mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 17:44:04 +08:00
Expose more UMat constructors to python
This commit is contained in:
parent
70bbf17b13
commit
c659f94dca
@ -417,33 +417,73 @@ typedef struct {
|
||||
UMat* um;
|
||||
} cv2_UMatWrapperObject;
|
||||
|
||||
// UMatWrapper init - takes one optional argument, that converts to Mat, that converts to UMat and stored inside.
|
||||
// If no argument given - empty UMat created.
|
||||
static bool PyObject_IsUMat(PyObject *o);
|
||||
|
||||
// UMatWrapper init - try to map arguments from python to UMat constructors
|
||||
static int UMatWrapper_init(cv2_UMatWrapperObject *self, PyObject *args, PyObject *kwds)
|
||||
{
|
||||
self->um = NULL;
|
||||
{
|
||||
// constructor ()
|
||||
const char *kwlist[] = {NULL};
|
||||
if (PyArg_ParseTupleAndKeywords(args, kwds, "", (char**) kwlist)) {
|
||||
self->um = new UMat();
|
||||
|
||||
PyObject *np_mat = NULL;
|
||||
|
||||
static char *kwlist[] = {new char[3], NULL};
|
||||
strcpy(kwlist[0], "mat");
|
||||
|
||||
if (! PyArg_ParseTupleAndKeywords(args, kwds, "|O", kwlist, &np_mat))
|
||||
return -1;
|
||||
|
||||
if (np_mat) {
|
||||
Mat m;
|
||||
if (!pyopencv_to(np_mat, m, ArgInfo("UMatWrapper.np_mat", 0)))
|
||||
return -1;
|
||||
|
||||
m.copyTo(*self->um);
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
PyErr_Clear();
|
||||
}
|
||||
{
|
||||
// constructor (rows, cols, type)
|
||||
const char *kwlist[] = {"rows", "cols", "type", NULL};
|
||||
int rows, cols, type;
|
||||
if (PyArg_ParseTupleAndKeywords(args, kwds, "iii", (char**) kwlist, &rows, &cols, &type)) {
|
||||
self->um = new UMat(rows, cols, type);
|
||||
return 0;
|
||||
}
|
||||
PyErr_Clear();
|
||||
}
|
||||
{
|
||||
// constructor (m, rowRange, colRange)
|
||||
const char *kwlist[] = {"m", "rowRange", "colRange", NULL};
|
||||
PyObject *obj = NULL;
|
||||
int y0 = -1, y1 = -1, x0 = -1, x1 = -1;
|
||||
if (PyArg_ParseTupleAndKeywords(args, kwds, "O(ii)|(ii)", (char**) kwlist, &obj, &y0, &y1, &x0, &x1) && PyObject_IsUMat(obj)) {
|
||||
UMat *um_other = ((cv2_UMatWrapperObject *) obj)->um;
|
||||
Range rowRange(y0, y1);
|
||||
Range colRange = (x0 >= 0 && x1 >= 0) ? Range(x0, x1) : Range::all();
|
||||
self->um = new UMat(*um_other, rowRange, colRange);
|
||||
return 0;
|
||||
}
|
||||
PyErr_Clear();
|
||||
}
|
||||
{
|
||||
// constructor (m)
|
||||
const char *kwlist[] = {"m", NULL};
|
||||
PyObject *obj = NULL;
|
||||
if (PyArg_ParseTupleAndKeywords(args, kwds, "O", (char**) kwlist, &obj)) {
|
||||
// constructor (UMat m)
|
||||
if (PyObject_IsUMat(obj)) {
|
||||
UMat *um_other = ((cv2_UMatWrapperObject *) obj)->um;
|
||||
self->um = new UMat(*um_other);
|
||||
return 0;
|
||||
}
|
||||
// python specific constructor from array like object
|
||||
Mat m;
|
||||
if (pyopencv_to(obj, m, ArgInfo("UMatWrapper.np_mat", 0))) {
|
||||
self->um = new UMat();
|
||||
m.copyTo(*self->um);
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
PyErr_Clear();
|
||||
}
|
||||
PyErr_SetString(PyExc_TypeError, "no matching UMat constructor found/supported");
|
||||
return -1;
|
||||
}
|
||||
|
||||
static void UMatWrapper_dealloc(cv2_UMatWrapperObject* self)
|
||||
{
|
||||
if (self->um)
|
||||
delete self->um;
|
||||
#if PY_MAJOR_VERSION >= 3
|
||||
Py_TYPE(self)->tp_free((PyObject*)self);
|
||||
@ -529,8 +569,12 @@ static PyTypeObject cv2_UMatWrapperType = {
|
||||
#endif
|
||||
};
|
||||
|
||||
static bool PyObject_IsUMat(PyObject *o) {
|
||||
return (o != NULL) && PyObject_TypeCheck(o, &cv2_UMatWrapperType);
|
||||
}
|
||||
|
||||
static bool pyopencv_to(PyObject* o, UMat& um, const ArgInfo info) {
|
||||
if (o != NULL && PyObject_TypeCheck(o, &cv2_UMatWrapperType) ) {
|
||||
if (PyObject_IsUMat(o)) {
|
||||
um = *((cv2_UMatWrapperObject *) o)->um;
|
||||
return true;
|
||||
}
|
||||
|
@ -123,6 +123,17 @@ class Hackathon244Tests(NewOpenCVTests):
|
||||
boost.getMaxDepth() # from ml::DTrees
|
||||
boost.isClassifier() # from ml::StatModel
|
||||
|
||||
def test_umat_construct(self):
|
||||
data = np.random.random([512, 512])
|
||||
# UMat constructors
|
||||
data_um = cv2.UMat(data) # from ndarray
|
||||
data_sub_um = cv2.UMat(data_um, [0, 256], [0, 256]) # from UMat
|
||||
data_dst_um = cv2.UMat(256, 256, cv2.CV_64F) # from size/type
|
||||
|
||||
# simple test
|
||||
cv2.multiply(data_sub_um, 2., dst=data_dst_um)
|
||||
assert np.allclose(2. * data[:256, :256], data_dst_um.get())
|
||||
|
||||
def test_umat_matching(self):
|
||||
img1 = self.get_sample("samples/data/right01.jpg")
|
||||
img2 = self.get_sample("samples/data/right02.jpg")
|
||||
|
Loading…
Reference in New Issue
Block a user