mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
BFMatcher
match radiusMatch
This commit is contained in:
parent
ee331001f5
commit
ca5689e0db
@ -113,6 +113,7 @@ public:
|
||||
virtual Mat getMat(int idx=-1) const;
|
||||
virtual UMat getUMat(int idx=-1) const;
|
||||
virtual void getMatVector(std::vector<Mat>& mv) const;
|
||||
virtual void getUMatVector(std::vector<UMat>& umv) const;
|
||||
virtual cuda::GpuMat getGpuMat() const;
|
||||
virtual ogl::Buffer getOGlBuffer() const;
|
||||
void* getObj() const;
|
||||
@ -134,7 +135,7 @@ public:
|
||||
virtual size_t step(int i=-1) const;
|
||||
bool isMat() const;
|
||||
bool isUMat() const;
|
||||
bool isMatVectot() const;
|
||||
bool isMatVector() const;
|
||||
bool isUMatVector() const;
|
||||
bool isMatx();
|
||||
|
||||
|
@ -110,7 +110,7 @@ inline _InputArray::~_InputArray() {}
|
||||
|
||||
inline bool _InputArray::isMat() const { return kind() == _InputArray::MAT; }
|
||||
inline bool _InputArray::isUMat() const { return kind() == _InputArray::UMAT; }
|
||||
inline bool _InputArray::isMatVectot() const { return kind() == _InputArray::STD_VECTOR_MAT; }
|
||||
inline bool _InputArray::isMatVector() const { return kind() == _InputArray::STD_VECTOR_MAT; }
|
||||
inline bool _InputArray::isUMatVector() const { return kind() == _InputArray::STD_VECTOR_UMAT; }
|
||||
inline bool _InputArray::isMatx() { return kind() == _InputArray::MATX; }
|
||||
|
||||
|
@ -1324,6 +1324,42 @@ void _InputArray::getMatVector(std::vector<Mat>& mv) const
|
||||
CV_Error(Error::StsNotImplemented, "Unknown/unsupported array type");
|
||||
}
|
||||
|
||||
void _InputArray::getUMatVector(std::vector<UMat>& umv) const
|
||||
{
|
||||
int k = kind();
|
||||
int accessFlags = flags & ACCESS_MASK;
|
||||
|
||||
if( k == NONE )
|
||||
{
|
||||
umv.clear();
|
||||
return;
|
||||
}
|
||||
|
||||
if( k == STD_VECTOR_MAT )
|
||||
{
|
||||
const std::vector<Mat>& v = *(const std::vector<Mat>*)obj;
|
||||
size_t i, n = v.size();
|
||||
umv.resize(n);
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
umv[i] = v[i].getUMat(accessFlags);
|
||||
return;
|
||||
}
|
||||
|
||||
if( k == STD_VECTOR_UMAT )
|
||||
{
|
||||
const std::vector<UMat>& v = *(const std::vector<UMat>*)obj;
|
||||
size_t i, n = v.size();
|
||||
umv.resize(n);
|
||||
|
||||
for( i = 0; i < n; i++ )
|
||||
umv[i] = v[i];
|
||||
return;
|
||||
}
|
||||
|
||||
CV_Error(Error::StsNotImplemented, "Unknown/unsupported array type");
|
||||
}
|
||||
|
||||
cuda::GpuMat _InputArray::getGpuMat() const
|
||||
{
|
||||
int k = kind();
|
||||
|
@ -998,7 +998,7 @@ public:
|
||||
* Add descriptors to train descriptor collection.
|
||||
* descriptors Descriptors to add. Each descriptors[i] is a descriptors set from one image.
|
||||
*/
|
||||
CV_WRAP virtual void add( const std::vector<Mat>& descriptors );
|
||||
CV_WRAP virtual void add( InputArray descriptors );
|
||||
/*
|
||||
* Get train descriptors collection.
|
||||
*/
|
||||
@ -1034,29 +1034,29 @@ public:
|
||||
* Method train() is run in this methods.
|
||||
*/
|
||||
// Find one best match for each query descriptor (if mask is empty).
|
||||
CV_WRAP void match( const Mat& queryDescriptors, const Mat& trainDescriptors,
|
||||
CV_OUT std::vector<DMatch>& matches, const Mat& mask=Mat() ) const;
|
||||
CV_WRAP void match( InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
CV_OUT std::vector<DMatch>& matches, InputArray mask=Mat() ) const;
|
||||
// Find k best matches for each query descriptor (in increasing order of distances).
|
||||
// compactResult is used when mask is not empty. If compactResult is false matches
|
||||
// vector will have the same size as queryDescriptors rows. If compactResult is true
|
||||
// matches vector will not contain matches for fully masked out query descriptors.
|
||||
CV_WRAP void knnMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
|
||||
CV_WRAP void knnMatch( InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
|
||||
const Mat& mask=Mat(), bool compactResult=false ) const;
|
||||
InputArray mask=Mat(), bool compactResult=false ) const;
|
||||
// Find best matches for each query descriptor which have distance less than
|
||||
// maxDistance (in increasing order of distances).
|
||||
void radiusMatch( const Mat& queryDescriptors, const Mat& trainDescriptors,
|
||||
void radiusMatch( InputArray queryDescriptors, InputArray trainDescriptors,
|
||||
std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||||
const Mat& mask=Mat(), bool compactResult=false ) const;
|
||||
InputArray mask=Mat(), bool compactResult=false ) const;
|
||||
/*
|
||||
* Group of methods to match descriptors from one image to image set.
|
||||
* See description of similar methods for matching image pair above.
|
||||
*/
|
||||
CV_WRAP void match( const Mat& queryDescriptors, CV_OUT std::vector<DMatch>& matches,
|
||||
CV_WRAP void match( InputArray queryDescriptors, CV_OUT std::vector<DMatch>& matches,
|
||||
const std::vector<Mat>& masks=std::vector<Mat>() );
|
||||
CV_WRAP void knnMatch( const Mat& queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
|
||||
CV_WRAP void knnMatch( InputArray queryDescriptors, CV_OUT std::vector<std::vector<DMatch> >& matches, int k,
|
||||
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false );
|
||||
void radiusMatch( const Mat& queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||||
void radiusMatch( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||||
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false );
|
||||
|
||||
// Reads matcher object from a file node
|
||||
@ -1101,10 +1101,10 @@ protected:
|
||||
// In fact the matching is implemented only by the following two methods. These methods suppose
|
||||
// that the class object has been trained already. Public match methods call these methods
|
||||
// after calling train().
|
||||
virtual void knnMatchImpl( const Mat& queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
|
||||
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false ) = 0;
|
||||
virtual void radiusMatchImpl( const Mat& queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||||
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false ) = 0;
|
||||
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
|
||||
InputArrayOfArrays masks=std::vector<Mat>(), bool compactResult=false ) = 0;
|
||||
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||||
InputArrayOfArrays masks=std::vector<Mat>(), bool compactResult=false ) = 0;
|
||||
|
||||
static bool isPossibleMatch( const Mat& mask, int queryIdx, int trainIdx );
|
||||
static bool isMaskedOut( const std::vector<Mat>& masks, int queryIdx );
|
||||
@ -1114,6 +1114,7 @@ protected:
|
||||
|
||||
// Collection of descriptors from train images.
|
||||
std::vector<Mat> trainDescCollection;
|
||||
std::vector<UMat> utrainDescCollection;
|
||||
};
|
||||
|
||||
/*
|
||||
@ -1137,10 +1138,16 @@ public:
|
||||
|
||||
AlgorithmInfo* info() const;
|
||||
protected:
|
||||
virtual void knnMatchImpl( const Mat& queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
|
||||
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false );
|
||||
virtual void radiusMatchImpl( const Mat& queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||||
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false );
|
||||
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
|
||||
InputArrayOfArrays masks=std::vector<Mat>(), bool compactResult=false );
|
||||
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||||
InputArrayOfArrays masks=std::vector<Mat>(), bool compactResult=false );
|
||||
|
||||
bool ocl_knnMatch(InputArray query, InputArray train, std::vector< std::vector<DMatch> > &matches,
|
||||
int k, int dstType, bool compactResult=false);
|
||||
bool ocl_radiusMatch(InputArray query, InputArray train, std::vector< std::vector<DMatch> > &matches,
|
||||
float maxDistance, int dstType, bool compactResult=false);
|
||||
bool ocl_match(InputArray query, InputArray train, std::vector< std::vector<DMatch> > &matches, int dstType);
|
||||
|
||||
int normType;
|
||||
bool crossCheck;
|
||||
@ -1175,10 +1182,10 @@ protected:
|
||||
const Mat& indices, const Mat& distances,
|
||||
std::vector<std::vector<DMatch> >& matches );
|
||||
|
||||
virtual void knnMatchImpl( const Mat& queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
|
||||
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false );
|
||||
virtual void radiusMatchImpl( const Mat& queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||||
const std::vector<Mat>& masks=std::vector<Mat>(), bool compactResult=false );
|
||||
virtual void knnMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, int k,
|
||||
InputArrayOfArrays masks=std::vector<Mat>(), bool compactResult=false );
|
||||
virtual void radiusMatchImpl( InputArray queryDescriptors, std::vector<std::vector<DMatch> >& matches, float maxDistance,
|
||||
InputArrayOfArrays masks=std::vector<Mat>(), bool compactResult=false );
|
||||
|
||||
Ptr<flann::IndexParams> indexParams;
|
||||
Ptr<flann::SearchParams> searchParams;
|
||||
|
File diff suppressed because it is too large
Load Diff
789
modules/features2d/src/opencl/brute_force_match.cl
Normal file
789
modules/features2d/src/opencl/brute_force_match.cl
Normal file
@ -0,0 +1,789 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Nathan, liujun@multicorewareinc.com
|
||||
// Peng Xiao, pengxiao@outlook.com
|
||||
// Baichuan Su, baichuan@multicorewareinc.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#pragma OPENCL EXTENSION cl_khr_global_int32_base_atomics:enable
|
||||
#define MAX_FLOAT 3.40282e+038f
|
||||
|
||||
#ifndef T
|
||||
#define T float
|
||||
#endif
|
||||
|
||||
#ifndef BLOCK_SIZE
|
||||
#define BLOCK_SIZE 16
|
||||
#endif
|
||||
#ifndef MAX_DESC_LEN
|
||||
#define MAX_DESC_LEN 64
|
||||
#endif
|
||||
|
||||
#ifndef DIST_TYPE
|
||||
#define DIST_TYPE 2
|
||||
#endif
|
||||
|
||||
// dirty fix for non-template support
|
||||
#if (DIST_TYPE == 2) // L1Dist
|
||||
# ifdef T_FLOAT
|
||||
# define DIST(x, y) fabs((x) - (y))
|
||||
typedef float value_type;
|
||||
typedef float result_type;
|
||||
# else
|
||||
# define DIST(x, y) abs((x) - (y))
|
||||
typedef int value_type;
|
||||
typedef int result_type;
|
||||
# endif
|
||||
#define DIST_RES(x) (x)
|
||||
#elif (DIST_TYPE == 4) // L2Dist
|
||||
#define DIST(x, y) (((x) - (y)) * ((x) - (y)))
|
||||
typedef float value_type;
|
||||
typedef float result_type;
|
||||
#define DIST_RES(x) sqrt(x)
|
||||
#elif (DIST_TYPE == 6) // Hamming
|
||||
//http://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
|
||||
inline int bit1Count(int v)
|
||||
{
|
||||
v = v - ((v >> 1) & 0x55555555); // reuse input as temporary
|
||||
v = (v & 0x33333333) + ((v >> 2) & 0x33333333); // temp
|
||||
return ((v + (v >> 4) & 0xF0F0F0F) * 0x1010101) >> 24; // count
|
||||
}
|
||||
#define DIST(x, y) bit1Count( (x) ^ (y) )
|
||||
typedef int value_type;
|
||||
typedef int result_type;
|
||||
#define DIST_RES(x) (x)
|
||||
#endif
|
||||
|
||||
inline result_type reduce_block(
|
||||
__local value_type *s_query,
|
||||
__local value_type *s_train,
|
||||
int lidx,
|
||||
int lidy
|
||||
)
|
||||
{
|
||||
result_type result = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0 ; j < BLOCK_SIZE ; j++)
|
||||
{
|
||||
result += DIST(
|
||||
s_query[lidy * BLOCK_SIZE + j],
|
||||
s_train[j * BLOCK_SIZE + lidx]);
|
||||
}
|
||||
return DIST_RES(result);
|
||||
}
|
||||
|
||||
inline result_type reduce_block_match(
|
||||
__local value_type *s_query,
|
||||
__local value_type *s_train,
|
||||
int lidx,
|
||||
int lidy
|
||||
)
|
||||
{
|
||||
result_type result = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0 ; j < BLOCK_SIZE ; j++)
|
||||
{
|
||||
result += DIST(
|
||||
s_query[lidy * BLOCK_SIZE + j],
|
||||
s_train[j * BLOCK_SIZE + lidx]);
|
||||
}
|
||||
return (result);
|
||||
}
|
||||
|
||||
inline result_type reduce_multi_block(
|
||||
__local value_type *s_query,
|
||||
__local value_type *s_train,
|
||||
int block_index,
|
||||
int lidx,
|
||||
int lidy
|
||||
)
|
||||
{
|
||||
result_type result = 0;
|
||||
#pragma unroll
|
||||
for (int j = 0 ; j < BLOCK_SIZE ; j++)
|
||||
{
|
||||
result += DIST(
|
||||
s_query[lidy * MAX_DESC_LEN + block_index * BLOCK_SIZE + j],
|
||||
s_train[j * BLOCK_SIZE + lidx]);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
/* 2dim launch, global size: dim0 is (query rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, dim1 is BLOCK_SIZE
|
||||
local size: dim0 is BLOCK_SIZE, dim1 is BLOCK_SIZE.
|
||||
*/
|
||||
__kernel void BruteForceMatch_UnrollMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
__local value_type *s_query = (__local value_type *)sharebuffer;
|
||||
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
|
||||
|
||||
int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
// load the query into local memory.
|
||||
#pragma unroll
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
|
||||
{
|
||||
int loadx = lidx + i * BLOCK_SIZE;
|
||||
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
}
|
||||
|
||||
float myBestDistance = MAX_FLOAT;
|
||||
int myBestTrainIdx = -1;
|
||||
|
||||
// loopUnrolledCached to find the best trainIdx and best distance.
|
||||
for (int t = 0, endt = (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE; t < endt; t++)
|
||||
{
|
||||
result_type result = 0;
|
||||
#pragma unroll
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; i++)
|
||||
{
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_multi_block(s_query, s_train, i, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
result = DIST_RES(result);
|
||||
|
||||
int trainIdx = t * BLOCK_SIZE + lidx;
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance/* && mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
myBestDistance = result;
|
||||
myBestTrainIdx = trainIdx;
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
__local float *s_distance = (__local float*)(sharebuffer);
|
||||
__local int* s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
//find BestMatch
|
||||
s_distance += lidy * BLOCK_SIZE;
|
||||
s_trainIdx += lidy * BLOCK_SIZE;
|
||||
s_distance[lidx] = myBestDistance;
|
||||
s_trainIdx[lidx] = myBestTrainIdx;
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
//reduce -- now all reduce implement in each threads.
|
||||
#pragma unroll
|
||||
for (int k = 0 ; k < BLOCK_SIZE; k++)
|
||||
{
|
||||
if (myBestDistance > s_distance[k])
|
||||
{
|
||||
myBestDistance = s_distance[k];
|
||||
myBestTrainIdx = s_trainIdx[k];
|
||||
}
|
||||
}
|
||||
|
||||
if (queryIdx < query_rows && lidx == 0)
|
||||
{
|
||||
bestTrainIdx[queryIdx] = myBestTrainIdx;
|
||||
bestDistance[queryIdx] = myBestDistance;
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void BruteForceMatch_Match(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
|
||||
float myBestDistance = MAX_FLOAT;
|
||||
int myBestTrainIdx = -1;
|
||||
|
||||
__local value_type *s_query = (__local value_type *)sharebuffer;
|
||||
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
// loop
|
||||
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
|
||||
{
|
||||
result_type result = 0;
|
||||
for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; i++)
|
||||
{
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
//load query and train into local memory
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = 0;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = 0;
|
||||
|
||||
if (loadx < query_cols)
|
||||
{
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_block_match(s_query, s_train, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
result = DIST_RES(result);
|
||||
|
||||
const int trainIdx = t * BLOCK_SIZE + lidx;
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows && result < myBestDistance /*&& mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
myBestDistance = result;
|
||||
myBestTrainIdx = trainIdx;
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
__local float *s_distance = (__local float *)sharebuffer;
|
||||
__local int *s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
//findBestMatch
|
||||
s_distance += lidy * BLOCK_SIZE;
|
||||
s_trainIdx += lidy * BLOCK_SIZE;
|
||||
s_distance[lidx] = myBestDistance;
|
||||
s_trainIdx[lidx] = myBestTrainIdx;
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
//reduce -- now all reduce implement in each threads.
|
||||
for (int k = 0 ; k < BLOCK_SIZE; k++)
|
||||
{
|
||||
if (myBestDistance > s_distance[k])
|
||||
{
|
||||
myBestDistance = s_distance[k];
|
||||
myBestTrainIdx = s_trainIdx[k];
|
||||
}
|
||||
}
|
||||
|
||||
if (queryIdx < query_rows && lidx == 0)
|
||||
{
|
||||
bestTrainIdx[queryIdx] = myBestTrainIdx;
|
||||
bestDistance[queryIdx] = myBestDistance;
|
||||
}
|
||||
}
|
||||
|
||||
//radius_unrollmatch
|
||||
__kernel void BruteForceMatch_RadiusUnrollMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
float maxDistance,
|
||||
//__global float *mask,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
__global int *nMatches,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int bestTrainIdx_cols,
|
||||
int step,
|
||||
int ostep
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
const int groupidy = get_group_id(1);
|
||||
|
||||
const int queryIdx = groupidy * BLOCK_SIZE + lidy;
|
||||
const int trainIdx = groupidx * BLOCK_SIZE + lidx;
|
||||
|
||||
__local value_type *s_query = (__local value_type *)sharebuffer;
|
||||
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
result_type result = 0;
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; ++i)
|
||||
{
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_block(s_query, s_train, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows &&
|
||||
convert_float(result) < maxDistance/* && mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
int ind = atom_inc(nMatches + queryIdx/*, (unsigned int) -1*/);
|
||||
|
||||
if(ind < bestTrainIdx_cols)
|
||||
{
|
||||
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
|
||||
bestDistance[queryIdx * (ostep / sizeof(float)) + ind] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
//radius_match
|
||||
__kernel void BruteForceMatch_RadiusMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
float maxDistance,
|
||||
//__global float *mask,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
__global int *nMatches,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int bestTrainIdx_cols,
|
||||
int step,
|
||||
int ostep
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
const int groupidy = get_group_id(1);
|
||||
|
||||
const int queryIdx = groupidy * BLOCK_SIZE + lidy;
|
||||
const int trainIdx = groupidx * BLOCK_SIZE + lidx;
|
||||
|
||||
__local value_type *s_query = (__local value_type *)sharebuffer;
|
||||
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
result_type result = 0;
|
||||
for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; ++i)
|
||||
{
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = loadx < query_cols ? train[min(groupidx * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_block(s_query, s_train, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows &&
|
||||
convert_float(result) < maxDistance/* && mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
int ind = atom_inc(nMatches + queryIdx);
|
||||
|
||||
if(ind < bestTrainIdx_cols)
|
||||
{
|
||||
bestTrainIdx[queryIdx * (ostep / sizeof(int)) + ind] = trainIdx;
|
||||
bestDistance[queryIdx * (ostep / sizeof(float)) + ind] = result;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__kernel void BruteForceMatch_knnUnrollMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global int2 *bestTrainIdx,
|
||||
__global float2 *bestDistance,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
__local value_type *s_query = (__local value_type *)sharebuffer;
|
||||
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
|
||||
|
||||
// load the query into local memory.
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
|
||||
{
|
||||
int loadx = lidx + i * BLOCK_SIZE;
|
||||
s_query[lidy * MAX_DESC_LEN + loadx] = loadx < query_cols ? query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
}
|
||||
|
||||
float myBestDistance1 = MAX_FLOAT;
|
||||
float myBestDistance2 = MAX_FLOAT;
|
||||
int myBestTrainIdx1 = -1;
|
||||
int myBestTrainIdx2 = -1;
|
||||
|
||||
//loopUnrolledCached
|
||||
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
|
||||
{
|
||||
result_type result = 0;
|
||||
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; i++)
|
||||
{
|
||||
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
|
||||
|
||||
//synchronize to make sure each elem for reduceIteration in share memory is written already.
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_multi_block(s_query, s_train, i, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
result = DIST_RES(result);
|
||||
|
||||
const int trainIdx = t * BLOCK_SIZE + lidx;
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows)
|
||||
{
|
||||
if (result < myBestDistance1)
|
||||
{
|
||||
myBestDistance2 = myBestDistance1;
|
||||
myBestTrainIdx2 = myBestTrainIdx1;
|
||||
myBestDistance1 = result;
|
||||
myBestTrainIdx1 = trainIdx;
|
||||
}
|
||||
else if (result < myBestDistance2)
|
||||
{
|
||||
myBestDistance2 = result;
|
||||
myBestTrainIdx2 = trainIdx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
__local float *s_distance = (local float *)sharebuffer;
|
||||
__local int *s_trainIdx = (local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
// find BestMatch
|
||||
s_distance += lidy * BLOCK_SIZE;
|
||||
s_trainIdx += lidy * BLOCK_SIZE;
|
||||
|
||||
s_distance[lidx] = myBestDistance1;
|
||||
s_trainIdx[lidx] = myBestTrainIdx1;
|
||||
|
||||
float bestDistance1 = MAX_FLOAT;
|
||||
float bestDistance2 = MAX_FLOAT;
|
||||
int bestTrainIdx1 = -1;
|
||||
int bestTrainIdx2 = -1;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (lidx == 0)
|
||||
{
|
||||
for (int i = 0 ; i < BLOCK_SIZE ; i++)
|
||||
{
|
||||
float val = s_distance[i];
|
||||
if (val < bestDistance1)
|
||||
{
|
||||
bestDistance2 = bestDistance1;
|
||||
bestTrainIdx2 = bestTrainIdx1;
|
||||
|
||||
bestDistance1 = val;
|
||||
bestTrainIdx1 = s_trainIdx[i];
|
||||
}
|
||||
else if (val < bestDistance2)
|
||||
{
|
||||
bestDistance2 = val;
|
||||
bestTrainIdx2 = s_trainIdx[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
s_distance[lidx] = myBestDistance2;
|
||||
s_trainIdx[lidx] = myBestTrainIdx2;
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (lidx == 0)
|
||||
{
|
||||
for (int i = 0 ; i < BLOCK_SIZE ; i++)
|
||||
{
|
||||
float val = s_distance[i];
|
||||
|
||||
if (val < bestDistance2)
|
||||
{
|
||||
bestDistance2 = val;
|
||||
bestTrainIdx2 = s_trainIdx[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
myBestDistance1 = bestDistance1;
|
||||
myBestDistance2 = bestDistance2;
|
||||
|
||||
myBestTrainIdx1 = bestTrainIdx1;
|
||||
myBestTrainIdx2 = bestTrainIdx2;
|
||||
|
||||
if (queryIdx < query_rows && lidx == 0)
|
||||
{
|
||||
bestTrainIdx[queryIdx] = (int2)(myBestTrainIdx1, myBestTrainIdx2);
|
||||
bestDistance[queryIdx] = (float2)(myBestDistance1, myBestDistance2);
|
||||
}
|
||||
}
|
||||
|
||||
__kernel void BruteForceMatch_knnMatch(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global int2 *bestTrainIdx,
|
||||
__global float2 *bestDistance,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step
|
||||
)
|
||||
{
|
||||
const int lidx = get_local_id(0);
|
||||
const int lidy = get_local_id(1);
|
||||
const int groupidx = get_group_id(0);
|
||||
|
||||
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
|
||||
__local value_type *s_query = (__local value_type *)sharebuffer;
|
||||
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
|
||||
|
||||
float myBestDistance1 = MAX_FLOAT;
|
||||
float myBestDistance2 = MAX_FLOAT;
|
||||
int myBestTrainIdx1 = -1;
|
||||
int myBestTrainIdx2 = -1;
|
||||
|
||||
//loop
|
||||
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
|
||||
{
|
||||
result_type result = 0.0f;
|
||||
for (int i = 0 ; i < (query_cols + BLOCK_SIZE -1) / BLOCK_SIZE ; i++)
|
||||
{
|
||||
const int loadx = lidx + i * BLOCK_SIZE;
|
||||
//load query and train into local memory
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = 0;
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = 0;
|
||||
|
||||
if (loadx < query_cols)
|
||||
{
|
||||
s_query[lidy * BLOCK_SIZE + lidx] = query[min(queryIdx, query_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
s_train[lidx * BLOCK_SIZE + lidy] = train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx];
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
result += reduce_block_match(s_query, s_train, lidx, lidy);
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
}
|
||||
|
||||
result = DIST_RES(result);
|
||||
|
||||
const int trainIdx = t * BLOCK_SIZE + lidx;
|
||||
|
||||
if (queryIdx < query_rows && trainIdx < train_rows /*&& mask(queryIdx, trainIdx)*/)
|
||||
{
|
||||
if (result < myBestDistance1)
|
||||
{
|
||||
myBestDistance2 = myBestDistance1;
|
||||
myBestTrainIdx2 = myBestTrainIdx1;
|
||||
myBestDistance1 = result;
|
||||
myBestTrainIdx1 = trainIdx;
|
||||
}
|
||||
else if (result < myBestDistance2)
|
||||
{
|
||||
myBestDistance2 = result;
|
||||
myBestTrainIdx2 = trainIdx;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
__local float *s_distance = (__local float *)sharebuffer;
|
||||
__local int *s_trainIdx = (__local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
|
||||
|
||||
//findBestMatch
|
||||
s_distance += lidy * BLOCK_SIZE;
|
||||
s_trainIdx += lidy * BLOCK_SIZE;
|
||||
|
||||
s_distance[lidx] = myBestDistance1;
|
||||
s_trainIdx[lidx] = myBestTrainIdx1;
|
||||
|
||||
float bestDistance1 = MAX_FLOAT;
|
||||
float bestDistance2 = MAX_FLOAT;
|
||||
int bestTrainIdx1 = -1;
|
||||
int bestTrainIdx2 = -1;
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (lidx == 0)
|
||||
{
|
||||
for (int i = 0 ; i < BLOCK_SIZE ; i++)
|
||||
{
|
||||
float val = s_distance[i];
|
||||
if (val < bestDistance1)
|
||||
{
|
||||
bestDistance2 = bestDistance1;
|
||||
bestTrainIdx2 = bestTrainIdx1;
|
||||
|
||||
bestDistance1 = val;
|
||||
bestTrainIdx1 = s_trainIdx[i];
|
||||
}
|
||||
else if (val < bestDistance2)
|
||||
{
|
||||
bestDistance2 = val;
|
||||
bestTrainIdx2 = s_trainIdx[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
s_distance[lidx] = myBestDistance2;
|
||||
s_trainIdx[lidx] = myBestTrainIdx2;
|
||||
|
||||
barrier(CLK_LOCAL_MEM_FENCE);
|
||||
|
||||
if (lidx == 0)
|
||||
{
|
||||
for (int i = 0 ; i < BLOCK_SIZE ; i++)
|
||||
{
|
||||
float val = s_distance[i];
|
||||
|
||||
if (val < bestDistance2)
|
||||
{
|
||||
bestDistance2 = val;
|
||||
bestTrainIdx2 = s_trainIdx[i];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
myBestDistance1 = bestDistance1;
|
||||
myBestDistance2 = bestDistance2;
|
||||
|
||||
myBestTrainIdx1 = bestTrainIdx1;
|
||||
myBestTrainIdx2 = bestTrainIdx2;
|
||||
|
||||
if (queryIdx < query_rows && lidx == 0)
|
||||
{
|
||||
bestTrainIdx[queryIdx] = (int2)(myBestTrainIdx1, myBestTrainIdx2);
|
||||
bestDistance[queryIdx] = (float2)(myBestDistance1, myBestDistance2);
|
||||
}
|
||||
}
|
||||
|
||||
kernel void BruteForceMatch_calcDistanceUnrolled(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global float *allDist,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step)
|
||||
{
|
||||
/* Todo */
|
||||
}
|
||||
|
||||
kernel void BruteForceMatch_calcDistance(
|
||||
__global T *query,
|
||||
__global T *train,
|
||||
//__global float *mask,
|
||||
__global float *allDist,
|
||||
__local float *sharebuffer,
|
||||
int query_rows,
|
||||
int query_cols,
|
||||
int train_rows,
|
||||
int train_cols,
|
||||
int step)
|
||||
{
|
||||
/* Todo */
|
||||
}
|
||||
|
||||
kernel void BruteForceMatch_findBestMatch(
|
||||
__global float *allDist,
|
||||
__global int *bestTrainIdx,
|
||||
__global float *bestDistance,
|
||||
int k
|
||||
)
|
||||
{
|
||||
/* Todo */
|
||||
}
|
@ -48,6 +48,7 @@
|
||||
|
||||
#include "opencv2/core/utility.hpp"
|
||||
#include "opencv2/core/private.hpp"
|
||||
#include "opencv2/core/ocl.hpp"
|
||||
|
||||
#include <algorithm>
|
||||
|
||||
|
213
modules/features2d/test/ocl/test_brute_force_matcher.cpp
Normal file
213
modules/features2d/test/ocl/test_brute_force_matcher.cpp
Normal file
@ -0,0 +1,213 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
|
||||
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
|
||||
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// @Authors
|
||||
// Niko Li, newlife20080214@gmail.com
|
||||
// Jia Haipeng, jiahaipeng95@gmail.com
|
||||
// Zero Lin, Zero.Lin@amd.com
|
||||
// Zhang Ying, zhangying913@gmail.com
|
||||
// Yao Wang, bitwangyaoyao@gmail.com
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
#include "cvconfig.h"
|
||||
#include "opencv2/ts/ocl_test.hpp"
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
|
||||
namespace cvtest {
|
||||
namespace ocl {
|
||||
PARAM_TEST_CASE(BruteForceMatcher, int, int)
|
||||
{
|
||||
int distType;
|
||||
int dim;
|
||||
|
||||
int queryDescCount;
|
||||
int countFactor;
|
||||
|
||||
Mat query, train;
|
||||
UMat uquery, utrain;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
distType = GET_PARAM(0);
|
||||
dim = GET_PARAM(1);
|
||||
|
||||
queryDescCount = 300; // must be even number because we split train data in some cases in two
|
||||
countFactor = 4; // do not change it
|
||||
|
||||
cv::Mat queryBuf, trainBuf;
|
||||
|
||||
// Generate query descriptors randomly.
|
||||
// Descriptor vector elements are integer values.
|
||||
queryBuf.create(queryDescCount, dim, CV_32SC1);
|
||||
rng.fill(queryBuf, cv::RNG::UNIFORM, cv::Scalar::all(0), cv::Scalar::all(3));
|
||||
queryBuf.convertTo(queryBuf, CV_32FC1);
|
||||
|
||||
// Generate train decriptors as follows:
|
||||
// copy each query descriptor to train set countFactor times
|
||||
// and perturb some one element of the copied descriptors in
|
||||
// in ascending order. General boundaries of the perturbation
|
||||
// are (0.f, 1.f).
|
||||
trainBuf.create(queryDescCount * countFactor, dim, CV_32FC1);
|
||||
float step = 1.f / countFactor;
|
||||
for (int qIdx = 0; qIdx < queryDescCount; qIdx++)
|
||||
{
|
||||
cv::Mat queryDescriptor = queryBuf.row(qIdx);
|
||||
for (int c = 0; c < countFactor; c++)
|
||||
{
|
||||
int tIdx = qIdx * countFactor + c;
|
||||
cv::Mat trainDescriptor = trainBuf.row(tIdx);
|
||||
queryDescriptor.copyTo(trainDescriptor);
|
||||
int elem = rng(dim);
|
||||
float diff = rng.uniform(step * c, step * (c + 1));
|
||||
trainDescriptor.at<float>(0, elem) += diff;
|
||||
}
|
||||
}
|
||||
|
||||
queryBuf.convertTo(query, CV_32F);
|
||||
trainBuf.convertTo(train, CV_32F);
|
||||
query.copyTo(uquery);
|
||||
train.copyTo(utrain);
|
||||
}
|
||||
};
|
||||
|
||||
#ifdef ANDROID
|
||||
OCL_TEST_P(BruteForceMatcher, DISABLED_Match_Single)
|
||||
#else
|
||||
OCL_TEST_P(BruteForceMatcher, Match_Single)
|
||||
#endif
|
||||
{
|
||||
BFMatcher matcher(distType);
|
||||
|
||||
std::vector<cv::DMatch> matches;
|
||||
matcher.match(uquery, utrain, matches);
|
||||
|
||||
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
|
||||
|
||||
int badCount = 0;
|
||||
for (size_t i = 0; i < matches.size(); i++)
|
||||
{
|
||||
cv::DMatch match = matches[i];
|
||||
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
|
||||
badCount++;
|
||||
}
|
||||
|
||||
ASSERT_EQ(0, badCount);
|
||||
}
|
||||
|
||||
#ifdef ANDROID
|
||||
OCL_TEST_P(BruteForceMatcher, DISABLED_KnnMatch_2_Single)
|
||||
#else
|
||||
OCL_TEST_P(BruteForceMatcher, KnnMatch_2_Single)
|
||||
#endif
|
||||
{
|
||||
const int knn = 2;
|
||||
|
||||
BFMatcher matcher(distType);
|
||||
|
||||
std::vector< std::vector<cv::DMatch> > matches;
|
||||
matcher.knnMatch(uquery, utrain, matches, knn);
|
||||
|
||||
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
|
||||
|
||||
int badCount = 0;
|
||||
for (size_t i = 0; i < matches.size(); i++)
|
||||
{
|
||||
if ((int)matches[i].size() != knn)
|
||||
badCount++;
|
||||
else
|
||||
{
|
||||
int localBadCount = 0;
|
||||
for (int k = 0; k < knn; k++)
|
||||
{
|
||||
cv::DMatch match = matches[i][k];
|
||||
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor + k) || (match.imgIdx != 0))
|
||||
localBadCount++;
|
||||
}
|
||||
badCount += localBadCount > 0 ? 1 : 0;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT_EQ(0, badCount);
|
||||
}
|
||||
|
||||
#ifdef ANDROID
|
||||
OCL_TEST_P(BruteForceMatcher, DISABLED_RadiusMatch_Single)
|
||||
#else
|
||||
OCL_TEST_P(BruteForceMatcher, RadiusMatch_Single)
|
||||
#endif
|
||||
{
|
||||
float radius = 1.f / countFactor;
|
||||
|
||||
BFMatcher matcher(distType);
|
||||
|
||||
std::vector< std::vector<cv::DMatch> > matches;
|
||||
matcher.radiusMatch(uquery, utrain, matches, radius);
|
||||
|
||||
ASSERT_EQ(static_cast<size_t>(queryDescCount), matches.size());
|
||||
|
||||
int badCount = 0;
|
||||
for (size_t i = 0; i < matches.size(); i++)
|
||||
{
|
||||
if ((int)matches[i].size() != 1)
|
||||
{
|
||||
badCount++;
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::DMatch match = matches[i][0];
|
||||
if ((match.queryIdx != (int)i) || (match.trainIdx != (int)i * countFactor) || (match.imgIdx != 0))
|
||||
badCount++;
|
||||
}
|
||||
}
|
||||
|
||||
ASSERT_EQ(0, badCount);
|
||||
}
|
||||
|
||||
OCL_INSTANTIATE_TEST_CASE_P(Matcher, BruteForceMatcher, Combine( Values((int)NORM_L1, (int)NORM_L2),
|
||||
Values(57, 64, 83, 128, 179, 256, 304) ) );
|
||||
|
||||
}//ocl
|
||||
}//cvtest
|
||||
|
||||
#endif //HAVE_OPENCL
|
Loading…
Reference in New Issue
Block a user