mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Merge pull request #3722 from berak:py_houghlines_sample
This commit is contained in:
commit
c9ea878d10
@ -59,7 +59,7 @@ denotes they are the parameters of possible lines in the image. (Image courtesy:
|
||||
|
||||
![](images/houghlines2.jpg)
|
||||
|
||||
Hough Tranform in OpenCV
|
||||
Hough Transform in OpenCV
|
||||
=========================
|
||||
|
||||
Everything explained above is encapsulated in the OpenCV function, \*\*cv2.HoughLines()\*\*. It simply returns an array of :math:(rho,
|
||||
@ -78,7 +78,8 @@ gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
edges = cv2.Canny(gray,50,150,apertureSize = 3)
|
||||
|
||||
lines = cv2.HoughLines(edges,1,np.pi/180,200)
|
||||
for rho,theta in lines[0]:
|
||||
for line in lines:
|
||||
rho,theta = line[0]
|
||||
a = np.cos(theta)
|
||||
b = np.sin(theta)
|
||||
x0 = a*rho
|
||||
@ -123,10 +124,9 @@ import numpy as np
|
||||
img = cv2.imread('dave.jpg')
|
||||
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
|
||||
edges = cv2.Canny(gray,50,150,apertureSize = 3)
|
||||
minLineLength = 100
|
||||
maxLineGap = 10
|
||||
lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength,maxLineGap)
|
||||
for x1,y1,x2,y2 in lines[0]:
|
||||
lines = cv2.HoughLinesP(edges,1,np.pi/180,100,minLineLength=100,maxLineGap=10)
|
||||
for line in lines:
|
||||
x1,y1,x2,y2 = line[0]
|
||||
cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)
|
||||
|
||||
cv2.imwrite('houghlines5.jpg',img)
|
||||
|
@ -18,23 +18,25 @@ src = cv2.imread(fn)
|
||||
dst = cv2.Canny(src, 50, 200)
|
||||
cdst = cv2.cvtColor(dst, cv2.COLOR_GRAY2BGR)
|
||||
|
||||
# HoughLines()
|
||||
# lines = cv2.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
|
||||
# a,b,c = lines.shape
|
||||
# for i in range(b):
|
||||
# rho = lines[0][i][0]
|
||||
# theta = lines[0][i][1]
|
||||
# a = math.cos(theta)
|
||||
# b = math.sin(theta)
|
||||
# x0, y0 = a*rho, b*rho
|
||||
# pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
|
||||
# pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
|
||||
# cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA)
|
||||
|
||||
lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 50, np.array([]), 50, 10)
|
||||
if True: # HoughLinesP
|
||||
lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)
|
||||
a,b,c = lines.shape
|
||||
for i in range(b):
|
||||
cv2.line(cdst, (lines[0][i][0], lines[0][i][1]), (lines[0][i][2], lines[0][i][3]), (0, 0, 255), 3, cv2.LINE_AA)
|
||||
for i in range(a):
|
||||
cv2.line(cdst, (lines[i][0][0], lines[i][0][1]), (lines[i][0][2], lines[i][0][3]), (0, 0, 255), 3, cv2.LINE_AA)
|
||||
|
||||
else: # HoughLines
|
||||
lines = cv2.HoughLines(dst, 1, math.pi/180.0, 50, np.array([]), 0, 0)
|
||||
a,b,c = lines.shape
|
||||
for i in range(a):
|
||||
rho = lines[i][0][0]
|
||||
theta = lines[i][0][1]
|
||||
a = math.cos(theta)
|
||||
b = math.sin(theta)
|
||||
x0, y0 = a*rho, b*rho
|
||||
pt1 = ( int(x0+1000*(-b)), int(y0+1000*(a)) )
|
||||
pt2 = ( int(x0-1000*(-b)), int(y0-1000*(a)) )
|
||||
cv2.line(cdst, pt1, pt2, (0, 0, 255), 3, cv2.LINE_AA)
|
||||
|
||||
|
||||
cv2.imshow("source", src)
|
||||
cv2.imshow("detected lines", cdst)
|
||||
|
Loading…
Reference in New Issue
Block a user