Merge pull request #3722 from berak:py_houghlines_sample

This commit is contained in:
Vadim Pisarevsky 2015-03-03 18:16:25 +00:00
commit c9ea878d10
2 changed files with 24 additions and 22 deletions

View File

@ -59,7 +59,7 @@ denotes they are the parameters of possible lines in the image. (Image courtesy:
![](images/houghlines2.jpg)
Hough Tranform in OpenCV
Hough Transform in OpenCV
=========================
Everything explained above is encapsulated in the OpenCV function, \*\*cv2.HoughLines()\*\*. It simply returns an array of :math:(rho,
@ -78,7 +78,8 @@ gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
lines = cv2.HoughLines(edges,1,np.pi/180,200)
for rho,theta in lines[0]:
for line in lines:
rho,theta = line[0]
a = np.cos(theta)
b = np.sin(theta)
x0 = a*rho
@ -123,10 +124,9 @@ import numpy as np
img = cv2.imread('dave.jpg')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
edges = cv2.Canny(gray,50,150,apertureSize = 3)
minLineLength = 100
maxLineGap = 10
lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength,maxLineGap)
for x1,y1,x2,y2 in lines[0]:
lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength=100,maxLineGap=10)
for line in lines:
x1,y1,x2,y2 = line[0]
cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
cv2.imwrite('houghlines5.jpg',img)

View File

@ -18,23 +18,25 @@ src = cv2.imread(fn)
dst = cv2.Canny(src, 50, 200)
cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)
# HoughLines()
# lines = cv2.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
# a,b,c = lines.shape
# for i in range(b):
# rho = lines[0][i][0]
# theta = lines[0][i][1]
# a = math.cos(theta)
# b = math.sin(theta)
# x0, y0 = a*rho, b*rho
# pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
# pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
# cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA)
if True: # HoughLinesP
lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)
a,b,c = lines.shape
for i in range(a):
cv2.line(cdst, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 3, cv2.LINE_AA)
else: # HoughLines
lines = cv2.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
a,b,c = lines.shape
for i in range(a):
rho = lines[i][0][0]
theta = lines[i][0][1]
a = math.cos(theta)
b = math.sin(theta)
x0, y0 = a*rho, b*rho
pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA)
lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 50, np.array([]), 50, 10)
a,b,c = lines.shape
for i in range(b):
cv2.line(cdst, (lines[0][i][0], lines[0][i][1]), (lines[0][i][2], lines[0][i][3]), (0, 0, 255), 3, cv2.LINE_AA)
cv2.imshow("source", src)
cv2.imshow("detected lines", cdst)