,info3.x)] - lcldata[mad24(info3.y,readwidth,info3.z)] -
|
||||
lcldata[mad24(info3.w,readwidth,info3.x)] + lcldata[mad24(info3.w,readwidth,info3.z)]) * w.z;
|
||||
|
||||
part_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
||||
tempnodecounter +=lcl_compute_win;
|
||||
bool passThres = classsum >= nodethreshold;
|
||||
#if STUMP_BASED
|
||||
part_sum += passThres ? alpha3.y : alpha3.x;
|
||||
tempnodecounter += lcl_compute_win;
|
||||
lcl_loop++;
|
||||
#else
|
||||
if(root_offset == 0)
|
||||
{
|
||||
if( (passThres && currentnodeptr->right) ||
|
||||
(!passThres && currentnodeptr->left))
|
||||
{
|
||||
root_offset = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
part_sum += alpha3.x;
|
||||
tempnodecounter += lcl_compute_win;
|
||||
lcl_loop++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
part_sum += passThres ? alpha3.z : alpha3.y;
|
||||
tempnodecounter += lcl_compute_win;
|
||||
lcl_loop++;
|
||||
root_offset = 0;
|
||||
}
|
||||
#endif
|
||||
}//end for(int lcl_loop=0;lcl_loop<lcl_loops;lcl_loop++)
|
||||
partialsum[lcl_id]=part_sum;
|
||||
}
|
||||
@ -379,157 +423,3 @@ __kernel void __attribute__((reqd_work_group_size(8,8,1)))gpuRunHaarClassifierCa
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
/*
|
||||
if(stagecascade->two_rects)
|
||||
{
|
||||
#pragma unroll
|
||||
for( n = 0; n < stagecascade->count; n++ )
|
||||
{
|
||||
t1 = *(node + counter);
|
||||
t = t1.threshold * variance_norm_factor;
|
||||
classsum = calc_sum1(t1,p_offset,0) * t1.weight[0];
|
||||
|
||||
classsum += calc_sum1(t1, p_offset,1) * t1.weight[1];
|
||||
stage_sum += classsum >= t ? t1.alpha[1]:t1.alpha[0];
|
||||
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
#pragma unroll
|
||||
for( n = 0; n < stagecascade->count; n++ )
|
||||
{
|
||||
t = node[counter].threshold*variance_norm_factor;
|
||||
classsum = calc_sum1(node[counter],p_offset,0) * node[counter].weight[0];
|
||||
classsum += calc_sum1(node[counter],p_offset,1) * node[counter].weight[1];
|
||||
|
||||
if( node[counter].p0[2] )
|
||||
classsum += calc_sum1(node[counter],p_offset,2) * node[counter].weight[2];
|
||||
|
||||
stage_sum += classsum >= t ? node[counter].alpha[1]:node[counter].alpha[0];// modify
|
||||
|
||||
counter++;
|
||||
}
|
||||
}
|
||||
*/
|
||||
/*
|
||||
__kernel void gpuRunHaarClassifierCascade_ScaleWindow(
|
||||
constant GpuHidHaarClassifierCascade * _cascade,
|
||||
global GpuHidHaarStageClassifier * stagecascadeptr,
|
||||
//global GpuHidHaarClassifier * classifierptr,
|
||||
global GpuHidHaarTreeNode * nodeptr,
|
||||
global int * sum,
|
||||
global float * sqsum,
|
||||
global int * _candidate,
|
||||
int pixel_step,
|
||||
int cols,
|
||||
int rows,
|
||||
int start_stage,
|
||||
int end_stage,
|
||||
//int counts,
|
||||
int nodenum,
|
||||
int ystep,
|
||||
int detect_width,
|
||||
//int detect_height,
|
||||
int loopcount,
|
||||
int outputstep)
|
||||
//float scalefactor)
|
||||
{
|
||||
unsigned int x1 = get_global_id(0);
|
||||
unsigned int y1 = get_global_id(1);
|
||||
int p_offset;
|
||||
int m, n;
|
||||
int result;
|
||||
int counter;
|
||||
float mean, variance_norm_factor;
|
||||
for(int i=0;i<loopcount;i++)
|
||||
{
|
||||
constant GpuHidHaarClassifierCascade * cascade = _cascade + i;
|
||||
global int * candidate = _candidate + i*outputstep;
|
||||
int window_width = cascade->p1 - cascade->p0;
|
||||
int window_height = window_width;
|
||||
result = 1;
|
||||
counter = 0;
|
||||
unsigned int x = mul24(x1,ystep);
|
||||
unsigned int y = mul24(y1,ystep);
|
||||
if((x < cols - window_width - 1) && (y < rows - window_height -1))
|
||||
{
|
||||
global GpuHidHaarStageClassifier *stagecascade = stagecascadeptr +cascade->count*i+ start_stage;
|
||||
//global GpuHidHaarClassifier *classifier = classifierptr;
|
||||
global GpuHidHaarTreeNode *node = nodeptr + nodenum*i;
|
||||
|
||||
p_offset = mad24(y, pixel_step, x);// modify
|
||||
|
||||
mean = (*(sum + p_offset + (int)cascade->p0) - *(sum + p_offset + (int)cascade->p1) -
|
||||
*(sum + p_offset + (int)cascade->p2) + *(sum + p_offset + (int)cascade->p3))
|
||||
*cascade->inv_window_area;
|
||||
|
||||
variance_norm_factor = *(sqsum + p_offset + cascade->p0) - *(sqsum + cascade->p1 + p_offset) -
|
||||
*(sqsum + p_offset + cascade->p2) + *(sqsum + cascade->p3 + p_offset);
|
||||
variance_norm_factor = variance_norm_factor * cascade->inv_window_area - mean * mean;
|
||||
variance_norm_factor = variance_norm_factor >=0.f ? sqrt(variance_norm_factor) : 1;//modify
|
||||
|
||||
// if( cascade->is_stump_based )
|
||||
//{
|
||||
for( m = start_stage; m < end_stage; m++ )
|
||||
{
|
||||
float stage_sum = 0.f;
|
||||
float t, classsum;
|
||||
GpuHidHaarTreeNode t1;
|
||||
|
||||
//#pragma unroll
|
||||
for( n = 0; n < stagecascade->count; n++ )
|
||||
{
|
||||
t1 = *(node + counter);
|
||||
t = t1.threshold * variance_norm_factor;
|
||||
classsum = calc_sum1(t1, p_offset ,0) * t1.weight[0] + calc_sum1(t1, p_offset ,1) * t1.weight[1];
|
||||
|
||||
if((t1.p0[2]) && (!stagecascade->two_rects))
|
||||
classsum += calc_sum1(t1, p_offset, 2) * t1.weight[2];
|
||||
|
||||
stage_sum += classsum >= t ? t1.alpha[1] : t1.alpha[0];// modify
|
||||
counter++;
|
||||
}
|
||||
|
||||
if (stage_sum < stagecascade->threshold)
|
||||
{
|
||||
result = 0;
|
||||
break;
|
||||
}
|
||||
|
||||
stagecascade++;
|
||||
|
||||
}
|
||||
if(result)
|
||||
{
|
||||
candidate[4 * (y1 * detect_width + x1)] = x;
|
||||
candidate[4 * (y1 * detect_width + x1) + 1] = y;
|
||||
candidate[4 * (y1 * detect_width + x1)+2] = window_width;
|
||||
candidate[4 * (y1 * detect_width + x1) + 3] = window_height;
|
||||
}
|
||||
//}
|
||||
}
|
||||
}
|
||||
}
|
||||
*/
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -17,7 +17,7 @@
|
||||
// @Authors
|
||||
// Wu Xinglong, wxl370@126.com
|
||||
// Sen Liu, swjtuls1987@126.com
|
||||
//
|
||||
// Peng Xiao, pengxiao@outlook.com
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
@ -49,25 +49,13 @@
|
||||
#define CV_HAAR_FEATURE_MAX 3
|
||||
typedef int sumtype;
|
||||
typedef float sqsumtype;
|
||||
typedef struct __attribute__((aligned(128))) GpuHidHaarFeature
|
||||
{
|
||||
struct __attribute__((aligned(32)))
|
||||
{
|
||||
int p0 __attribute__((aligned(4)));
|
||||
int p1 __attribute__((aligned(4)));
|
||||
int p2 __attribute__((aligned(4)));
|
||||
int p3 __attribute__((aligned(4)));
|
||||
float weight __attribute__((aligned(4)));
|
||||
}
|
||||
rect[CV_HAAR_FEATURE_MAX] __attribute__((aligned(32)));
|
||||
}
|
||||
GpuHidHaarFeature;
|
||||
|
||||
typedef struct __attribute__((aligned(128))) GpuHidHaarTreeNode
|
||||
{
|
||||
int p[CV_HAAR_FEATURE_MAX][4] __attribute__((aligned(64)));
|
||||
float weight[CV_HAAR_FEATURE_MAX] /*__attribute__((aligned (16)))*/;
|
||||
float threshold /*__attribute__((aligned (4)))*/;
|
||||
float alpha[2] __attribute__((aligned(8)));
|
||||
float alpha[3] __attribute__((aligned(16)));
|
||||
int left __attribute__((aligned(4)));
|
||||
int right __attribute__((aligned(4)));
|
||||
}
|
||||
@ -174,45 +162,83 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
|
||||
const int p_offset = mad24(y, step, x);
|
||||
cascadeinfo.x += p_offset;
|
||||
cascadeinfo.z += p_offset;
|
||||
mean = (sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)] - sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] -
|
||||
sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)] + sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)])
|
||||
mean = (sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)]
|
||||
- sum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] -
|
||||
sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)]
|
||||
+ sum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)])
|
||||
* correction_t;
|
||||
variance_norm_factor = sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)] - sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] -
|
||||
sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)] + sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)];
|
||||
variance_norm_factor = sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.x), 0, max_idx)]
|
||||
- sqsum[clamp(mad24(cascadeinfo.y, step, cascadeinfo.z), 0, max_idx)] -
|
||||
sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.x), 0, max_idx)]
|
||||
+ sqsum[clamp(mad24(cascadeinfo.w, step, cascadeinfo.z), 0, max_idx)];
|
||||
variance_norm_factor = variance_norm_factor * correction_t - mean * mean;
|
||||
variance_norm_factor = variance_norm_factor >= 0.f ? sqrt(variance_norm_factor) : 1.f;
|
||||
bool result = true;
|
||||
nodecounter = startnode + nodecount * scalei;
|
||||
|
||||
for (int stageloop = start_stage; (stageloop < end_stage) && result; stageloop++)
|
||||
{
|
||||
float stage_sum = 0.f;
|
||||
int stagecount = stagecascadeptr[stageloop].count;
|
||||
for (int nodeloop = 0; nodeloop < stagecount; nodeloop++)
|
||||
for (int nodeloop = 0; nodeloop < stagecount;)
|
||||
{
|
||||
__global GpuHidHaarTreeNode *currentnodeptr = (nodeptr + nodecounter);
|
||||
int4 info1 = *(__global int4 *)(&(currentnodeptr->p[0][0]));
|
||||
int4 info2 = *(__global int4 *)(&(currentnodeptr->p[1][0]));
|
||||
int4 info3 = *(__global int4 *)(&(currentnodeptr->p[2][0]));
|
||||
float4 w = *(__global float4 *)(&(currentnodeptr->weight[0]));
|
||||
float2 alpha2 = *(__global float2 *)(&(currentnodeptr->alpha[0]));
|
||||
float3 alpha3 = *(__global float3 *)(&(currentnodeptr->alpha[0]));
|
||||
float nodethreshold = w.w * variance_norm_factor;
|
||||
|
||||
info1.x += p_offset;
|
||||
info1.z += p_offset;
|
||||
info2.x += p_offset;
|
||||
info2.z += p_offset;
|
||||
float classsum = (sum[clamp(mad24(info1.y, step, info1.x), 0, max_idx)] - sum[clamp(mad24(info1.y, step, info1.z), 0, max_idx)] -
|
||||
sum[clamp(mad24(info1.w, step, info1.x), 0, max_idx)] + sum[clamp(mad24(info1.w, step, info1.z), 0, max_idx)]) * w.x;
|
||||
classsum += (sum[clamp(mad24(info2.y, step, info2.x), 0, max_idx)] - sum[clamp(mad24(info2.y, step, info2.z), 0, max_idx)] -
|
||||
sum[clamp(mad24(info2.w, step, info2.x), 0, max_idx)] + sum[clamp(mad24(info2.w, step, info2.z), 0, max_idx)]) * w.y;
|
||||
info3.x += p_offset;
|
||||
info3.z += p_offset;
|
||||
classsum += (sum[clamp(mad24(info3.y, step, info3.x), 0, max_idx)] - sum[clamp(mad24(info3.y, step, info3.z), 0, max_idx)] -
|
||||
sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)] + sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z;
|
||||
stage_sum += classsum >= nodethreshold ? alpha2.y : alpha2.x;
|
||||
float classsum = (sum[clamp(mad24(info1.y, step, info1.x), 0, max_idx)]
|
||||
- sum[clamp(mad24(info1.y, step, info1.z), 0, max_idx)] -
|
||||
sum[clamp(mad24(info1.w, step, info1.x), 0, max_idx)]
|
||||
+ sum[clamp(mad24(info1.w, step, info1.z), 0, max_idx)]) * w.x;
|
||||
classsum += (sum[clamp(mad24(info2.y, step, info2.x), 0, max_idx)]
|
||||
- sum[clamp(mad24(info2.y, step, info2.z), 0, max_idx)] -
|
||||
sum[clamp(mad24(info2.w, step, info2.x), 0, max_idx)]
|
||||
+ sum[clamp(mad24(info2.w, step, info2.z), 0, max_idx)]) * w.y;
|
||||
classsum += (sum[clamp(mad24(info3.y, step, info3.x), 0, max_idx)]
|
||||
- sum[clamp(mad24(info3.y, step, info3.z), 0, max_idx)] -
|
||||
sum[clamp(mad24(info3.w, step, info3.x), 0, max_idx)]
|
||||
+ sum[clamp(mad24(info3.w, step, info3.z), 0, max_idx)]) * w.z;
|
||||
|
||||
bool passThres = classsum >= nodethreshold;
|
||||
|
||||
#if STUMP_BASED
|
||||
stage_sum += passThres ? alpha3.y : alpha3.x;
|
||||
nodecounter++;
|
||||
nodeloop++;
|
||||
#else
|
||||
bool isRootNode = (nodecounter & 1) == 0;
|
||||
if(isRootNode)
|
||||
{
|
||||
if( (passThres && currentnodeptr->right) ||
|
||||
(!passThres && currentnodeptr->left))
|
||||
{
|
||||
nodecounter ++;
|
||||
}
|
||||
else
|
||||
{
|
||||
stage_sum += alpha3.x;
|
||||
nodecounter += 2;
|
||||
nodeloop ++;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
stage_sum += (passThres ? alpha3.z : alpha3.y);
|
||||
nodecounter ++;
|
||||
nodeloop ++;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
result = (bool)(stage_sum >= stagecascadeptr[stageloop].threshold);
|
||||
result = (int)(stage_sum >= stagecascadeptr[stageloop].threshold);
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
@ -222,7 +248,6 @@ __kernel void gpuRunHaarClassifierCascade_scaled2(
|
||||
int queueindex = atomic_inc(lclcount);
|
||||
lcloutindex[queueindex] = (y << 16) | x;
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
int queuecount = lclcount[0];
|
||||
|
||||
@ -277,5 +302,6 @@ __kernel void gpuscaleclassifier(global GpuHidHaarTreeNode *orinode, global GpuH
|
||||
newnode[counter].threshold = t1.threshold;
|
||||
newnode[counter].alpha[0] = t1.alpha[0];
|
||||
newnode[counter].alpha[1] = t1.alpha[1];
|
||||
newnode[counter].alpha[2] = t1.alpha[2];
|
||||
}
|
||||
|
||||
|
@ -55,6 +55,12 @@ using namespace testing;
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
extern string workdir;
|
||||
|
||||
namespace
|
||||
{
|
||||
IMPLEMENT_PARAM_CLASS(CascadeName, std::string);
|
||||
CascadeName cascade_frontalface_alt(std::string("haarcascade_frontalface_alt.xml"));
|
||||
CascadeName cascade_frontalface_alt2(std::string("haarcascade_frontalface_alt2.xml"));
|
||||
struct getRect
|
||||
{
|
||||
Rect operator ()(const CvAvgComp &e) const
|
||||
@ -62,23 +68,24 @@ struct getRect
|
||||
return e.rect;
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
PARAM_TEST_CASE(Haar, double, int)
|
||||
PARAM_TEST_CASE(Haar, double, int, CascadeName)
|
||||
{
|
||||
cv::ocl::OclCascadeClassifier cascade, nestedCascade;
|
||||
cv::ocl::OclCascadeClassifierBuf cascadebuf;
|
||||
cv::CascadeClassifier cpucascade, cpunestedCascade;
|
||||
|
||||
double scale;
|
||||
int flags;
|
||||
std::string cascadeName;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
scale = GET_PARAM(0);
|
||||
flags = GET_PARAM(1);
|
||||
string cascadeName = workdir + "../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
||||
cascadeName = (workdir + "../../data/haarcascades/").append(GET_PARAM(2));
|
||||
|
||||
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)) || (!cascadebuf.load( cascadeName )))
|
||||
if( (!cascade.load( cascadeName )) || (!cpucascade.load(cascadeName)) )
|
||||
{
|
||||
cout << "ERROR: Could not load classifier cascade" << endl;
|
||||
return;
|
||||
@ -115,7 +122,7 @@ TEST_P(Haar, FaceDetect)
|
||||
Seq<CvAvgComp>(_objects).copyTo(vecAvgComp);
|
||||
oclfaces.resize(vecAvgComp.size());
|
||||
std::transform(vecAvgComp.begin(), vecAvgComp.end(), oclfaces.begin(), getRect());
|
||||
|
||||
|
||||
cpucascade.detectMultiScale( smallImg, faces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0) );
|
||||
@ -136,7 +143,6 @@ TEST_P(Haar, FaceDetectUseBuf)
|
||||
vector<Rect> faces, oclfaces;
|
||||
|
||||
Mat gray, smallImg(cvRound (img.rows / scale), cvRound(img.cols / scale), CV_8UC1 );
|
||||
MemStorage storage(cvCreateMemStorage(0));
|
||||
cvtColor( img, gray, CV_BGR2GRAY );
|
||||
resize( gray, smallImg, smallImg.size(), 0, 0, INTER_LINEAR );
|
||||
equalizeHist( smallImg, smallImg );
|
||||
@ -144,19 +150,31 @@ TEST_P(Haar, FaceDetectUseBuf)
|
||||
cv::ocl::oclMat image;
|
||||
image.upload(smallImg);
|
||||
|
||||
cv::ocl::OclCascadeClassifierBuf cascadebuf;
|
||||
if( !cascadebuf.load( cascadeName ) )
|
||||
{
|
||||
cout << "ERROR: Could not load classifier cascade for FaceDetectUseBuf!" << endl;
|
||||
return;
|
||||
}
|
||||
cascadebuf.detectMultiScale( image, oclfaces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0) );
|
||||
cascadebuf.release();
|
||||
|
||||
cpucascade.detectMultiScale( smallImg, faces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30), Size(0, 0) );
|
||||
EXPECT_EQ(faces.size(), oclfaces.size());
|
||||
|
||||
// intentionally run ocl facedetect again and check if it still works after the first run
|
||||
cascadebuf.detectMultiScale( image, oclfaces, 1.1, 3,
|
||||
flags,
|
||||
Size(30, 30));
|
||||
cascadebuf.release();
|
||||
EXPECT_EQ(faces.size(), oclfaces.size());
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(FaceDetect, Haar,
|
||||
Combine(Values(1.0),
|
||||
Values(CV_HAAR_SCALE_IMAGE, 0)));
|
||||
Values(CV_HAAR_SCALE_IMAGE, 0), Values(cascade_frontalface_alt, cascade_frontalface_alt2)));
|
||||
|
||||
#endif // HAVE_OPENCL
|
||||
|
Loading…
Reference in New Issue
Block a user