mirror of
https://github.com/opencv/opencv.git
synced 2025-06-11 20:09:23 +08:00
Merge pull request #11873 from catree:add_tutorial_features2d_java_python2
This commit is contained in:
commit
c52b4cf450
@ -7,8 +7,7 @@ Introduction
|
||||
In this tutorial we will learn how to use AKAZE @cite ANB13 local features to detect and match keypoints on
|
||||
two images.
|
||||
We will find keypoints on a pair of images with given homography matrix, match them and count the
|
||||
|
||||
number of inliers (i. e. matches that fit in the given homography).
|
||||
number of inliers (i.e. matches that fit in the given homography).
|
||||
|
||||
You can find expanded version of this example here:
|
||||
<https://github.com/pablofdezalc/test_kaze_akaze_opencv>
|
||||
@ -16,7 +15,7 @@ You can find expanded version of this example here:
|
||||
Data
|
||||
----
|
||||
|
||||
We are going to use images 1 and 3 from *Graffity* sequence of Oxford dataset.
|
||||
We are going to use images 1 and 3 from *Graffiti* sequence of [Oxford dataset](http://www.robots.ox.ac.uk/~vgg/data/data-aff.html).
|
||||
|
||||

|
||||
|
||||
@ -27,107 +26,148 @@ Homography is given by a 3 by 3 matrix:
|
||||
3.4663091e-04 -1.4364524e-05 1.0000000e+00
|
||||
@endcode
|
||||
You can find the images (*graf1.png*, *graf3.png*) and homography (*H1to3p.xml*) in
|
||||
*opencv/samples/cpp*.
|
||||
*opencv/samples/data/*.
|
||||
|
||||
### Source Code
|
||||
|
||||
@include cpp/tutorial_code/features2D/AKAZE_match.cpp
|
||||
@add_toggle_cpp
|
||||
- **Downloadable code**: Click
|
||||
[here](https://raw.githubusercontent.com/opencv/opencv/3.4/samples/cpp/tutorial_code/features2D/AKAZE_match.cpp)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/cpp/tutorial_code/features2D/AKAZE_match.cpp
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
- **Downloadable code**: Click
|
||||
[here](https://raw.githubusercontent.com/opencv/opencv/3.4/samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
- **Downloadable code**: Click
|
||||
[here](https://raw.githubusercontent.com/opencv/opencv/3.4/samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py)
|
||||
|
||||
- **Code at glance:**
|
||||
@include samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py
|
||||
@end_toggle
|
||||
|
||||
### Explanation
|
||||
|
||||
-# **Load images and homography**
|
||||
@code{.cpp}
|
||||
Mat img1 = imread("graf1.png", IMREAD_GRAYSCALE);
|
||||
Mat img2 = imread("graf3.png", IMREAD_GRAYSCALE);
|
||||
- **Load images and homography**
|
||||
|
||||
Mat homography;
|
||||
FileStorage fs("H1to3p.xml", FileStorage::READ);
|
||||
fs.getFirstTopLevelNode() >> homography;
|
||||
@endcode
|
||||
We are loading grayscale images here. Homography is stored in the xml created with FileStorage.
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/features2D/AKAZE_match.cpp load
|
||||
@end_toggle
|
||||
|
||||
-# **Detect keypoints and compute descriptors using AKAZE**
|
||||
@code{.cpp}
|
||||
vector<KeyPoint> kpts1, kpts2;
|
||||
Mat desc1, desc2;
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java load
|
||||
@end_toggle
|
||||
|
||||
AKAZE akaze;
|
||||
akaze(img1, noArray(), kpts1, desc1);
|
||||
akaze(img2, noArray(), kpts2, desc2);
|
||||
@endcode
|
||||
We create AKAZE object and use it's *operator()* functionality. Since we don't need the *mask*
|
||||
parameter, *noArray()* is used.
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py load
|
||||
@end_toggle
|
||||
|
||||
-# **Use brute-force matcher to find 2-nn matches**
|
||||
@code{.cpp}
|
||||
BFMatcher matcher(NORM_HAMMING);
|
||||
vector< vector<DMatch> > nn_matches;
|
||||
matcher.knnMatch(desc1, desc2, nn_matches, 2);
|
||||
@endcode
|
||||
We use Hamming distance, because AKAZE uses binary descriptor by default.
|
||||
We are loading grayscale images here. Homography is stored in the xml created with FileStorage.
|
||||
|
||||
-# **Use 2-nn matches to find correct keypoint matches**
|
||||
@code{.cpp}
|
||||
for(size_t i = 0; i < nn_matches.size(); i++) {
|
||||
DMatch first = nn_matches[i][0];
|
||||
float dist1 = nn_matches[i][0].distance;
|
||||
float dist2 = nn_matches[i][1].distance;
|
||||
- **Detect keypoints and compute descriptors using AKAZE**
|
||||
|
||||
if(dist1 < nn_match_ratio * dist2) {
|
||||
matched1.push_back(kpts1[first.queryIdx]);
|
||||
matched2.push_back(kpts2[first.trainIdx]);
|
||||
}
|
||||
}
|
||||
@endcode
|
||||
If the closest match is *ratio* closer than the second closest one, then the match is correct.
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/features2D/AKAZE_match.cpp AKAZE
|
||||
@end_toggle
|
||||
|
||||
-# **Check if our matches fit in the homography model**
|
||||
@code{.cpp}
|
||||
for(int i = 0; i < matched1.size(); i++) {
|
||||
Mat col = Mat::ones(3, 1, CV_64F);
|
||||
col.at<double>(0) = matched1[i].pt.x;
|
||||
col.at<double>(1) = matched1[i].pt.y;
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java AKAZE
|
||||
@end_toggle
|
||||
|
||||
col = homography * col;
|
||||
col /= col.at<double>(2);
|
||||
float dist = sqrt( pow(col.at<double>(0) - matched2[i].pt.x, 2) +
|
||||
pow(col.at<double>(1) - matched2[i].pt.y, 2));
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py AKAZE
|
||||
@end_toggle
|
||||
|
||||
if(dist < inlier_threshold) {
|
||||
int new_i = inliers1.size();
|
||||
inliers1.push_back(matched1[i]);
|
||||
inliers2.push_back(matched2[i]);
|
||||
good_matches.push_back(DMatch(new_i, new_i, 0));
|
||||
}
|
||||
}
|
||||
@endcode
|
||||
If the distance from first keypoint's projection to the second keypoint is less than threshold,
|
||||
then it it fits in the homography.
|
||||
We create AKAZE and detect and compute AKAZE keypoints and descriptors. Since we don't need the *mask*
|
||||
parameter, *noArray()* is used.
|
||||
|
||||
We create a new set of matches for the inliers, because it is required by the drawing function.
|
||||
- **Use brute-force matcher to find 2-nn matches**
|
||||
|
||||
-# **Output results**
|
||||
@code{.cpp}
|
||||
Mat res;
|
||||
drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
|
||||
imwrite("res.png", res);
|
||||
...
|
||||
@endcode
|
||||
Here we save the resulting image and print some statistics.
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/features2D/AKAZE_match.cpp 2-nn matching
|
||||
@end_toggle
|
||||
|
||||
### Results
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java 2-nn matching
|
||||
@end_toggle
|
||||
|
||||
Found matches
|
||||
-------------
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py 2-nn matching
|
||||
@end_toggle
|
||||
|
||||
We use Hamming distance, because AKAZE uses binary descriptor by default.
|
||||
|
||||
- **Use 2-nn matches and ratio criterion to find correct keypoint matches**
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/features2D/AKAZE_match.cpp ratio test filtering
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java ratio test filtering
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py ratio test filtering
|
||||
@end_toggle
|
||||
|
||||
If the closest match distance is significantly lower than the second closest one, then the match is correct (match is not ambiguous).
|
||||
|
||||
- **Check if our matches fit in the homography model**
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/features2D/AKAZE_match.cpp homography check
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java homography check
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py homography check
|
||||
@end_toggle
|
||||
|
||||
If the distance from first keypoint's projection to the second keypoint is less than threshold,
|
||||
then it fits the homography model.
|
||||
|
||||
We create a new set of matches for the inliers, because it is required by the drawing function.
|
||||
|
||||
- **Output results**
|
||||
|
||||
@add_toggle_cpp
|
||||
@snippet samples/cpp/tutorial_code/features2D/AKAZE_match.cpp draw final matches
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_java
|
||||
@snippet samples/java/tutorial_code/features2D/akaze_matching/AKAZEMatchDemo.java draw final matches
|
||||
@end_toggle
|
||||
|
||||
@add_toggle_python
|
||||
@snippet samples/python/tutorial_code/features2D/akaze_matching/AKAZE_match.py draw final matches
|
||||
@end_toggle
|
||||
|
||||
Here we save the resulting image and print some statistics.
|
||||
|
||||
Results
|
||||
-------
|
||||
|
||||
### Found matches
|
||||
|
||||

|
||||
|
||||
A-KAZE Matching Results
|
||||
-----------------------
|
||||
Depending on your OpenCV version, you should get results coherent with:
|
||||
|
||||
@code{.none}
|
||||
Keypoints 1: 2943
|
||||
Keypoints 2: 3511
|
||||
Matches: 447
|
||||
Inliers: 308
|
||||
Inlier Ratio: 0.689038}
|
||||
Inlier Ratio: 0.689038
|
||||
@endcode
|
||||
|
@ -98,6 +98,8 @@ OpenCV.
|
||||
|
||||
- @subpage tutorial_akaze_matching
|
||||
|
||||
*Languages:* C++, Java, Python
|
||||
|
||||
*Compatibility:* \> OpenCV 3.0
|
||||
|
||||
*Author:* Fedor Morozov
|
||||
|
@ -6,11 +6,12 @@
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
const float inlier_threshold = 2.5f; // Distance threshold to identify inliers
|
||||
const float inlier_threshold = 2.5f; // Distance threshold to identify inliers with homography check
|
||||
const float nn_match_ratio = 0.8f; // Nearest neighbor matching ratio
|
||||
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
//! [load]
|
||||
CommandLineParser parser(argc, argv,
|
||||
"{@img1 | ../data/graf1.png | input image 1}"
|
||||
"{@img2 | ../data/graf3.png | input image 2}"
|
||||
@ -21,20 +22,25 @@ int main(int argc, char* argv[])
|
||||
Mat homography;
|
||||
FileStorage fs(parser.get<String>("@homography"), FileStorage::READ);
|
||||
fs.getFirstTopLevelNode() >> homography;
|
||||
//! [load]
|
||||
|
||||
//! [AKAZE]
|
||||
vector<KeyPoint> kpts1, kpts2;
|
||||
Mat desc1, desc2;
|
||||
|
||||
Ptr<AKAZE> akaze = AKAZE::create();
|
||||
akaze->detectAndCompute(img1, noArray(), kpts1, desc1);
|
||||
akaze->detectAndCompute(img2, noArray(), kpts2, desc2);
|
||||
//! [AKAZE]
|
||||
|
||||
//! [2-nn matching]
|
||||
BFMatcher matcher(NORM_HAMMING);
|
||||
vector< vector<DMatch> > nn_matches;
|
||||
matcher.knnMatch(desc1, desc2, nn_matches, 2);
|
||||
//! [2-nn matching]
|
||||
|
||||
vector<KeyPoint> matched1, matched2, inliers1, inliers2;
|
||||
vector<DMatch> good_matches;
|
||||
//! [ratio test filtering]
|
||||
vector<KeyPoint> matched1, matched2;
|
||||
for(size_t i = 0; i < nn_matches.size(); i++) {
|
||||
DMatch first = nn_matches[i][0];
|
||||
float dist1 = nn_matches[i][0].distance;
|
||||
@ -45,8 +51,12 @@ int main(int argc, char* argv[])
|
||||
matched2.push_back(kpts2[first.trainIdx]);
|
||||
}
|
||||
}
|
||||
//! [ratio test filtering]
|
||||
|
||||
for(unsigned i = 0; i < matched1.size(); i++) {
|
||||
//! [homography check]
|
||||
vector<DMatch> good_matches;
|
||||
vector<KeyPoint> inliers1, inliers2;
|
||||
for(size_t i = 0; i < matched1.size(); i++) {
|
||||
Mat col = Mat::ones(3, 1, CV_64F);
|
||||
col.at<double>(0) = matched1[i].pt.x;
|
||||
col.at<double>(1) = matched1[i].pt.y;
|
||||
@ -63,12 +73,14 @@ int main(int argc, char* argv[])
|
||||
good_matches.push_back(DMatch(new_i, new_i, 0));
|
||||
}
|
||||
}
|
||||
//! [homography check]
|
||||
|
||||
//! [draw final matches]
|
||||
Mat res;
|
||||
drawMatches(img1, inliers1, img2, inliers2, good_matches, res);
|
||||
imwrite("akaze_result.png", res);
|
||||
|
||||
double inlier_ratio = inliers1.size() * 1.0 / matched1.size();
|
||||
double inlier_ratio = inliers1.size() / (double) matched1.size();
|
||||
cout << "A-KAZE Matching Results" << endl;
|
||||
cout << "*******************************" << endl;
|
||||
cout << "# Keypoints 1: \t" << kpts1.size() << endl;
|
||||
@ -80,6 +92,7 @@ int main(int argc, char* argv[])
|
||||
|
||||
imshow("result", res);
|
||||
waitKey();
|
||||
//! [draw final matches]
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
@ -46,7 +46,7 @@ int main( int argc, char* argv[] )
|
||||
std::vector<DMatch> good_matches;
|
||||
for (size_t i = 0; i < knn_matches.size(); i++)
|
||||
{
|
||||
if (knn_matches[i].size() > 1 && knn_matches[i][0].distance / knn_matches[i][1].distance <= ratio_thresh)
|
||||
if (knn_matches[i][0].distance < ratio_thresh * knn_matches[i][1].distance)
|
||||
{
|
||||
good_matches.push_back(knn_matches[i][0]);
|
||||
}
|
||||
|
@ -48,7 +48,7 @@ int main( int argc, char* argv[] )
|
||||
std::vector<DMatch> good_matches;
|
||||
for (size_t i = 0; i < knn_matches.size(); i++)
|
||||
{
|
||||
if (knn_matches[i].size() > 1 && knn_matches[i][0].distance / knn_matches[i][1].distance <= ratio_thresh)
|
||||
if (knn_matches[i][0].distance < ratio_thresh * knn_matches[i][1].distance)
|
||||
{
|
||||
good_matches.push_back(knn_matches[i][0]);
|
||||
}
|
||||
|
@ -103,8 +103,9 @@ class ImageSegmentation {
|
||||
|
||||
// Normalize the distance image for range = {0.0, 1.0}
|
||||
// so we can visualize and threshold it
|
||||
Core.normalize(dist, dist, 0, 1., Core.NORM_MINMAX);
|
||||
Mat distDisplayScaled = dist.mul(dist, 255);
|
||||
Core.normalize(dist, dist, 0.0, 1.0, Core.NORM_MINMAX);
|
||||
Mat distDisplayScaled = new Mat();
|
||||
Core.multiply(dist, new Scalar(255), distDisplayScaled);
|
||||
Mat distDisplay = new Mat();
|
||||
distDisplayScaled.convertTo(distDisplay, CvType.CV_8U);
|
||||
HighGui.imshow("Distance Transform Image", distDisplay);
|
||||
@ -113,14 +114,14 @@ class ImageSegmentation {
|
||||
//! [peaks]
|
||||
// Threshold to obtain the peaks
|
||||
// This will be the markers for the foreground objects
|
||||
Imgproc.threshold(dist, dist, .4, 1., Imgproc.THRESH_BINARY);
|
||||
Imgproc.threshold(dist, dist, 0.4, 1.0, Imgproc.THRESH_BINARY);
|
||||
|
||||
// Dilate a bit the dist image
|
||||
Mat kernel1 = Mat.ones(3, 3, CvType.CV_8U);
|
||||
Imgproc.dilate(dist, dist, kernel1);
|
||||
Mat distDisplay2 = new Mat();
|
||||
dist.convertTo(distDisplay2, CvType.CV_8U);
|
||||
distDisplay2 = distDisplay2.mul(distDisplay2, 255);
|
||||
Core.multiply(distDisplay2, new Scalar(255), distDisplay2);
|
||||
HighGui.imshow("Peaks", distDisplay2);
|
||||
//! [peaks]
|
||||
|
||||
@ -144,11 +145,14 @@ class ImageSegmentation {
|
||||
}
|
||||
|
||||
// Draw the background marker
|
||||
Imgproc.circle(markers, new Point(5, 5), 3, new Scalar(255, 255, 255), -1);
|
||||
Mat markersScaled = markers.mul(markers, 10000);
|
||||
Mat markersScaled = new Mat();
|
||||
markers.convertTo(markersScaled, CvType.CV_32F);
|
||||
Core.normalize(markersScaled, markersScaled, 0.0, 255.0, Core.NORM_MINMAX);
|
||||
Imgproc.circle(markersScaled, new Point(5, 5), 3, new Scalar(255, 255, 255), -1);
|
||||
Mat markersDisplay = new Mat();
|
||||
markersScaled.convertTo(markersDisplay, CvType.CV_8U);
|
||||
HighGui.imshow("Markers", markersDisplay);
|
||||
Imgproc.circle(markers, new Point(5, 5), 3, new Scalar(255, 255, 255), -1);
|
||||
//! [seeds]
|
||||
|
||||
//! [watershed]
|
||||
|
@ -0,0 +1,163 @@
|
||||
import java.io.File;
|
||||
import java.io.IOException;
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
|
||||
import javax.xml.parsers.DocumentBuilder;
|
||||
import javax.xml.parsers.DocumentBuilderFactory;
|
||||
import javax.xml.parsers.ParserConfigurationException;
|
||||
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.DMatch;
|
||||
import org.opencv.core.KeyPoint;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.MatOfDMatch;
|
||||
import org.opencv.core.MatOfKeyPoint;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.features2d.AKAZE;
|
||||
import org.opencv.features2d.DescriptorMatcher;
|
||||
import org.opencv.features2d.Features2d;
|
||||
import org.opencv.highgui.HighGui;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.w3c.dom.Document;
|
||||
import org.xml.sax.SAXException;
|
||||
|
||||
class AKAZEMatch {
|
||||
public void run(String[] args) {
|
||||
//! [load]
|
||||
String filename1 = args.length > 2 ? args[0] : "../data/graf1.png";
|
||||
String filename2 = args.length > 2 ? args[1] : "../data/graf3.png";
|
||||
String filename3 = args.length > 2 ? args[2] : "../data/H1to3p.xml";
|
||||
Mat img1 = Imgcodecs.imread(filename1, Imgcodecs.IMREAD_GRAYSCALE);
|
||||
Mat img2 = Imgcodecs.imread(filename2, Imgcodecs.IMREAD_GRAYSCALE);
|
||||
if (img1.empty() || img2.empty()) {
|
||||
System.err.println("Cannot read images!");
|
||||
System.exit(0);
|
||||
}
|
||||
|
||||
File file = new File(filename3);
|
||||
DocumentBuilderFactory documentBuilderFactory = DocumentBuilderFactory.newInstance();
|
||||
DocumentBuilder documentBuilder;
|
||||
Document document;
|
||||
Mat homography = new Mat(3, 3, CvType.CV_64F);
|
||||
double[] homographyData = new double[(int) (homography.total()*homography.channels())];
|
||||
try {
|
||||
documentBuilder = documentBuilderFactory.newDocumentBuilder();
|
||||
document = documentBuilder.parse(file);
|
||||
String homographyStr = document.getElementsByTagName("data").item(0).getTextContent();
|
||||
String[] splited = homographyStr.split("\\s+");
|
||||
int idx = 0;
|
||||
for (String s : splited) {
|
||||
if (!s.isEmpty()) {
|
||||
homographyData[idx] = Double.parseDouble(s);
|
||||
idx++;
|
||||
}
|
||||
}
|
||||
} catch (ParserConfigurationException e) {
|
||||
e.printStackTrace();
|
||||
System.exit(0);
|
||||
} catch (SAXException e) {
|
||||
e.printStackTrace();
|
||||
System.exit(0);
|
||||
} catch (IOException e) {
|
||||
e.printStackTrace();
|
||||
System.exit(0);
|
||||
}
|
||||
homography.put(0, 0, homographyData);
|
||||
//! [load]
|
||||
|
||||
//! [AKAZE]
|
||||
AKAZE akaze = AKAZE.create();
|
||||
MatOfKeyPoint kpts1 = new MatOfKeyPoint(), kpts2 = new MatOfKeyPoint();
|
||||
Mat desc1 = new Mat(), desc2 = new Mat();
|
||||
akaze.detectAndCompute(img1, new Mat(), kpts1, desc1);
|
||||
akaze.detectAndCompute(img2, new Mat(), kpts2, desc2);
|
||||
//! [AKAZE]
|
||||
|
||||
//! [2-nn matching]
|
||||
DescriptorMatcher matcher = DescriptorMatcher.create(DescriptorMatcher.BRUTEFORCE_HAMMING);
|
||||
List<MatOfDMatch> knnMatches = new ArrayList<>();
|
||||
matcher.knnMatch(desc1, desc2, knnMatches, 2);
|
||||
//! [2-nn matching]
|
||||
|
||||
//! [ratio test filtering]
|
||||
float ratioThreshold = 0.8f; // Nearest neighbor matching ratio
|
||||
List<KeyPoint> listOfMatched1 = new ArrayList<>();
|
||||
List<KeyPoint> listOfMatched2 = new ArrayList<>();
|
||||
List<KeyPoint> listOfKeypoints1 = kpts1.toList();
|
||||
List<KeyPoint> listOfKeypoints2 = kpts2.toList();
|
||||
for (int i = 0; i < knnMatches.size(); i++) {
|
||||
DMatch[] matches = knnMatches.get(i).toArray();
|
||||
float dist1 = matches[0].distance;
|
||||
float dist2 = matches[1].distance;
|
||||
if (dist1 < ratioThreshold * dist2) {
|
||||
listOfMatched1.add(listOfKeypoints1.get(matches[0].queryIdx));
|
||||
listOfMatched2.add(listOfKeypoints2.get(matches[0].trainIdx));
|
||||
}
|
||||
}
|
||||
//! [ratio test filtering]
|
||||
|
||||
//! [homography check]
|
||||
double inlierThreshold = 2.5; // Distance threshold to identify inliers with homography check
|
||||
List<KeyPoint> listOfInliers1 = new ArrayList<>();
|
||||
List<KeyPoint> listOfInliers2 = new ArrayList<>();
|
||||
List<DMatch> listOfGoodMatches = new ArrayList<>();
|
||||
for (int i = 0; i < listOfMatched1.size(); i++) {
|
||||
Mat col = new Mat(3, 1, CvType.CV_64F);
|
||||
double[] colData = new double[(int) (col.total() * col.channels())];
|
||||
colData[0] = listOfMatched1.get(i).pt.x;
|
||||
colData[1] = listOfMatched1.get(i).pt.y;
|
||||
colData[2] = 1.0;
|
||||
col.put(0, 0, colData);
|
||||
|
||||
Mat colRes = new Mat();
|
||||
Core.gemm(homography, col, 1.0, new Mat(), 0.0, colRes);
|
||||
colRes.get(0, 0, colData);
|
||||
Core.multiply(colRes, new Scalar(1.0 / colData[2]), col);
|
||||
col.get(0, 0, colData);
|
||||
|
||||
double dist = Math.sqrt(Math.pow(colData[0] - listOfMatched2.get(i).pt.x, 2) +
|
||||
Math.pow(colData[1] - listOfMatched2.get(i).pt.y, 2));
|
||||
|
||||
if (dist < inlierThreshold) {
|
||||
listOfGoodMatches.add(new DMatch(listOfInliers1.size(), listOfInliers2.size(), 0));
|
||||
listOfInliers1.add(listOfMatched1.get(i));
|
||||
listOfInliers2.add(listOfMatched2.get(i));
|
||||
}
|
||||
}
|
||||
//! [homography check]
|
||||
|
||||
//! [draw final matches]
|
||||
Mat res = new Mat();
|
||||
MatOfKeyPoint inliers1 = new MatOfKeyPoint(listOfInliers1.toArray(new KeyPoint[listOfInliers1.size()]));
|
||||
MatOfKeyPoint inliers2 = new MatOfKeyPoint(listOfInliers2.toArray(new KeyPoint[listOfInliers2.size()]));
|
||||
MatOfDMatch goodMatches = new MatOfDMatch(listOfGoodMatches.toArray(new DMatch[listOfGoodMatches.size()]));
|
||||
Features2d.drawMatches(img1, inliers1, img2, inliers2, goodMatches, res);
|
||||
Imgcodecs.imwrite("akaze_result.png", res);
|
||||
|
||||
double inlierRatio = listOfInliers1.size() / (double) listOfMatched1.size();
|
||||
System.out.println("A-KAZE Matching Results");
|
||||
System.out.println("*******************************");
|
||||
System.out.println("# Keypoints 1: \t" + listOfKeypoints1.size());
|
||||
System.out.println("# Keypoints 2: \t" + listOfKeypoints2.size());
|
||||
System.out.println("# Matches: \t" + listOfMatched1.size());
|
||||
System.out.println("# Inliers: \t" + listOfInliers1.size());
|
||||
System.out.println("# Inliers Ratio: \t" + inlierRatio);
|
||||
|
||||
HighGui.imshow("result", res);
|
||||
HighGui.waitKey();
|
||||
//! [draw final matches]
|
||||
|
||||
System.exit(0);
|
||||
}
|
||||
}
|
||||
|
||||
public class AKAZEMatchDemo {
|
||||
public static void main(String[] args) {
|
||||
// Load the native OpenCV library
|
||||
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
|
||||
|
||||
new AKAZEMatch().run(args);
|
||||
}
|
||||
}
|
@ -42,12 +42,12 @@ class SURFFLANNMatching {
|
||||
matcher.knnMatch(descriptors1, descriptors2, knnMatches, 2);
|
||||
|
||||
//-- Filter matches using the Lowe's ratio test
|
||||
float ratio_thresh = 0.7f;
|
||||
float ratioThresh = 0.7f;
|
||||
List<DMatch> listOfGoodMatches = new ArrayList<>();
|
||||
for (int i = 0; i < knnMatches.size(); i++) {
|
||||
if (knnMatches.get(i).rows() > 1) {
|
||||
DMatch[] matches = knnMatches.get(i).toArray();
|
||||
if (matches[0].distance / matches[1].distance <= ratio_thresh) {
|
||||
if (matches[0].distance < ratioThresh * matches[1].distance) {
|
||||
listOfGoodMatches.add(matches[0]);
|
||||
}
|
||||
}
|
||||
|
@ -48,12 +48,12 @@ class SURFFLANNMatchingHomography {
|
||||
matcher.knnMatch(descriptorsObject, descriptorsScene, knnMatches, 2);
|
||||
|
||||
//-- Filter matches using the Lowe's ratio test
|
||||
float ratio_thresh = 0.75f;
|
||||
float ratioThresh = 0.75f;
|
||||
List<DMatch> listOfGoodMatches = new ArrayList<>();
|
||||
for (int i = 0; i < knnMatches.size(); i++) {
|
||||
if (knnMatches.get(i).rows() > 1) {
|
||||
DMatch[] matches = knnMatches.get(i).toArray();
|
||||
if (matches[0].distance / matches[1].distance <= ratio_thresh) {
|
||||
if (matches[0].distance < ratioThresh * matches[1].distance) {
|
||||
listOfGoodMatches.add(matches[0]);
|
||||
}
|
||||
}
|
||||
|
@ -7,6 +7,7 @@ import java.util.List;
|
||||
import org.opencv.core.Core;
|
||||
import org.opencv.core.CvType;
|
||||
import org.opencv.core.Mat;
|
||||
import org.opencv.core.Scalar;
|
||||
import org.opencv.imgcodecs.Imgcodecs;
|
||||
import org.opencv.photo.CalibrateDebevec;
|
||||
import org.opencv.photo.MergeDebevec;
|
||||
@ -70,7 +71,7 @@ class HDRImaging {
|
||||
|
||||
//! [Tonemap HDR image]
|
||||
Mat ldr = new Mat();
|
||||
TonemapDurand tonemap = Photo.createTonemapDurand();
|
||||
TonemapDurand tonemap = Photo.createTonemapDurand(2.2f, 4.0f, 1.0f, 2.0f, 2.0f);
|
||||
tonemap.process(hdr, ldr);
|
||||
//! [Tonemap HDR image]
|
||||
|
||||
@ -81,8 +82,8 @@ class HDRImaging {
|
||||
//! [Perform exposure fusion]
|
||||
|
||||
//! [Write results]
|
||||
fusion = fusion.mul(fusion, 255);
|
||||
ldr = ldr.mul(ldr, 255);
|
||||
Core.multiply(fusion, new Scalar(255,255,255), fusion);
|
||||
Core.multiply(ldr, new Scalar(255,255,255), ldr);
|
||||
Imgcodecs.imwrite("fusion.png", fusion);
|
||||
Imgcodecs.imwrite("ldr.png", ldr);
|
||||
Imgcodecs.imwrite("hdr.hdr", hdr);
|
||||
|
@ -0,0 +1,81 @@
|
||||
from __future__ import print_function
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
import argparse
|
||||
from math import sqrt
|
||||
|
||||
## [load]
|
||||
parser = argparse.ArgumentParser(description='Code for AKAZE local features matching tutorial.')
|
||||
parser.add_argument('--input1', help='Path to input image 1.', default='../data/graf1.png')
|
||||
parser.add_argument('--input2', help='Path to input image 2.', default='../data/graf3.png')
|
||||
parser.add_argument('--homography', help='Path to the homography matrix.', default='../data/H1to3p.xml')
|
||||
args = parser.parse_args()
|
||||
|
||||
img1 = cv.imread(args.input1, cv.IMREAD_GRAYSCALE)
|
||||
img2 = cv.imread(args.input2, cv.IMREAD_GRAYSCALE)
|
||||
if img1 is None or img2 is None:
|
||||
print('Could not open or find the images!')
|
||||
exit(0)
|
||||
|
||||
fs = cv.FileStorage(args.homography, cv.FILE_STORAGE_READ)
|
||||
homography = fs.getFirstTopLevelNode().mat()
|
||||
## [load]
|
||||
|
||||
## [AKAZE]
|
||||
akaze = cv.AKAZE_create()
|
||||
kpts1, desc1 = akaze.detectAndCompute(img1, None)
|
||||
kpts2, desc2 = akaze.detectAndCompute(img2, None)
|
||||
## [AKAZE]
|
||||
|
||||
## [2-nn matching]
|
||||
matcher = cv.DescriptorMatcher_create(cv.DescriptorMatcher_BRUTEFORCE_HAMMING)
|
||||
nn_matches = matcher.knnMatch(desc1, desc2, 2)
|
||||
## [2-nn matching]
|
||||
|
||||
## [ratio test filtering]
|
||||
matched1 = []
|
||||
matched2 = []
|
||||
nn_match_ratio = 0.8 # Nearest neighbor matching ratio
|
||||
for m, n in nn_matches:
|
||||
if m.distance < nn_match_ratio * n.distance:
|
||||
matched1.append(kpts1[m.queryIdx])
|
||||
matched2.append(kpts2[m.trainIdx])
|
||||
## [ratio test filtering]
|
||||
|
||||
## [homography check]
|
||||
inliers1 = []
|
||||
inliers2 = []
|
||||
good_matches = []
|
||||
inlier_threshold = 2.5 # Distance threshold to identify inliers with homography check
|
||||
for i, m in enumerate(matched1):
|
||||
col = np.ones((3,1), dtype=np.float64)
|
||||
col[0:2,0] = m.pt
|
||||
|
||||
col = np.dot(homography, col)
|
||||
col /= col[2,0]
|
||||
dist = sqrt(pow(col[0,0] - matched2[i].pt[0], 2) +\
|
||||
pow(col[1,0] - matched2[i].pt[1], 2))
|
||||
|
||||
if dist < inlier_threshold:
|
||||
good_matches.append(cv.DMatch(len(inliers1), len(inliers2), 0))
|
||||
inliers1.append(matched1[i])
|
||||
inliers2.append(matched2[i])
|
||||
## [homography check]
|
||||
|
||||
## [draw final matches]
|
||||
res = np.empty((max(img1.shape[0], img2.shape[0]), img1.shape[1]+img2.shape[1], 3), dtype=np.uint8)
|
||||
cv.drawMatches(img1, inliers1, img2, inliers2, good_matches, res)
|
||||
cv.imwrite("akaze_result.png", res)
|
||||
|
||||
inlier_ratio = len(inliers1) / float(len(matched1))
|
||||
print('A-KAZE Matching Results')
|
||||
print('*******************************')
|
||||
print('# Keypoints 1: \t', len(kpts1))
|
||||
print('# Keypoints 2: \t', len(kpts2))
|
||||
print('# Matches: \t', len(matched1))
|
||||
print('# Inliers: \t', len(inliers1))
|
||||
print('# Inliers Ratio: \t', inlier_ratio)
|
||||
|
||||
cv.imshow('result', res)
|
||||
cv.waitKey()
|
||||
## [draw final matches]
|
@ -29,7 +29,7 @@ knn_matches = matcher.knnMatch(descriptors1, descriptors2, 2)
|
||||
ratio_thresh = 0.7
|
||||
good_matches = []
|
||||
for m,n in knn_matches:
|
||||
if m.distance / n.distance <= ratio_thresh:
|
||||
if m.distance < ratio_thresh * n.distance:
|
||||
good_matches.append(m)
|
||||
|
||||
#-- Draw matches
|
||||
|
@ -29,7 +29,7 @@ knn_matches = matcher.knnMatch(descriptors_obj, descriptors_scene, 2)
|
||||
ratio_thresh = 0.75
|
||||
good_matches = []
|
||||
for m,n in knn_matches:
|
||||
if m.distance / n.distance <= ratio_thresh:
|
||||
if m.distance < ratio_thresh * n.distance:
|
||||
good_matches.append(m)
|
||||
|
||||
#-- Draw matches
|
||||
|
Loading…
Reference in New Issue
Block a user