mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Merge pull request #9075 from TonyLianLong:master
Remove unnecessary Non-ASCII characters from source code (#9075) * Remove unnecessary Non-ASCII characters from source code Remove unnecessary Non-ASCII characters and replace them with ASCII characters * Remove dashes in the @param statement Remove dashes and place single space in the @param statement to keep coding style * misc: more fixes for non-ASCII symbols * misc: fix non-ASCII symbol in CMake file
This commit is contained in:
parent
9aaf6a66a3
commit
c8783f3e23
4
3rdparty/carotene/src/colorconvert.cpp
vendored
4
3rdparty/carotene/src/colorconvert.cpp
vendored
@ -2466,9 +2466,9 @@ void yuv420sp2rgb(const Size2D &size,
|
||||
// B = [((149*y)/2 + (-17705+129*u) )/2]/32
|
||||
|
||||
// error estimation:
|
||||
//Rerr = 0.0000625 * y − 0.00225 * v − 0.287
|
||||
//Rerr = 0.0000625 * y - 0.00225 * v - 0.287
|
||||
//Gerr = 0.0000625 * y + 0.0005 * v + 0.000375 * u + 0.128625
|
||||
//Berr = 0.0000625 * y − 0.002375 * u - 0.287375
|
||||
//Berr = 0.0000625 * y - 0.002375 * u - 0.287375
|
||||
|
||||
//real error test:
|
||||
//=================
|
||||
|
@ -1,6 +1,6 @@
|
||||
if(WIN32)
|
||||
find_path( CSTRIPES_LIB_DIR
|
||||
NAMES "С=.lib"
|
||||
NAMES "C=.lib"
|
||||
DOC "The path to C= lib and dll")
|
||||
if(CSTRIPES_LIB_DIR)
|
||||
ocv_include_directories("${CSTRIPES_LIB_DIR}/..")
|
||||
|
@ -379,9 +379,9 @@ void cv::fisheye::undistortPoints( InputArray distorted, OutputArray undistorted
|
||||
|
||||
double theta_d = sqrt(pw[0]*pw[0] + pw[1]*pw[1]);
|
||||
|
||||
// the current camera model is only valid up to 180° FOV
|
||||
// the current camera model is only valid up to 180 FOV
|
||||
// for larger FOV the loop below does not converge
|
||||
// clip values so we still get plausible results for super fisheye images > 180°
|
||||
// clip values so we still get plausible results for super fisheye images > 180 grad
|
||||
theta_d = min(max(-CV_PI/2., theta_d), CV_PI/2.);
|
||||
|
||||
if (theta_d > 1e-8)
|
||||
|
@ -16,7 +16,7 @@
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2014, Samson Yilma¸ (samson_yilma@yahoo.com), all rights reserved.
|
||||
// Copyright (C) 2014, Samson Yilma (samson_yilma@yahoo.com), all rights reserved.
|
||||
//
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
|
@ -1248,11 +1248,11 @@ inline void RHO_HEST_REFC::rndSmpl(unsigned sampleSize,
|
||||
/**
|
||||
* Selection Sampling:
|
||||
*
|
||||
* Algorithm S (Selection sampling technique). To select n records at random from a set of N, where 0 < n ≤ N.
|
||||
* S1. [Initialize.] Set t ← 0, m ← 0. (During this algorithm, m represents the number of records selected so far,
|
||||
* Algorithm S (Selection sampling technique). To select n records at random from a set of N, where 0 < n <= N.
|
||||
* S1. [Initialize.] Set t = 0, m = 0. (During this algorithm, m represents the number of records selected so far,
|
||||
* and t is the total number of input records that we have dealt with.)
|
||||
* S2. [Generate U.] Generate a random number U, uniformly distributed between zero and one.
|
||||
* S3. [Test.] If (N – t)U ≥ n – m, go to step S5.
|
||||
* S3. [Test.] If (N - t)U >= n - m, go to step S5.
|
||||
* S4. [Select.] Select the next record for the sample, and increase m and t by 1. If m < n, go to step S2;
|
||||
* otherwise the sample is complete and the algorithm terminates.
|
||||
* S5. [Skip.] Skip the next record (do not include it in the sample), increase t by 1, and go back to step S2.
|
||||
|
@ -281,7 +281,7 @@ cvCorrectMatches(CvMat *F_, CvMat *points1_, CvMat *points2_, CvMat *new_points1
|
||||
c = cvGetReal2D(RTFTR,2,1);
|
||||
d = cvGetReal2D(RTFTR,2,2);
|
||||
|
||||
// Form the polynomial g(t) = k6*t⁶ + k5*t⁵ + k4*t⁴ + k3*t³ + k2*t² + k1*t + k0
|
||||
// Form the polynomial g(t) = k6*t^6 + k5*t^5 + k4*t^4 + k3*t^3 + k2*t^2 + k1*t + k0
|
||||
// from f1, f2, a, b, c and d
|
||||
cvSetReal2D(polynomial,0,6,( +b*c*c*f1*f1*f1*f1*a-a*a*d*f1*f1*f1*f1*c ));
|
||||
cvSetReal2D(polynomial,0,5,( +f2*f2*f2*f2*c*c*c*c+2*a*a*f2*f2*c*c-a*a*d*d*f1*f1*f1*f1+b*b*c*c*f1*f1*f1*f1+a*a*a*a ));
|
||||
|
@ -13,7 +13,7 @@
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2014, Samson Yilma¸ (samson_yilma@yahoo.com), all rights reserved.
|
||||
// Copyright (C) 2014, Samson Yilma (samson_yilma@yahoo.com), all rights reserved.
|
||||
//
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
|
@ -474,7 +474,7 @@ template<> CV_EXPORTS void DefaultDeleter<CvFileStorage>::operator ()(CvFileStor
|
||||
|
||||
The node is used to store each and every element of the file storage opened for reading. When
|
||||
XML/YAML file is read, it is first parsed and stored in the memory as a hierarchical collection of
|
||||
nodes. Each node can be a “leaf” that is contain a single number or a string, or be a collection of
|
||||
nodes. Each node can be a "leaf" that is contain a single number or a string, or be a collection of
|
||||
other nodes. There can be named collections (mappings) where each element has a name and it is
|
||||
accessed by a name, and ordered collections (sequences) where elements do not have names but rather
|
||||
accessed by index. Type of the file node can be determined using FileNode::type method.
|
||||
|
@ -200,13 +200,13 @@ be called outside of parallel region.
|
||||
|
||||
OpenCV will try to run it's functions with specified threads number, but some behaviour differs from
|
||||
framework:
|
||||
- `TBB` – User-defined parallel constructions will run with the same threads number, if
|
||||
- `TBB` - User-defined parallel constructions will run with the same threads number, if
|
||||
another does not specified. If later on user creates own scheduler, OpenCV will use it.
|
||||
- `OpenMP` – No special defined behaviour.
|
||||
- `Concurrency` – If threads == 1, OpenCV will disable threading optimizations and run it's
|
||||
- `OpenMP` - No special defined behaviour.
|
||||
- `Concurrency` - If threads == 1, OpenCV will disable threading optimizations and run it's
|
||||
functions sequentially.
|
||||
- `GCD` – Supports only values \<= 0.
|
||||
- `C=` – No special defined behaviour.
|
||||
- `GCD` - Supports only values \<= 0.
|
||||
- `C=` - No special defined behaviour.
|
||||
@param nthreads Number of threads used by OpenCV.
|
||||
@sa getNumThreads, getThreadNum
|
||||
*/
|
||||
@ -217,13 +217,13 @@ CV_EXPORTS_W void setNumThreads(int nthreads);
|
||||
Always returns 1 if OpenCV is built without threading support.
|
||||
|
||||
The exact meaning of return value depends on the threading framework used by OpenCV library:
|
||||
- `TBB` – The number of threads, that OpenCV will try to use for parallel regions. If there is
|
||||
- `TBB` - The number of threads, that OpenCV will try to use for parallel regions. If there is
|
||||
any tbb::thread_scheduler_init in user code conflicting with OpenCV, then function returns
|
||||
default number of threads used by TBB library.
|
||||
- `OpenMP` – An upper bound on the number of threads that could be used to form a new team.
|
||||
- `Concurrency` – The number of threads, that OpenCV will try to use for parallel regions.
|
||||
- `GCD` – Unsupported; returns the GCD thread pool limit (512) for compatibility.
|
||||
- `C=` – The number of threads, that OpenCV will try to use for parallel regions, if before
|
||||
- `OpenMP` - An upper bound on the number of threads that could be used to form a new team.
|
||||
- `Concurrency` - The number of threads, that OpenCV will try to use for parallel regions.
|
||||
- `GCD` - Unsupported; returns the GCD thread pool limit (512) for compatibility.
|
||||
- `C=` - The number of threads, that OpenCV will try to use for parallel regions, if before
|
||||
called setNumThreads with threads \> 0, otherwise returns the number of logical CPUs,
|
||||
available for the process.
|
||||
@sa setNumThreads, getThreadNum
|
||||
@ -234,12 +234,12 @@ CV_EXPORTS_W int getNumThreads();
|
||||
returns 0 if called outside of parallel region.
|
||||
|
||||
The exact meaning of return value depends on the threading framework used by OpenCV library:
|
||||
- `TBB` – Unsupported with current 4.1 TBB release. Maybe will be supported in future.
|
||||
- `OpenMP` – The thread number, within the current team, of the calling thread.
|
||||
- `Concurrency` – An ID for the virtual processor that the current context is executing on (0
|
||||
- `TBB` - Unsupported with current 4.1 TBB release. Maybe will be supported in future.
|
||||
- `OpenMP` - The thread number, within the current team, of the calling thread.
|
||||
- `Concurrency` - An ID for the virtual processor that the current context is executing on (0
|
||||
for master thread and unique number for others, but not necessary 1,2,3,...).
|
||||
- `GCD` – System calling thread's ID. Never returns 0 inside parallel region.
|
||||
- `C=` – The index of the current parallel task.
|
||||
- `GCD` - System calling thread's ID. Never returns 0 inside parallel region.
|
||||
- `C=` - The index of the current parallel task.
|
||||
@sa setNumThreads, getNumThreads
|
||||
*/
|
||||
CV_EXPORTS_W int getThreadNum();
|
||||
|
@ -251,7 +251,7 @@ namespace
|
||||
|
||||
// Navneet Dalal and Bill Triggs. Histograms of oriented gradients for
|
||||
// human detection. In International Conference on Computer Vision and
|
||||
// Pattern Recognition, volume 2, pages 886–893, June 2005
|
||||
// Pattern Recognition, volume 2, pages 886-893, June 2005
|
||||
// http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf (28.07.2015) [Figure 5]
|
||||
CV_Assert(block_stride == (block_size / 2));
|
||||
|
||||
|
@ -210,7 +210,7 @@ public:
|
||||
// FarnebackOpticalFlow
|
||||
//
|
||||
|
||||
/** @brief Class computing a dense optical flow using the Gunnar Farneback’s algorithm.
|
||||
/** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
|
||||
*/
|
||||
class CV_EXPORTS FarnebackOpticalFlow : public DenseOpticalFlow
|
||||
{
|
||||
|
@ -745,7 +745,7 @@ BRISK_Impl::computeDescriptorsAndOrOrientation(InputArray _image, InputArray _ma
|
||||
int theta;
|
||||
if (kp.angle==-1)
|
||||
{
|
||||
// don't compute the gradient direction, just assign a rotation of 0°
|
||||
// don't compute the gradient direction, just assign a rotation of 0
|
||||
theta = 0;
|
||||
}
|
||||
else
|
||||
|
@ -25,7 +25,7 @@
|
||||
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
|
||||
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
|
||||
* OF SUCH DAMAGE.
|
||||
* Copyright© 2009, Liu Liu All rights reserved.
|
||||
* Copyright (C) 2009, Liu Liu All rights reserved.
|
||||
*
|
||||
* OpenCV functions for MSER extraction
|
||||
*
|
||||
|
@ -698,7 +698,7 @@ struct KL_Divergence
|
||||
typedef typename Accumulator<T>::Type ResultType;
|
||||
|
||||
/**
|
||||
* Compute the Kullback–Leibler divergence
|
||||
* Compute the Kullback-Leibler divergence
|
||||
*/
|
||||
template <typename Iterator1, typename Iterator2>
|
||||
ResultType operator()(Iterator1 a, Iterator2 b, size_t size, ResultType worst_dist = -1) const
|
||||
|
@ -282,7 +282,7 @@ static void icvPutImage( CvWindow* window )
|
||||
|
||||
static void icvUpdateWindowSize( const CvWindow* window )
|
||||
{
|
||||
int width = 0, height = 240; /* init à al taille de base de l'image*/
|
||||
int width = 0, height = 240;
|
||||
Rect globalBounds;
|
||||
|
||||
GetWindowBounds(window->window, kWindowContentRgn, &globalBounds);
|
||||
@ -1031,7 +1031,7 @@ static pascal OSStatus windowEventHandler(EventHandlerCallRef nextHandler, Event
|
||||
GetWindowBounds(theWindow, kWindowStructureRgn, &structure);
|
||||
GetWindowBounds(theWindow, kWindowContentRgn, &content);
|
||||
lx = (int)point.x - content.left + structure.left;
|
||||
ly = (int)point.y - window->trackbarheight - content.top + structure.top; /* minus la taille des trackbars */
|
||||
ly = (int)point.y - window->trackbarheight - content.top + structure.top;
|
||||
if (window->flags & CV_WINDOW_AUTOSIZE) {//FD
|
||||
//printf("was %d,%d\n", lx, ly);
|
||||
/* scale the mouse coordinates */
|
||||
@ -1039,7 +1039,7 @@ static pascal OSStatus windowEventHandler(EventHandlerCallRef nextHandler, Event
|
||||
ly = ly * window->imageHeight / (content.bottom - content.top - window->trackbarheight);
|
||||
}
|
||||
|
||||
if (lx>0 && ly >0){ /* a remettre dans les coordonnées locale */
|
||||
if (lx>0 && ly >0){
|
||||
window->on_mouse (event, lx, ly, flags, window->on_mouse_param);
|
||||
return noErr;
|
||||
}
|
||||
|
@ -198,8 +198,8 @@ int main(int argc, const char *argv[])
|
||||
|
||||
The Subdiv2D class described in this section is used to perform various planar subdivision on
|
||||
a set of 2D points (represented as vector of Point2f). OpenCV subdivides a plane into triangles
|
||||
using the Delaunay’s algorithm, which corresponds to the dual graph of the Voronoi diagram.
|
||||
In the figure below, the Delaunay’s triangulation is marked with black lines and the Voronoi
|
||||
using the Delaunay's algorithm, which corresponds to the dual graph of the Voronoi diagram.
|
||||
In the figure below, the Delaunay's triangulation is marked with black lines and the Voronoi
|
||||
diagram with red lines.
|
||||
|
||||
![Delaunay triangulation (black) and Voronoi (red)](pics/delaunay_voronoi.png)
|
||||
@ -955,7 +955,7 @@ public:
|
||||
|
||||
/** @overload
|
||||
|
||||
@param rect – Rectangle that includes all of the 2D points that are to be added to the subdivision.
|
||||
@param rect Rectangle that includes all of the 2D points that are to be added to the subdivision.
|
||||
|
||||
The function creates an empty Delaunay subdivision where 2D points can be added using the function
|
||||
insert() . All of the points to be added must be within the specified rectangle, otherwise a runtime
|
||||
@ -965,14 +965,14 @@ public:
|
||||
|
||||
/** @brief Creates a new empty Delaunay subdivision
|
||||
|
||||
@param rect – Rectangle that includes all of the 2D points that are to be added to the subdivision.
|
||||
@param rect Rectangle that includes all of the 2D points that are to be added to the subdivision.
|
||||
|
||||
*/
|
||||
CV_WRAP void initDelaunay(Rect rect);
|
||||
|
||||
/** @brief Insert a single point into a Delaunay triangulation.
|
||||
|
||||
@param pt – Point to insert.
|
||||
@param pt Point to insert.
|
||||
|
||||
The function inserts a single point into a subdivision and modifies the subdivision topology
|
||||
appropriately. If a point with the same coordinates exists already, no new point is added.
|
||||
@ -984,7 +984,7 @@ public:
|
||||
|
||||
/** @brief Insert multiple points into a Delaunay triangulation.
|
||||
|
||||
@param ptvec – Points to insert.
|
||||
@param ptvec Points to insert.
|
||||
|
||||
The function inserts a vector of points into a subdivision and modifies the subdivision topology
|
||||
appropriately.
|
||||
@ -993,9 +993,9 @@ public:
|
||||
|
||||
/** @brief Returns the location of a point within a Delaunay triangulation.
|
||||
|
||||
@param pt – Point to locate.
|
||||
@param edge – Output edge that the point belongs to or is located to the right of it.
|
||||
@param vertex – Optional output vertex the input point coincides with.
|
||||
@param pt Point to locate.
|
||||
@param edge Output edge that the point belongs to or is located to the right of it.
|
||||
@param vertex Optional output vertex the input point coincides with.
|
||||
|
||||
The function locates the input point within the subdivision and gives one of the triangle edges
|
||||
or vertices.
|
||||
@ -1008,15 +1008,15 @@ public:
|
||||
vertex will contain a pointer to the vertex.
|
||||
- The point is outside the subdivision reference rectangle. The function returns PTLOC_OUTSIDE_RECT
|
||||
and no pointers are filled.
|
||||
- One of input arguments is invalid. A runtime error is raised or, if silent or “parent” error
|
||||
- One of input arguments is invalid. A runtime error is raised or, if silent or "parent" error
|
||||
processing mode is selected, CV_PTLOC_ERROR is returned.
|
||||
*/
|
||||
CV_WRAP int locate(Point2f pt, CV_OUT int& edge, CV_OUT int& vertex);
|
||||
|
||||
/** @brief Finds the subdivision vertex closest to the given point.
|
||||
|
||||
@param pt – Input point.
|
||||
@param nearestPt – Output subdivision vertex point.
|
||||
@param pt Input point.
|
||||
@param nearestPt Output subdivision vertex point.
|
||||
|
||||
The function is another function that locates the input point within the subdivision. It finds the
|
||||
subdivision vertex that is the closest to the input point. It is not necessarily one of vertices
|
||||
@ -1029,7 +1029,7 @@ public:
|
||||
|
||||
/** @brief Returns a list of all edges.
|
||||
|
||||
@param edgeList – Output vector.
|
||||
@param edgeList Output vector.
|
||||
|
||||
The function gives each edge as a 4 numbers vector, where each two are one of the edge
|
||||
vertices. i.e. org_x = v[0], org_y = v[1], dst_x = v[2], dst_y = v[3].
|
||||
@ -1038,7 +1038,7 @@ public:
|
||||
|
||||
/** @brief Returns a list of the leading edge ID connected to each triangle.
|
||||
|
||||
@param leadingEdgeList – Output vector.
|
||||
@param leadingEdgeList Output vector.
|
||||
|
||||
The function gives one edge ID for each triangle.
|
||||
*/
|
||||
@ -1046,7 +1046,7 @@ public:
|
||||
|
||||
/** @brief Returns a list of all triangles.
|
||||
|
||||
@param triangleList – Output vector.
|
||||
@param triangleList Output vector.
|
||||
|
||||
The function gives each triangle as a 6 numbers vector, where each two are one of the triangle
|
||||
vertices. i.e. p1_x = v[0], p1_y = v[1], p2_x = v[2], p2_y = v[3], p3_x = v[4], p3_y = v[5].
|
||||
@ -1055,9 +1055,9 @@ public:
|
||||
|
||||
/** @brief Returns a list of all Voroni facets.
|
||||
|
||||
@param idx – Vector of vertices IDs to consider. For all vertices you can pass empty vector.
|
||||
@param facetList – Output vector of the Voroni facets.
|
||||
@param facetCenters – Output vector of the Voroni facets center points.
|
||||
@param idx Vector of vertices IDs to consider. For all vertices you can pass empty vector.
|
||||
@param facetList Output vector of the Voroni facets.
|
||||
@param facetCenters Output vector of the Voroni facets center points.
|
||||
|
||||
*/
|
||||
CV_WRAP void getVoronoiFacetList(const std::vector<int>& idx, CV_OUT std::vector<std::vector<Point2f> >& facetList,
|
||||
@ -1065,8 +1065,8 @@ public:
|
||||
|
||||
/** @brief Returns vertex location from vertex ID.
|
||||
|
||||
@param vertex – vertex ID.
|
||||
@param firstEdge – Optional. The first edge ID which is connected to the vertex.
|
||||
@param vertex vertex ID.
|
||||
@param firstEdge Optional. The first edge ID which is connected to the vertex.
|
||||
@returns vertex (x,y)
|
||||
|
||||
*/
|
||||
@ -1074,8 +1074,8 @@ public:
|
||||
|
||||
/** @brief Returns one of the edges related to the given edge.
|
||||
|
||||
@param edge – Subdivision edge ID.
|
||||
@param nextEdgeType - Parameter specifying which of the related edges to return.
|
||||
@param edge Subdivision edge ID.
|
||||
@param nextEdgeType Parameter specifying which of the related edges to return.
|
||||
The following values are possible:
|
||||
- NEXT_AROUND_ORG next around the edge origin ( eOnext on the picture below if e is the input edge)
|
||||
- NEXT_AROUND_DST next around the edge vertex ( eDnext )
|
||||
@ -1094,7 +1094,7 @@ public:
|
||||
|
||||
/** @brief Returns next edge around the edge origin.
|
||||
|
||||
@param edge – Subdivision edge ID.
|
||||
@param edge Subdivision edge ID.
|
||||
|
||||
@returns an integer which is next edge ID around the edge origin: eOnext on the
|
||||
picture above if e is the input edge).
|
||||
@ -1103,8 +1103,8 @@ public:
|
||||
|
||||
/** @brief Returns another edge of the same quad-edge.
|
||||
|
||||
@param edge – Subdivision edge ID.
|
||||
@param rotate - Parameter specifying which of the edges of the same quad-edge as the input
|
||||
@param edge Subdivision edge ID.
|
||||
@param rotate Parameter specifying which of the edges of the same quad-edge as the input
|
||||
one to return. The following values are possible:
|
||||
- 0 - the input edge ( e on the picture below if e is the input edge)
|
||||
- 1 - the rotated edge ( eRot )
|
||||
@ -1118,8 +1118,8 @@ public:
|
||||
|
||||
/** @brief Returns the edge origin.
|
||||
|
||||
@param edge – Subdivision edge ID.
|
||||
@param orgpt – Output vertex location.
|
||||
@param edge Subdivision edge ID.
|
||||
@param orgpt Output vertex location.
|
||||
|
||||
@returns vertex ID.
|
||||
*/
|
||||
@ -1127,8 +1127,8 @@ public:
|
||||
|
||||
/** @brief Returns the edge destination.
|
||||
|
||||
@param edge – Subdivision edge ID.
|
||||
@param dstpt – Output vertex location.
|
||||
@param edge Subdivision edge ID.
|
||||
@param dstpt Output vertex location.
|
||||
|
||||
@returns vertex ID.
|
||||
*/
|
||||
|
@ -2586,7 +2586,7 @@ namespace cv{
|
||||
}
|
||||
};//End struct LabelingGranaParallel
|
||||
|
||||
// Based on <EFBFBD>Optimized Block-based Connected Components Labeling with Decision Trees<65>, Costantino Grana et al
|
||||
// Based on "Optimized Block-based Connected Components Labeling with Decision Trees", Costantino Grana et al
|
||||
// Only for 8-connectivity
|
||||
template<typename LabelT, typename PixelT, typename StatsOp = NoOp >
|
||||
struct LabelingGrana{
|
||||
|
@ -47,7 +47,7 @@ using namespace cv;
|
||||
|
||||
/*
|
||||
This is implementation of image segmentation algorithm GrabCut described in
|
||||
"GrabCut — Interactive Foreground Extraction using Iterated Graph Cuts".
|
||||
"GrabCut - Interactive Foreground Extraction using Iterated Graph Cuts".
|
||||
Carsten Rother, Vladimir Kolmogorov, Andrew Blake.
|
||||
*/
|
||||
|
||||
|
@ -120,7 +120,7 @@ public:
|
||||
LDR_SIZE + (int)points.size(), CV_32F);
|
||||
Mat B = Mat::zeros(A.rows, 1, CV_32F);
|
||||
|
||||
// include the data−fitting equations
|
||||
// include the data-fitting equations
|
||||
int k = 0;
|
||||
for(size_t i = 0; i < points.size(); i++) {
|
||||
for(size_t j = 0; j < images.size(); j++) {
|
||||
|
@ -201,7 +201,7 @@ protected:
|
||||
// Threshold to filter out poorly matched image pairs
|
||||
double conf_thresh_;
|
||||
|
||||
//Levenberg–Marquardt algorithm termination criteria
|
||||
//Levenberg-Marquardt algorithm termination criteria
|
||||
TermCriteria term_criteria_;
|
||||
|
||||
// Camera parameters matrix (CV_64F)
|
||||
|
@ -243,7 +243,7 @@ struct CV_EXPORTS SphericalProjector : ProjectorBase
|
||||
/** @brief Warper that maps an image onto the unit sphere located at the origin.
|
||||
|
||||
Projects image onto unit sphere with origin at (0, 0, 0) and radius scale, measured in pixels.
|
||||
A 360° panorama would therefore have a resulting width of 2 * scale * PI pixels.
|
||||
A 360 panorama would therefore have a resulting width of 2 * scale * PI pixels.
|
||||
Poles are located at (0, -1, 0) and (0, 1, 0) points.
|
||||
*/
|
||||
class CV_EXPORTS SphericalWarper : public RotationWarperBase<SphericalProjector>
|
||||
|
@ -8015,7 +8015,7 @@ namespace edit_distance {
|
||||
// Returns the optimal edits to go from 'left' to 'right'.
|
||||
// All edits cost the same, with replace having lower priority than
|
||||
// add/remove.
|
||||
// Simple implementation of the Wagner–Fischer algorithm.
|
||||
// Simple implementation of the Wagner-Fischer algorithm.
|
||||
// See http://en.wikipedia.org/wiki/Wagner-Fischer_algorithm
|
||||
enum EditType { kMatch, kAdd, kRemove, kReplace };
|
||||
GTEST_API_ std::vector<EditType> CalculateOptimalEdits(
|
||||
|
@ -544,7 +544,7 @@ public:
|
||||
*/
|
||||
CV_EXPORTS_W Ptr<DualTVL1OpticalFlow> createOptFlow_DualTVL1();
|
||||
|
||||
/** @brief Class computing a dense optical flow using the Gunnar Farneback’s algorithm.
|
||||
/** @brief Class computing a dense optical flow using the Gunnar Farneback's algorithm.
|
||||
*/
|
||||
class CV_EXPORTS_W FarnebackOpticalFlow : public DenseOpticalFlow
|
||||
{
|
||||
|
@ -20,7 +20,7 @@ cv::Point3f SUB(cv::Point3f v1, cv::Point3f v2);
|
||||
cv::Point3f get_nearest_3D_point(std::vector<cv::Point3f> &points_list, cv::Point3f origin);
|
||||
|
||||
|
||||
/* Functions for Möller–Trumbore intersection algorithm */
|
||||
/* Functions for Möller-Trumbore intersection algorithm */
|
||||
|
||||
cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2)
|
||||
{
|
||||
@ -45,7 +45,7 @@ cv::Point3f SUB(cv::Point3f v1, cv::Point3f v2)
|
||||
return tmp_p;
|
||||
}
|
||||
|
||||
/* End functions for Möller–Trumbore intersection algorithm
|
||||
/* End functions for Möller-Trumbore intersection algorithm
|
||||
* */
|
||||
|
||||
// Function to get the nearest 3D point to the Ray origin
|
||||
@ -258,7 +258,7 @@ bool PnPProblem::backproject2DPoint(const Mesh *mesh, const cv::Point2f &point2d
|
||||
}
|
||||
}
|
||||
|
||||
// Möller–Trumbore intersection algorithm
|
||||
// Möller-Trumbore intersection algorithm
|
||||
bool PnPProblem::intersect_MollerTrumbore(Ray &Ray, Triangle &Triangle, double *out)
|
||||
{
|
||||
const double EPSILON = 0.000001;
|
||||
|
@ -50,7 +50,7 @@ private:
|
||||
cv::Mat _P_matrix;
|
||||
};
|
||||
|
||||
// Functions for Möller–Trumbore intersection algorithm
|
||||
// Functions for Möller-Trumbore intersection algorithm
|
||||
cv::Point3f CROSS(cv::Point3f v1, cv::Point3f v2);
|
||||
double DOT(cv::Point3f v1, cv::Point3f v2);
|
||||
cv::Point3f SUB(cv::Point3f v1, cv::Point3f v2);
|
||||
|
Loading…
Reference in New Issue
Block a user