mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Merge pull request #17325 from hunter-college-ossd-spr-2020:nav-links
This commit is contained in:
commit
cb82388a84
@ -1,6 +1,10 @@
|
||||
Camera calibration With OpenCV {#tutorial_camera_calibration}
|
||||
==============================
|
||||
|
||||
@prev_tutorial{tutorial_camera_calibration_square_chess}
|
||||
@next_tutorial{tutorial_real_time_pose}
|
||||
|
||||
|
||||
Cameras have been around for a long-long time. However, with the introduction of the cheap *pinhole*
|
||||
cameras in the late 20th century, they became a common occurrence in our everyday life.
|
||||
Unfortunately, this cheapness comes with its price: significant distortion. Luckily, these are
|
||||
|
@ -1,6 +1,9 @@
|
||||
Create calibration pattern {#tutorial_camera_calibration_pattern}
|
||||
=========================================
|
||||
|
||||
@next_tutorial{tutorial_camera_calibration_square_chess}
|
||||
|
||||
|
||||
The goal of this tutorial is to learn how to create calibration pattern.
|
||||
|
||||
You can find a chessboard pattern in https://github.com/opencv/opencv/blob/3.4/doc/pattern.png
|
||||
|
@ -1,6 +1,10 @@
|
||||
Camera calibration with square chessboard {#tutorial_camera_calibration_square_chess}
|
||||
=========================================
|
||||
|
||||
@prev_tutorial{tutorial_camera_calibration_pattern}
|
||||
@next_tutorial{tutorial_camera_calibration}
|
||||
|
||||
|
||||
The goal of this tutorial is to learn how to calibrate a camera given a set of chessboard images.
|
||||
|
||||
*Test data*: use images in your data/chess folder.
|
||||
|
@ -1,6 +1,9 @@
|
||||
Interactive camera calibration application {#tutorial_interactive_calibration}
|
||||
==============================
|
||||
|
||||
@prev_tutorial{tutorial_real_time_pose}
|
||||
|
||||
|
||||
According to classical calibration technique user must collect all data first and when run @ref cv::calibrateCamera function
|
||||
to obtain camera parameters. If average re-projection error is huge or if estimated parameters seems to be wrong, process of
|
||||
selection or collecting data and starting of @ref cv::calibrateCamera repeats.
|
||||
|
@ -1,6 +1,10 @@
|
||||
Real Time pose estimation of a textured object {#tutorial_real_time_pose}
|
||||
==============================================
|
||||
|
||||
@prev_tutorial{tutorial_camera_calibration}
|
||||
@next_tutorial{tutorial_interactive_calibration}
|
||||
|
||||
|
||||
Nowadays, augmented reality is one of the top research topic in computer vision and robotics fields.
|
||||
The most elemental problem in augmented reality is the estimation of the camera pose respect of an
|
||||
object in the case of computer vision area to do later some 3D rendering or in the case of robotics
|
||||
|
@ -1,5 +1,8 @@
|
||||
# How to run deep networks on Android device {#tutorial_dnn_android}
|
||||
|
||||
@prev_tutorial{tutorial_dnn_halide_scheduling}
|
||||
@next_tutorial{tutorial_dnn_yolo}
|
||||
|
||||
## Introduction
|
||||
In this tutorial you'll know how to run deep learning networks on Android device
|
||||
using OpenCV deep learning module.
|
||||
|
@ -1,5 +1,7 @@
|
||||
# Custom deep learning layers support {#tutorial_dnn_custom_layers}
|
||||
|
||||
@prev_tutorial{tutorial_dnn_javascript}
|
||||
|
||||
## Introduction
|
||||
Deep learning is a fast growing area. The new approaches to build neural networks
|
||||
usually introduce new types of layers. They could be modifications of existing
|
||||
|
@ -1,6 +1,8 @@
|
||||
Load Caffe framework models {#tutorial_dnn_googlenet}
|
||||
===========================
|
||||
|
||||
@next_tutorial{tutorial_dnn_halide}
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
|
@ -1,5 +1,8 @@
|
||||
# How to enable Halide backend for improve efficiency {#tutorial_dnn_halide}
|
||||
|
||||
@prev_tutorial{tutorial_dnn_googlenet}
|
||||
@next_tutorial{tutorial_dnn_halide_scheduling}
|
||||
|
||||
## Introduction
|
||||
This tutorial guidelines how to run your models in OpenCV deep learning module
|
||||
using Halide language backend. Halide is an open-source project that let us
|
||||
|
@ -1,5 +1,8 @@
|
||||
# How to schedule your network for Halide backend {#tutorial_dnn_halide_scheduling}
|
||||
|
||||
@prev_tutorial{tutorial_dnn_halide}
|
||||
@next_tutorial{tutorial_dnn_android}
|
||||
|
||||
## Introduction
|
||||
Halide code is the same for every device we use. But for achieving the satisfied
|
||||
efficiency we should schedule computations properly. In this tutorial we describe
|
||||
|
@ -1,5 +1,8 @@
|
||||
# How to run deep networks in browser {#tutorial_dnn_javascript}
|
||||
|
||||
@prev_tutorial{tutorial_dnn_yolo}
|
||||
@next_tutorial{tutorial_dnn_custom_layers}
|
||||
|
||||
## Introduction
|
||||
This tutorial will show us how to run deep learning models using OpenCV.js right
|
||||
in a browser. Tutorial refers a sample of face detection and face recognition
|
||||
|
@ -1,6 +1,9 @@
|
||||
YOLO DNNs {#tutorial_dnn_yolo}
|
||||
===============================
|
||||
|
||||
@prev_tutorial{tutorial_dnn_android}
|
||||
@next_tutorial{tutorial_dnn_javascript}
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
AKAZE local features matching {#tutorial_akaze_matching}
|
||||
=============================
|
||||
|
||||
@prev_tutorial{tutorial_detection_of_planar_objects}
|
||||
@next_tutorial{tutorial_akaze_tracking}
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
AKAZE and ORB planar tracking {#tutorial_akaze_tracking}
|
||||
=============================
|
||||
|
||||
@prev_tutorial{tutorial_akaze_matching}
|
||||
@next_tutorial{tutorial_homography}
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
|
@ -1,6 +1,10 @@
|
||||
Detection of planar objects {#tutorial_detection_of_planar_objects}
|
||||
===========================
|
||||
|
||||
@prev_tutorial{tutorial_feature_homography}
|
||||
@next_tutorial{tutorial_akaze_matching}
|
||||
|
||||
|
||||
The goal of this tutorial is to learn how to use *features2d* and *calib3d* modules for detecting
|
||||
known planar objects in scenes.
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
Feature Description {#tutorial_feature_description}
|
||||
===================
|
||||
|
||||
@prev_tutorial{tutorial_feature_detection}
|
||||
@next_tutorial{tutorial_feature_flann_matcher}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
Feature Detection {#tutorial_feature_detection}
|
||||
=================
|
||||
|
||||
@prev_tutorial{tutorial_corner_subpixels}
|
||||
@next_tutorial{tutorial_feature_description}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
Feature Matching with FLANN {#tutorial_feature_flann_matcher}
|
||||
===========================
|
||||
|
||||
@prev_tutorial{tutorial_feature_description}
|
||||
@next_tutorial{tutorial_feature_homography}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
Features2D + Homography to find a known object {#tutorial_feature_homography}
|
||||
==============================================
|
||||
|
||||
@prev_tutorial{tutorial_feature_flann_matcher}
|
||||
@next_tutorial{tutorial_detection_of_planar_objects}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,8 @@
|
||||
Basic concepts of the homography explained with code {#tutorial_homography}
|
||||
====================================================
|
||||
|
||||
@prev_tutorial{tutorial_akaze_tracking}
|
||||
|
||||
@tableofcontents
|
||||
|
||||
Introduction {#tutorial_homography_Introduction}
|
||||
|
@ -1,6 +1,9 @@
|
||||
Detecting corners location in subpixels {#tutorial_corner_subpixels}
|
||||
=======================================
|
||||
|
||||
@prev_tutorial{tutorial_generic_corner_detector}
|
||||
@next_tutorial{tutorial_feature_detection}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,10 @@
|
||||
Creating your own corner detector {#tutorial_generic_corner_detector}
|
||||
=================================
|
||||
|
||||
@prev_tutorial{tutorial_good_features_to_track}
|
||||
@next_tutorial{tutorial_corner_subpixels}
|
||||
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
Shi-Tomasi corner detector {#tutorial_good_features_to_track}
|
||||
==========================
|
||||
|
||||
@prev_tutorial{tutorial_harris_detector}
|
||||
@next_tutorial{tutorial_generic_corner_detector}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,8 @@
|
||||
Harris corner detector {#tutorial_harris_detector}
|
||||
======================
|
||||
|
||||
@next_tutorial{tutorial_good_features_to_track}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -2,6 +2,8 @@ Similarity check (PNSR and SSIM) on the GPU {#tutorial_gpu_basics_similarity}
|
||||
===========================================
|
||||
@todo update this tutorial
|
||||
|
||||
@next_tutorial{tutorial_gpu_thrust_interop}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,8 @@
|
||||
Using a cv::cuda::GpuMat with thrust {#tutorial_gpu_thrust_interop}
|
||||
===========================================
|
||||
|
||||
@prev_tutorial{tutorial_gpu_basics_similarity}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,10 @@
|
||||
OpenCV4Android SDK {#tutorial_O4A_SDK}
|
||||
==================
|
||||
|
||||
@prev_tutorial{tutorial_android_dev_intro}
|
||||
@next_tutorial{tutorial_dev_with_OCV_on_Android}
|
||||
|
||||
|
||||
This tutorial was designed to help you with installation and configuration of OpenCV4Android SDK.
|
||||
|
||||
This guide was written with MS Windows 7 in mind, though it should work with GNU Linux and Apple Mac
|
||||
|
@ -1,6 +1,10 @@
|
||||
Introduction into Android Development {#tutorial_android_dev_intro}
|
||||
=====================================
|
||||
|
||||
@prev_tutorial{tutorial_clojure_dev_intro}
|
||||
@next_tutorial{tutorial_O4A_SDK}
|
||||
|
||||
|
||||
This guide was designed to help you in learning Android development basics and setting up your
|
||||
working environment quickly. It was written with Windows 7 in mind, though it would work with Linux
|
||||
(Ubuntu), Mac OS X and any other OS supported by Android SDK.
|
||||
|
@ -1,6 +1,10 @@
|
||||
Use OpenCL in Android camera preview based CV application {#tutorial_android_ocl_intro}
|
||||
=====================================
|
||||
|
||||
@prev_tutorial{tutorial_dev_with_OCV_on_Android}
|
||||
@next_tutorial{tutorial_macos_install}
|
||||
|
||||
|
||||
This guide was designed to help you in use of [OpenCL ™](https://www.khronos.org/opencl/) in Android camera preview based CV application.
|
||||
It was written for [Eclipse-based ADT tools](http://developer.android.com/tools/help/adt.html)
|
||||
(deprecated by Google now), but it easily can be reproduced with [Android Studio](http://developer.android.com/tools/studio/index.html).
|
||||
|
@ -1,6 +1,10 @@
|
||||
Android Development with OpenCV {#tutorial_dev_with_OCV_on_Android}
|
||||
===============================
|
||||
|
||||
@prev_tutorial{tutorial_O4A_SDK}
|
||||
@next_tutorial{tutorial_android_ocl_intro}
|
||||
|
||||
|
||||
This tutorial has been created to help you use OpenCV library within your Android project.
|
||||
|
||||
This guide was written with Windows 7 in mind, though it should work with any other OS supported by
|
||||
|
@ -1,6 +1,10 @@
|
||||
Building OpenCV for Tegra with CUDA {#tutorial_building_tegra_cuda}
|
||||
===================================
|
||||
|
||||
@prev_tutorial{tutorial_arm_crosscompile_with_cmake}
|
||||
@next_tutorial{tutorial_display_image}
|
||||
|
||||
|
||||
@tableofcontents
|
||||
|
||||
OpenCV with CUDA for Tegra
|
||||
|
@ -1,6 +1,10 @@
|
||||
Introduction to OpenCV Development with Clojure {#tutorial_clojure_dev_intro}
|
||||
===============================================
|
||||
|
||||
@prev_tutorial{tutorial_java_eclipse}
|
||||
@next_tutorial{tutorial_android_dev_intro}
|
||||
|
||||
|
||||
As of OpenCV 2.4.4, OpenCV supports desktop Java development using nearly the same interface as for
|
||||
Android development.
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
Cross referencing OpenCV from other Doxygen projects {#tutorial_cross_referencing}
|
||||
====================================================
|
||||
|
||||
@prev_tutorial{tutorial_transition_guide}
|
||||
|
||||
|
||||
Cross referencing OpenCV
|
||||
------------------------
|
||||
|
||||
|
@ -1,6 +1,10 @@
|
||||
Cross compilation for ARM based Linux systems {#tutorial_arm_crosscompile_with_cmake}
|
||||
=============================================
|
||||
|
||||
@prev_tutorial{tutorial_ios_install}
|
||||
@next_tutorial{tutorial_building_tegra_cuda}
|
||||
|
||||
|
||||
This steps are tested on Ubuntu Linux 12.04, but should work for other Linux distributions. I case
|
||||
of other distributions package names and names of cross compilation tools may differ. There are
|
||||
several popular EABI versions that are used on ARM platform. This tutorial is written for *gnueabi*
|
||||
|
@ -1,6 +1,10 @@
|
||||
Introduction to Java Development {#tutorial_java_dev_intro}
|
||||
================================
|
||||
|
||||
@prev_tutorial{tutorial_windows_visual_studio_image_watch}
|
||||
@next_tutorial{tutorial_java_eclipse}
|
||||
|
||||
|
||||
As of OpenCV 2.4.4, OpenCV supports desktop Java development using nearly the same interface as for
|
||||
Android development. This guide will help you to create your first Java (or Scala) application using
|
||||
OpenCV. We will use either [Apache Ant](http://ant.apache.org/) or [Simple Build Tool
|
||||
|
@ -1,6 +1,9 @@
|
||||
Getting Started with Images {#tutorial_display_image}
|
||||
===========================
|
||||
|
||||
@prev_tutorial{tutorial_building_tegra_cuda}
|
||||
@next_tutorial{tutorial_documentation}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,10 @@
|
||||
Writing documentation for OpenCV {#tutorial_documentation}
|
||||
================================
|
||||
|
||||
@prev_tutorial{tutorial_display_image}
|
||||
@next_tutorial{tutorial_transition_guide}
|
||||
|
||||
|
||||
@tableofcontents
|
||||
|
||||
Doxygen overview {#tutorial_documentation_overview}
|
||||
|
@ -1,6 +1,9 @@
|
||||
Installation in iOS {#tutorial_ios_install}
|
||||
===================
|
||||
|
||||
@prev_tutorial{tutorial_macos_install}
|
||||
@next_tutorial{tutorial_arm_crosscompile_with_cmake}
|
||||
|
||||
Required Packages
|
||||
-----------------
|
||||
|
||||
|
@ -1,6 +1,10 @@
|
||||
Using OpenCV Java with Eclipse {#tutorial_java_eclipse}
|
||||
==============================
|
||||
|
||||
@prev_tutorial{tutorial_java_dev_intro}
|
||||
@next_tutorial{tutorial_clojure_dev_intro}
|
||||
|
||||
|
||||
Since version 2.4.4 [OpenCV supports Java](http://opencv.org/opencv-java-api.html). In this tutorial
|
||||
I will explain how to setup development environment for using OpenCV Java with Eclipse in
|
||||
**Windows**, so you can enjoy the benefits of garbage collected, very refactorable (rename variable,
|
||||
|
@ -1,6 +1,9 @@
|
||||
Using OpenCV with Eclipse (plugin CDT) {#tutorial_linux_eclipse}
|
||||
======================================
|
||||
|
||||
@prev_tutorial{tutorial_linux_gcc_cmake}
|
||||
@next_tutorial{tutorial_windows_install}
|
||||
|
||||
Prerequisites
|
||||
-------------
|
||||
Two ways, one by forming a project directly, and another by CMake Prerequisites
|
||||
|
@ -1,6 +1,10 @@
|
||||
Using OpenCV with gcc and CMake {#tutorial_linux_gcc_cmake}
|
||||
===============================
|
||||
|
||||
@prev_tutorial{tutorial_linux_install}
|
||||
@next_tutorial{tutorial_linux_eclipse}
|
||||
|
||||
|
||||
@note We assume that you have successfully installed OpenCV in your workstation.
|
||||
|
||||
- The easiest way of using OpenCV in your code is to use [CMake](http://www.cmake.org/). A few
|
||||
|
@ -1,6 +1,9 @@
|
||||
Installation in Linux {#tutorial_linux_install}
|
||||
=====================
|
||||
|
||||
@next_tutorial{tutorial_linux_gcc_cmake}
|
||||
|
||||
|
||||
The following steps have been tested for Ubuntu 10.04 but should work with other distros as well.
|
||||
|
||||
Required Packages
|
||||
|
@ -1,6 +1,10 @@
|
||||
Installation in MacOS {#tutorial_macos_install}
|
||||
=====================
|
||||
|
||||
@prev_tutorial{tutorial_android_ocl_intro}
|
||||
@next_tutorial{tutorial_ios_install}
|
||||
|
||||
|
||||
The following steps have been tested for MacOSX (Mavericks) but should work with other versions as well.
|
||||
|
||||
Required Packages
|
||||
|
@ -1,6 +1,10 @@
|
||||
Transition guide {#tutorial_transition_guide}
|
||||
================
|
||||
|
||||
@prev_tutorial{tutorial_documentation}
|
||||
@next_tutorial{tutorial_cross_referencing}
|
||||
|
||||
|
||||
@tableofcontents
|
||||
|
||||
Changes overview {#tutorial_transition_overview}
|
||||
|
@ -1,6 +1,10 @@
|
||||
Installation in Windows {#tutorial_windows_install}
|
||||
=======================
|
||||
|
||||
@prev_tutorial{tutorial_linux_eclipse}
|
||||
@next_tutorial{tutorial_windows_visual_studio_opencv}
|
||||
|
||||
|
||||
The description here was tested on Windows 7 SP1. Nevertheless, it should also work on any other
|
||||
relatively modern version of Windows OS. If you encounter errors after following the steps described
|
||||
below, feel free to contact us via our [OpenCV Q&A forum](http://answers.opencv.org). We'll do our
|
||||
|
@ -1,6 +1,10 @@
|
||||
Image Watch: viewing in-memory images in the Visual Studio debugger {#tutorial_windows_visual_studio_image_watch}
|
||||
===================================================================
|
||||
|
||||
@prev_tutorial{tutorial_windows_visual_studio_opencv}
|
||||
@next_tutorial{tutorial_java_dev_intro}
|
||||
|
||||
|
||||
Image Watch is a plug-in for Microsoft Visual Studio that lets you to visualize in-memory images
|
||||
(*cv::Mat* or *IplImage_* objects, for example) while debugging an application. This can be helpful
|
||||
for tracking down bugs, or for simply understanding what a given piece of code is doing.
|
||||
|
@ -1,6 +1,10 @@
|
||||
How to build applications with OpenCV inside the "Microsoft Visual Studio" {#tutorial_windows_visual_studio_opencv}
|
||||
==========================================================================
|
||||
|
||||
@prev_tutorial{tutorial_windows_install}
|
||||
@next_tutorial{tutorial_windows_visual_studio_image_watch}
|
||||
|
||||
|
||||
Everything I describe here will apply to the `C\C++` interface of OpenCV. I start out from the
|
||||
assumption that you have read and completed with success the @ref tutorial_windows_install tutorial.
|
||||
Therefore, before you go any further make sure you have an OpenCV directory that contains the OpenCV
|
||||
|
@ -1,6 +1,8 @@
|
||||
OpenCV iOS Hello {#tutorial_hello}
|
||||
================
|
||||
|
||||
@next_tutorial{tutorial_image_manipulation}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
OpenCV iOS - Image Processing {#tutorial_image_manipulation}
|
||||
=============================
|
||||
|
||||
@prev_tutorial{tutorial_hello}
|
||||
@next_tutorial{tutorial_video_processing}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
OpenCV iOS - Video Processing {#tutorial_video_processing}
|
||||
=============================
|
||||
|
||||
@prev_tutorial{tutorial_image_manipulation}
|
||||
|
||||
|
||||
This tutorial explains how to process video frames using the iPhone's camera and OpenCV.
|
||||
|
||||
Prerequisites:
|
||||
|
@ -1,6 +1,8 @@
|
||||
Introduction to Principal Component Analysis (PCA) {#tutorial_introduction_to_pca}
|
||||
=======================================
|
||||
|
||||
@prev_tutorial{tutorial_non_linear_svms}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,8 @@
|
||||
Introduction to Support Vector Machines {#tutorial_introduction_to_svm}
|
||||
=======================================
|
||||
|
||||
@next_tutorial{tutorial_non_linear_svms}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
Support Vector Machines for Non-Linearly Separable Data {#tutorial_non_linear_svms}
|
||||
=======================================================
|
||||
|
||||
@prev_tutorial{tutorial_introduction_to_svm}
|
||||
@next_tutorial{tutorial_introduction_to_pca}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,8 @@
|
||||
Cascade Classifier {#tutorial_cascade_classifier}
|
||||
==================
|
||||
|
||||
@next_tutorial{tutorial_traincascade}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,8 @@
|
||||
Cascade Classifier Training {#tutorial_traincascade}
|
||||
===========================
|
||||
|
||||
@prev_tutorial{tutorial_cascade_classifier}
|
||||
|
||||
Introduction
|
||||
------------
|
||||
|
||||
|
@ -1,6 +1,8 @@
|
||||
How to Use Background Subtraction Methods {#tutorial_background_subtraction}
|
||||
=========================================
|
||||
|
||||
@next_tutorial{tutorial_meanshift}
|
||||
|
||||
- Background subtraction (BS) is a common and widely used technique for generating a foreground
|
||||
mask (namely, a binary image containing the pixels belonging to moving objects in the scene) by
|
||||
using static cameras.
|
||||
|
@ -1,6 +1,9 @@
|
||||
Meanshift and Camshift {#tutorial_meanshift}
|
||||
======================
|
||||
|
||||
@prev_tutorial{tutorial_background_subtraction}
|
||||
@next_tutorial{tutorial_optical_flow}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,8 @@
|
||||
Optical Flow {#tutorial_optical_flow}
|
||||
============
|
||||
|
||||
@prev_tutorial{tutorial_meanshift}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
Using Creative Senz3D and other Intel Perceptual Computing SDK compatible depth sensors {#tutorial_intelperc}
|
||||
=======================================================================================
|
||||
|
||||
@prev_tutorial{tutorial_kinect_openni}
|
||||
|
||||
|
||||
Depth sensors compatible with Intel Perceptual Computing SDK are supported through VideoCapture
|
||||
class. Depth map, RGB image and some other formats of output can be retrieved by using familiar
|
||||
interface of VideoCapture.
|
||||
|
@ -1,6 +1,10 @@
|
||||
Using Kinect and other OpenNI compatible depth sensors {#tutorial_kinect_openni}
|
||||
======================================================
|
||||
|
||||
@prev_tutorial{tutorial_video_write}
|
||||
@next_tutorial{tutorial_intelperc}
|
||||
|
||||
|
||||
Depth sensors compatible with OpenNI (Kinect, XtionPRO, ...) are supported through VideoCapture
|
||||
class. Depth map, BGR image and some other formats of output can be retrieved by using familiar
|
||||
interface of VideoCapture.
|
||||
|
@ -1,6 +1,8 @@
|
||||
Video Input with OpenCV and similarity measurement {#tutorial_video_input_psnr_ssim}
|
||||
==================================================
|
||||
|
||||
@next_tutorial{tutorial_video_write}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
Creating a video with OpenCV {#tutorial_video_write}
|
||||
============================
|
||||
|
||||
@prev_tutorial{tutorial_video_input_psnr_ssim}
|
||||
@next_tutorial{tutorial_kinect_openni}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
Creating Widgets {#tutorial_creating_widgets}
|
||||
================
|
||||
|
||||
@prev_tutorial{tutorial_transformations}
|
||||
@next_tutorial{tutorial_histo3D}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,8 @@
|
||||
Creating a 3D histogram {#tutorial_histo3D}
|
||||
================
|
||||
|
||||
@prev_tutorial{tutorial_creating_widgets}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,8 @@
|
||||
Launching Viz {#tutorial_launching_viz}
|
||||
=============
|
||||
|
||||
@next_tutorial{tutorial_widget_pose}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
Transformations {#tutorial_transformations}
|
||||
===============
|
||||
|
||||
@prev_tutorial{tutorial_widget_pose}
|
||||
@next_tutorial{tutorial_creating_widgets}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
@ -1,6 +1,9 @@
|
||||
Pose of a widget {#tutorial_widget_pose}
|
||||
================
|
||||
|
||||
@prev_tutorial{tutorial_launching_viz}
|
||||
@next_tutorial{tutorial_transformations}
|
||||
|
||||
Goal
|
||||
----
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user