mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 20:50:25 +08:00
changes related with code review
This commit is contained in:
parent
f7ac73998a
commit
cc538ddfa6
@ -24,7 +24,7 @@ set_target_properties(${the_target} PROPERTIES
|
||||
ARCHIVE_OUTPUT_DIRECTORY ${LIBRARY_OUTPUT_PATH}
|
||||
RUNTIME_OUTPUT_DIRECTORY ${EXECUTABLE_OUTPUT_PATH}
|
||||
INSTALL_NAME_DIR lib
|
||||
OUTPUT_NAME ${the_target})
|
||||
OUTPUT_NAME "opencv_trainsoftcascade")
|
||||
|
||||
if(ENABLE_SOLUTION_FOLDERS)
|
||||
set_target_properties(${the_target} PROPERTIES FOLDER "applications")
|
||||
|
@ -114,6 +114,8 @@ void sft::read(const cv::FileNode& node, Config& x, const Config& default_value)
|
||||
x.read(node);
|
||||
}
|
||||
|
||||
namespace {
|
||||
|
||||
struct Out
|
||||
{
|
||||
Out(std::ostream& _out): out(_out) {}
|
||||
@ -124,6 +126,7 @@ struct Out
|
||||
private:
|
||||
Out& operator=(Out const& other);
|
||||
};
|
||||
}
|
||||
|
||||
std::ostream& sft::operator<<(std::ostream& out, const Config& m)
|
||||
{
|
||||
|
@ -46,7 +46,7 @@
|
||||
#include <opencv2/core/core.hpp>
|
||||
#include <opencv2/softcascade/softcascade.hpp>
|
||||
|
||||
namespace cv {using namespace scascade;}
|
||||
namespace cv {using namespace softcascade;}
|
||||
namespace sft
|
||||
{
|
||||
|
||||
|
@ -47,7 +47,7 @@
|
||||
namespace sft
|
||||
{
|
||||
|
||||
using cv::Dataset;
|
||||
using cv::softcascade::Dataset;
|
||||
|
||||
class ScaledDataset : public Dataset
|
||||
{
|
||||
|
@ -76,7 +76,7 @@ int main(int argc, char** argv)
|
||||
string configPath = parser.get<string>("config");
|
||||
if (configPath.empty())
|
||||
{
|
||||
std::cout << "Configuration file is missing or empty. Could not start training." << std::endl << std::flush;
|
||||
std::cout << "Configuration file is missing or empty. Could not start training." << std::endl;
|
||||
return 0;
|
||||
}
|
||||
|
||||
@ -84,7 +84,7 @@ int main(int argc, char** argv)
|
||||
cv::FileStorage fs(configPath, cv::FileStorage::READ);
|
||||
if(!fs.isOpened())
|
||||
{
|
||||
std::cout << "Configuration file " << configPath << " can't be opened." << std::endl << std::flush;
|
||||
std::cout << "Configuration file " << configPath << " can't be opened." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -97,7 +97,7 @@ int main(int argc, char** argv)
|
||||
cv::FileStorage fso(cfg.outXmlPath, cv::FileStorage::WRITE);
|
||||
if(!fso.isOpened())
|
||||
{
|
||||
std::cout << "Training stopped. Output classifier Xml file " << cfg.outXmlPath << " can't be opened." << std::endl << std::flush;
|
||||
std::cout << "Training stopped. Output classifier Xml file " << cfg.outXmlPath << " can't be opened." << std::endl;
|
||||
return 1;
|
||||
}
|
||||
|
||||
@ -128,7 +128,7 @@ int main(int argc, char** argv)
|
||||
cv::Rect boundingBox = cfg.bbox(it);
|
||||
std::cout << "Object bounding box" << boundingBox << std::endl;
|
||||
|
||||
typedef cv::SoftCascadeOctave Octave;
|
||||
typedef cv::Octave Octave;
|
||||
|
||||
cv::Ptr<Octave> boost = Octave::create(boundingBox, npositives, nnegatives, *it, shrinkage, nfeatures);
|
||||
|
||||
|
@ -97,7 +97,7 @@ catch (const cv::Exception &e) \
|
||||
}
|
||||
|
||||
using namespace cv;
|
||||
typedef cv::scascade::ChannelFeatureBuilder scascade_ChannelFeatureBuilder;
|
||||
typedef cv::softcascade::ChannelFeatureBuilder softcascade_ChannelFeatureBuilder;
|
||||
|
||||
typedef vector<uchar> vector_uchar;
|
||||
typedef vector<int> vector_int;
|
||||
@ -126,7 +126,7 @@ typedef Ptr<DescriptorExtractor> Ptr_DescriptorExtractor;
|
||||
typedef Ptr<Feature2D> Ptr_Feature2D;
|
||||
typedef Ptr<DescriptorMatcher> Ptr_DescriptorMatcher;
|
||||
|
||||
typedef Ptr<cv::scascade::ChannelFeatureBuilder> Ptr_ChannelFeatureBuilder;
|
||||
typedef Ptr<cv::softcascade::ChannelFeatureBuilder> Ptr_ChannelFeatureBuilder;
|
||||
|
||||
typedef SimpleBlobDetector::Params SimpleBlobDetector_Params;
|
||||
|
||||
|
@ -25,20 +25,20 @@ The sample has been rejected if it fall rejection threshold. So stageless cascad
|
||||
.. [BMTG12] Rodrigo Benenson, Markus Mathias, Radu Timofte and Luc Van Gool. Pedestrian detection at 100 frames per second. IEEE CVPR, 2012.
|
||||
|
||||
|
||||
SoftCascadeDetector
|
||||
Detector
|
||||
-------------------
|
||||
.. ocv:class:: SoftCascadeDetector
|
||||
.. ocv:class:: Detector
|
||||
|
||||
Implementation of soft (stageless) cascaded detector. ::
|
||||
|
||||
class CV_EXPORTS_W SoftCascadeDetector : public Algorithm
|
||||
class CV_EXPORTS_W Detector : public Algorithm
|
||||
{
|
||||
public:
|
||||
|
||||
enum { NO_REJECT = 1, DOLLAR = 2, /*PASCAL = 4,*/ DEFAULT = NO_REJECT};
|
||||
|
||||
CV_WRAP SoftCascadeDetector(double minScale = 0.4, double maxScale = 5., int scales = 55, int rejCriteria = 1);
|
||||
CV_WRAP virtual ~SoftCascadeDetector();
|
||||
CV_WRAP Detector(double minScale = 0.4, double maxScale = 5., int scales = 55, int rejCriteria = 1);
|
||||
CV_WRAP virtual ~Detector();
|
||||
cv::AlgorithmInfo* info() const;
|
||||
CV_WRAP virtual bool load(const FileNode& fileNode);
|
||||
CV_WRAP virtual void read(const FileNode& fileNode);
|
||||
@ -49,13 +49,13 @@ Implementation of soft (stageless) cascaded detector. ::
|
||||
|
||||
|
||||
|
||||
SoftCascadeDetector::SoftCascadeDetector
|
||||
Detector::Detector
|
||||
----------------------------------------
|
||||
An empty cascade will be created.
|
||||
|
||||
.. ocv:function:: SoftCascadeDetector::SoftCascadeDetector(float minScale = 0.4f, float maxScale = 5.f, int scales = 55, int rejCriteria = 1)
|
||||
.. ocv:function:: Detector::Detector(float minScale = 0.4f, float maxScale = 5.f, int scales = 55, int rejCriteria = 1)
|
||||
|
||||
.. ocv:pyfunction:: cv2.SoftCascadeDetector.SoftCascadeDetector(minScale[, maxScale[, scales[, rejCriteria]]]) -> cascade
|
||||
.. ocv:pyfunction:: cv2.Detector.Detector(minScale[, maxScale[, scales[, rejCriteria]]]) -> cascade
|
||||
|
||||
:param minScale: a minimum scale relative to the original size of the image on which cascade will be applied.
|
||||
|
||||
@ -67,35 +67,35 @@ An empty cascade will be created.
|
||||
|
||||
|
||||
|
||||
SoftCascadeDetector::~SoftCascadeDetector
|
||||
Detector::~Detector
|
||||
-----------------------------------------
|
||||
Destructor for SoftCascadeDetector.
|
||||
Destructor for Detector.
|
||||
|
||||
.. ocv:function:: SoftCascadeDetector::~SoftCascadeDetector()
|
||||
.. ocv:function:: Detector::~Detector()
|
||||
|
||||
|
||||
|
||||
SoftCascadeDetector::load
|
||||
Detector::load
|
||||
--------------------------
|
||||
Load cascade from FileNode.
|
||||
|
||||
.. ocv:function:: bool SoftCascadeDetector::load(const FileNode& fileNode)
|
||||
.. ocv:function:: bool Detector::load(const FileNode& fileNode)
|
||||
|
||||
.. ocv:pyfunction:: cv2.SoftCascadeDetector.load(fileNode)
|
||||
.. ocv:pyfunction:: cv2.Detector.load(fileNode)
|
||||
|
||||
:param fileNode: File node from which the soft cascade are read.
|
||||
|
||||
|
||||
|
||||
SoftCascadeDetector::detect
|
||||
Detector::detect
|
||||
---------------------------
|
||||
Apply cascade to an input frame and return the vector of Detection objects.
|
||||
|
||||
.. ocv:function:: void SoftCascadeDetector::detect(InputArray image, InputArray rois, std::vector<Detection>& objects) const
|
||||
.. ocv:function:: void Detector::detect(InputArray image, InputArray rois, std::vector<Detection>& objects) const
|
||||
|
||||
.. ocv:function:: void SoftCascadeDetector::detect(InputArray image, InputArray rois, OutputArray rects, OutputArray confs) const
|
||||
.. ocv:function:: void Detector::detect(InputArray image, InputArray rois, OutputArray rects, OutputArray confs) const
|
||||
|
||||
.. ocv:pyfunction:: cv2.SoftCascadeDetector.detect(image, rois) -> (rects, confs)
|
||||
.. ocv:pyfunction:: cv2.Detector.detect(image, rois) -> (rects, confs)
|
||||
|
||||
:param image: a frame on which detector will be applied.
|
||||
|
||||
|
@ -7,13 +7,13 @@ Soft Cascade Detector Training
|
||||
--------------------------------------------
|
||||
|
||||
|
||||
SoftCascadeOctave
|
||||
Octave
|
||||
-----------------
|
||||
.. ocv:class:: SoftCascadeOctave
|
||||
.. ocv:class:: Octave
|
||||
|
||||
Public interface for soft cascade training algorithm. ::
|
||||
|
||||
class CV_EXPORTS SoftCascadeOctave : public Algorithm
|
||||
class CV_EXPORTS Octave : public Algorithm
|
||||
{
|
||||
public:
|
||||
|
||||
@ -25,8 +25,8 @@ Public interface for soft cascade training algorithm. ::
|
||||
// Originally proposed by L. Bourdev and J. Brandt
|
||||
HEURISTIC = 4 };
|
||||
|
||||
virtual ~SoftCascadeOctave();
|
||||
static cv::Ptr<SoftCascadeOctave> create(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage);
|
||||
virtual ~Octave();
|
||||
static cv::Ptr<Octave> create(cv::Rect boundingBox, int npositives, int nnegatives, int logScale, int shrinkage);
|
||||
|
||||
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) = 0;
|
||||
virtual void setRejectThresholds(OutputArray thresholds) = 0;
|
||||
@ -37,17 +37,17 @@ Public interface for soft cascade training algorithm. ::
|
||||
|
||||
|
||||
|
||||
SoftCascadeOctave::~SoftCascadeOctave
|
||||
Octave::~Octave
|
||||
---------------------------------------
|
||||
Destructor for SoftCascadeOctave.
|
||||
Destructor for Octave.
|
||||
|
||||
.. ocv:function:: SoftCascadeOctave::~SoftCascadeOctave()
|
||||
.. ocv:function:: Octave::~Octave()
|
||||
|
||||
|
||||
SoftCascadeOctave::train
|
||||
Octave::train
|
||||
------------------------
|
||||
|
||||
.. ocv:function:: bool SoftCascadeOctave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth)
|
||||
.. ocv:function:: bool Octave::train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth)
|
||||
|
||||
:param dataset an object that allows communicate for training set.
|
||||
|
||||
@ -59,19 +59,19 @@ SoftCascadeOctave::train
|
||||
|
||||
|
||||
|
||||
SoftCascadeOctave::setRejectThresholds
|
||||
Octave::setRejectThresholds
|
||||
--------------------------------------
|
||||
|
||||
.. ocv:function:: void SoftCascadeOctave::setRejectThresholds(OutputArray thresholds)
|
||||
.. ocv:function:: void Octave::setRejectThresholds(OutputArray thresholds)
|
||||
|
||||
:param thresholds an output array of resulted rejection vector. Have same size as number of trained stages.
|
||||
|
||||
|
||||
SoftCascadeOctave::write
|
||||
Octave::write
|
||||
------------------------
|
||||
|
||||
.. ocv:function:: void SoftCascadeOctave::train(cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const
|
||||
.. ocv:function:: void SoftCascadeOctave::train( CvFileStorage* fs, string name) const
|
||||
.. ocv:function:: void Octave::train(cv::FileStorage &fs, const FeaturePool* pool, InputArray thresholds) const
|
||||
.. ocv:function:: void Octave::train( CvFileStorage* fs, string name) const
|
||||
|
||||
:param fs an output file storage to store trained detector.
|
||||
|
||||
|
@ -45,7 +45,7 @@
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
|
||||
namespace cv { namespace scascade {
|
||||
namespace cv { namespace softcascade {
|
||||
|
||||
// Representation of detectors result.
|
||||
struct CV_EXPORTS Detection
|
||||
@ -64,8 +64,6 @@ struct CV_EXPORTS Detection
|
||||
int kind;
|
||||
};
|
||||
|
||||
|
||||
|
||||
class CV_EXPORTS Dataset
|
||||
{
|
||||
public:
|
||||
@ -136,7 +134,7 @@ public:
|
||||
// ========================================================================== //
|
||||
// Implementation of soft (stageless) cascaded detector.
|
||||
// ========================================================================== //
|
||||
class CV_EXPORTS_W SoftCascadeDetector : public cv::Algorithm
|
||||
class CV_EXPORTS_W Detector : public cv::Algorithm
|
||||
{
|
||||
public:
|
||||
|
||||
@ -147,9 +145,9 @@ public:
|
||||
// Param minScale is a maximum scale relative to the original size of the image on which cascade will be applied.
|
||||
// Param scales is a number of scales from minScale to maxScale.
|
||||
// Param rejCriteria is used for NMS.
|
||||
CV_WRAP SoftCascadeDetector(double minScale = 0.4, double maxScale = 5., int scales = 55, int rejCriteria = 1);
|
||||
CV_WRAP Detector(double minScale = 0.4, double maxScale = 5., int scales = 55, int rejCriteria = 1);
|
||||
|
||||
CV_WRAP virtual ~SoftCascadeDetector();
|
||||
CV_WRAP virtual ~Detector();
|
||||
|
||||
cv::AlgorithmInfo* info() const;
|
||||
|
||||
@ -186,7 +184,7 @@ private:
|
||||
// ========================================================================== //
|
||||
// Public Interface for singe soft (stageless) cascade octave training.
|
||||
// ========================================================================== //
|
||||
class CV_EXPORTS SoftCascadeOctave : public cv::Algorithm
|
||||
class CV_EXPORTS Octave : public cv::Algorithm
|
||||
{
|
||||
public:
|
||||
enum
|
||||
@ -199,8 +197,8 @@ public:
|
||||
HEURISTIC = 4
|
||||
};
|
||||
|
||||
virtual ~SoftCascadeOctave();
|
||||
static cv::Ptr<SoftCascadeOctave> create(cv::Rect boundingBox, int npositives, int nnegatives,
|
||||
virtual ~Octave();
|
||||
static cv::Ptr<Octave> create(cv::Rect boundingBox, int npositives, int nnegatives,
|
||||
int logScale, int shrinkage, int poolSize);
|
||||
|
||||
virtual bool train(const Dataset* dataset, const FeaturePool* pool, int weaks, int treeDepth) = 0;
|
||||
@ -211,6 +209,6 @@ public:
|
||||
|
||||
CV_EXPORTS bool initModule_softcascade(void);
|
||||
|
||||
} }
|
||||
}} // namespace cv { namespace softcascade {
|
||||
|
||||
#endif
|
@ -24,7 +24,7 @@ def convert2detections(rects, confs, crop_factor = 0.125):
|
||||
""" Create new instance of soft cascade."""
|
||||
def cascade(min_scale, max_scale, nscales, f):
|
||||
# where we use nms cv::SoftCascadeDetector::DOLLAR == 2
|
||||
c = cv2.scascade_SoftCascadeDetector(min_scale, max_scale, nscales, 2)
|
||||
c = cv2.softcascade_Detector(min_scale, max_scale, nscales, 2)
|
||||
xml = cv2.FileStorage(f, 0)
|
||||
dom = xml.getFirstTopLevelNode()
|
||||
assert c.load(dom)
|
||||
|
@ -4,13 +4,16 @@
|
||||
using cv::Rect;
|
||||
using std::tr1::get;
|
||||
|
||||
|
||||
using namespace cv::softcascade;
|
||||
|
||||
typedef std::tr1::tuple<std::string, std::string> fixture;
|
||||
typedef perf::TestBaseWithParam<fixture> detect;
|
||||
|
||||
|
||||
namespace {
|
||||
|
||||
void extractRacts(std::vector<cv::scascade::Detection> objectBoxes, std::vector<Rect>& rects)
|
||||
void extractRacts(std::vector<Detection> objectBoxes, std::vector<Rect>& rects)
|
||||
{
|
||||
rects.clear();
|
||||
for (int i = 0; i < (int)objectBoxes.size(); ++i)
|
||||
@ -26,14 +29,12 @@ PERF_TEST_P(detect, SoftCascadeDetector,
|
||||
cv::Mat colored = cv::imread(getDataPath(get<1>(GetParam())));
|
||||
ASSERT_FALSE(colored.empty());
|
||||
|
||||
cv::scascade::SoftCascadeDetector cascade;
|
||||
Detector cascade;
|
||||
cv::FileStorage fs(getDataPath(get<0>(GetParam())), cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
std::vector<cv::scascade::Detection> objectBoxes;
|
||||
cascade.detect(colored, cv::noArray(), objectBoxes);
|
||||
|
||||
std::vector<Detection> objectBoxes;
|
||||
TEST_CYCLE()
|
||||
{
|
||||
cascade.detect(colored, cv::noArray(), objectBoxes);
|
||||
|
@ -22,7 +22,7 @@
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
// and / or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
@ -44,41 +44,53 @@
|
||||
#define __SFT_RANDOM_HPP__
|
||||
|
||||
#if defined(_MSC_VER) && _MSC_VER >= 1600
|
||||
|
||||
# include <random>
|
||||
namespace sft {
|
||||
|
||||
namespace cv { namespace softcascade { namespace internal
|
||||
{
|
||||
|
||||
struct Random
|
||||
{
|
||||
typedef std::mt19937 engine;
|
||||
typedef std::uniform_int<int> uniform;
|
||||
};
|
||||
}
|
||||
|
||||
}}}
|
||||
|
||||
#elif (__GNUC__) && __GNUC__ > 3 && __GNUC_MINOR__ > 1 && !defined(__ANDROID__)
|
||||
|
||||
# if defined (__cplusplus) && __cplusplus > 201100L
|
||||
# include <random>
|
||||
namespace sft {
|
||||
|
||||
namespace cv { namespace softcascade { namespace internal
|
||||
{
|
||||
|
||||
struct Random
|
||||
{
|
||||
typedef std::mt19937 engine;
|
||||
typedef std::uniform_int<int> uniform;
|
||||
};
|
||||
}
|
||||
# else
|
||||
# include <tr1/random>
|
||||
}}}
|
||||
|
||||
# else
|
||||
# include <tr1/random>
|
||||
|
||||
namespace cv { namespace softcascade { namespace internal
|
||||
{
|
||||
|
||||
namespace sft {
|
||||
struct Random
|
||||
{
|
||||
typedef std::tr1::mt19937 engine;
|
||||
typedef std::tr1::uniform_int<int> uniform;
|
||||
};
|
||||
}
|
||||
|
||||
}}}
|
||||
# endif
|
||||
|
||||
#else
|
||||
#include <opencv2/core/core.hpp>
|
||||
# include <opencv2/core/core.hpp>
|
||||
|
||||
namespace cv { namespace softcascade { namespace internal
|
||||
{
|
||||
namespace rnd {
|
||||
|
||||
typedef cv::RNG engine;
|
||||
@ -104,13 +116,13 @@ private:
|
||||
|
||||
}
|
||||
|
||||
namespace sft {
|
||||
struct Random
|
||||
{
|
||||
typedef rnd::engine engine;
|
||||
typedef rnd::uniform_int<int> uniform;
|
||||
};
|
||||
}
|
||||
|
||||
}}}
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -44,10 +44,13 @@
|
||||
|
||||
namespace {
|
||||
|
||||
using namespace cv::softcascade;
|
||||
|
||||
class ICFBuilder : public ChannelFeatureBuilder
|
||||
{
|
||||
virtual ~ICFBuilder() {}
|
||||
virtual cv::AlgorithmInfo* info() const;
|
||||
|
||||
virtual void operator()(cv::InputArray _frame, CV_OUT cv::OutputArray _integrals) const
|
||||
{
|
||||
CV_Assert(_frame.type() == CV_8UC3);
|
||||
@ -107,9 +110,12 @@ class ICFBuilder : public ChannelFeatureBuilder
|
||||
|
||||
}
|
||||
|
||||
using cv::softcascade::ChannelFeatureBuilder;
|
||||
using cv::softcascade::ChannelFeature;
|
||||
|
||||
CV_INIT_ALGORITHM(ICFBuilder, "ChannelFeatureBuilder.ICFBuilder", );
|
||||
|
||||
cv::scascade::ChannelFeatureBuilder::~ChannelFeatureBuilder() {}
|
||||
ChannelFeatureBuilder::~ChannelFeatureBuilder() {}
|
||||
|
||||
cv::Ptr<ChannelFeatureBuilder> ChannelFeatureBuilder::create()
|
||||
{
|
||||
@ -117,7 +123,7 @@ cv::Ptr<ChannelFeatureBuilder> ChannelFeatureBuilder::create()
|
||||
return builder;
|
||||
}
|
||||
|
||||
cv::scascade::ChannelFeature::ChannelFeature(int x, int y, int w, int h, int ch)
|
||||
ChannelFeature::ChannelFeature(int x, int y, int w, int h, int ch)
|
||||
: bb(cv::Rect(x, y, w, h)), channel(ch) {}
|
||||
|
||||
bool ChannelFeature::operator ==(ChannelFeature b)
|
||||
@ -131,7 +137,7 @@ bool ChannelFeature::operator !=(ChannelFeature b)
|
||||
}
|
||||
|
||||
|
||||
float cv::scascade::ChannelFeature::operator() (const cv::Mat& integrals, const cv::Size& model) const
|
||||
float ChannelFeature::operator() (const cv::Mat& integrals, const cv::Size& model) const
|
||||
{
|
||||
int step = model.width + 1;
|
||||
|
||||
@ -148,21 +154,23 @@ float cv::scascade::ChannelFeature::operator() (const cv::Mat& integrals, const
|
||||
return (float)(a - b + c - d);
|
||||
}
|
||||
|
||||
void cv::scascade::write(cv::FileStorage& fs, const string&, const ChannelFeature& f)
|
||||
void cv::softcascade::write(cv::FileStorage& fs, const string&, const ChannelFeature& f)
|
||||
{
|
||||
fs << "{" << "channel" << f.channel << "rect" << f.bb << "}";
|
||||
}
|
||||
|
||||
std::ostream& cv::scascade::operator<<(std::ostream& out, const ChannelFeature& m)
|
||||
std::ostream& cv::softcascade::operator<<(std::ostream& out, const ChannelFeature& m)
|
||||
{
|
||||
out << m.channel << " " << m.bb;
|
||||
return out;
|
||||
}
|
||||
|
||||
cv::scascade::ChannelFeature::~ChannelFeature(){}
|
||||
ChannelFeature::~ChannelFeature(){}
|
||||
|
||||
namespace {
|
||||
|
||||
using namespace cv::softcascade;
|
||||
|
||||
class ChannelFeaturePool : public FeaturePool
|
||||
{
|
||||
public:
|
||||
@ -200,6 +208,7 @@ void ChannelFeaturePool::write( cv::FileStorage& fs, int index) const
|
||||
|
||||
void ChannelFeaturePool::fill(int desired)
|
||||
{
|
||||
using namespace cv::softcascade::internal;
|
||||
int mw = model.width;
|
||||
int mh = model.height;
|
||||
|
||||
@ -208,16 +217,16 @@ void ChannelFeaturePool::fill(int desired)
|
||||
int nfeatures = std::min(desired, maxPoolSize);
|
||||
pool.reserve(nfeatures);
|
||||
|
||||
sft::Random::engine eng(FEATURE_RECT_SEED);
|
||||
sft::Random::engine eng_ch(DCHANNELS_SEED);
|
||||
Random::engine eng(FEATURE_RECT_SEED);
|
||||
Random::engine eng_ch(DCHANNELS_SEED);
|
||||
|
||||
sft::Random::uniform chRand(0, N_CHANNELS - 1);
|
||||
Random::uniform chRand(0, N_CHANNELS - 1);
|
||||
|
||||
sft::Random::uniform xRand(0, model.width - 2);
|
||||
sft::Random::uniform yRand(0, model.height - 2);
|
||||
Random::uniform xRand(0, model.width - 2);
|
||||
Random::uniform yRand(0, model.height - 2);
|
||||
|
||||
sft::Random::uniform wRand(1, model.width - 1);
|
||||
sft::Random::uniform hRand(1, model.height - 1);
|
||||
Random::uniform wRand(1, model.width - 1);
|
||||
Random::uniform hRand(1, model.height - 1);
|
||||
|
||||
while (pool.size() < size_t(nfeatures))
|
||||
{
|
||||
@ -246,7 +255,7 @@ void ChannelFeaturePool::fill(int desired)
|
||||
|
||||
}
|
||||
|
||||
cv::Ptr<FeaturePool> cv::scascade::FeaturePool::create(const cv::Size& model, int nfeatures)
|
||||
cv::Ptr<FeaturePool> FeaturePool::create(const cv::Size& model, int nfeatures)
|
||||
{
|
||||
cv::Ptr<FeaturePool> pool(new ChannelFeaturePool(model, nfeatures));
|
||||
return pool;
|
||||
|
@ -55,6 +55,4 @@
|
||||
#include "opencv2/ml/ml.hpp"
|
||||
#include "_random.hpp"
|
||||
|
||||
using namespace cv::scascade;
|
||||
|
||||
#endif
|
||||
|
@ -48,13 +48,17 @@ using cv::InputArray;
|
||||
using cv::OutputArray;
|
||||
using cv::Mat;
|
||||
|
||||
cv::scascade::FeaturePool::~FeaturePool(){}
|
||||
cv::scascade::Dataset::~Dataset(){}
|
||||
using cv::softcascade::Octave;
|
||||
using cv::softcascade::FeaturePool;
|
||||
using cv::softcascade::Dataset;
|
||||
using cv::softcascade::ChannelFeatureBuilder;
|
||||
|
||||
FeaturePool::~FeaturePool(){}
|
||||
Dataset::~Dataset(){}
|
||||
|
||||
namespace {
|
||||
|
||||
|
||||
class BoostedSoftCascadeOctave : public cv::Boost, public SoftCascadeOctave
|
||||
class BoostedSoftCascadeOctave : public cv::Boost, public Octave
|
||||
{
|
||||
public:
|
||||
|
||||
@ -214,14 +218,15 @@ void BoostedSoftCascadeOctave::processPositives(const Dataset* dataset)
|
||||
|
||||
void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset)
|
||||
{
|
||||
using namespace cv::softcascade::internal;
|
||||
// ToDo: set seed, use offsets
|
||||
sft::Random::engine eng(DX_DY_SEED);
|
||||
sft::Random::engine idxEng(INDEX_ENGINE_SEED);
|
||||
Random::engine eng(DX_DY_SEED);
|
||||
Random::engine idxEng(INDEX_ENGINE_SEED);
|
||||
|
||||
int h = boundingBox.height;
|
||||
|
||||
int nimages = dataset->available(Dataset::NEGATIVE);
|
||||
sft::Random::uniform iRand(0, nimages - 1);
|
||||
Random::uniform iRand(0, nimages - 1);
|
||||
|
||||
int total = 0;
|
||||
Mat sum;
|
||||
@ -236,8 +241,8 @@ void BoostedSoftCascadeOctave::generateNegatives(const Dataset* dataset)
|
||||
int maxW = frame.cols - 2 * boundingBox.x - boundingBox.width;
|
||||
int maxH = frame.rows - 2 * boundingBox.y - boundingBox.height;
|
||||
|
||||
sft::Random::uniform wRand(0, maxW -1);
|
||||
sft::Random::uniform hRand(0, maxH -1);
|
||||
Random::uniform wRand(0, maxW -1);
|
||||
Random::uniform hRand(0, maxH -1);
|
||||
|
||||
int dx = wRand(eng);
|
||||
int dy = hRand(eng);
|
||||
@ -439,12 +444,12 @@ void BoostedSoftCascadeOctave::write( CvFileStorage* fs, std::string _name) cons
|
||||
|
||||
CV_INIT_ALGORITHM(BoostedSoftCascadeOctave, "SoftCascadeOctave.BoostedSoftCascadeOctave", );
|
||||
|
||||
cv::scascade::SoftCascadeOctave::~SoftCascadeOctave(){}
|
||||
Octave::~Octave(){}
|
||||
|
||||
cv::Ptr<SoftCascadeOctave> cv::scascade::SoftCascadeOctave::create(cv::Rect boundingBox, int npositives, int nnegatives,
|
||||
cv::Ptr<Octave> Octave::create(cv::Rect boundingBox, int npositives, int nnegatives,
|
||||
int logScale, int shrinkage, int poolSize)
|
||||
{
|
||||
cv::Ptr<SoftCascadeOctave> octave(
|
||||
cv::Ptr<Octave> octave(
|
||||
new BoostedSoftCascadeOctave(boundingBox, npositives, nnegatives, logScale, shrinkage, poolSize));
|
||||
return octave;
|
||||
}
|
||||
|
@ -42,11 +42,17 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
using cv::softcascade::Detection;
|
||||
using cv::softcascade::Detector;
|
||||
using cv::softcascade::ChannelFeatureBuilder;
|
||||
|
||||
using namespace cv;
|
||||
|
||||
namespace {
|
||||
|
||||
struct Octave
|
||||
struct SOctave
|
||||
{
|
||||
Octave(const int i, const cv::Size& origObjSize, const cv::FileNode& fn)
|
||||
SOctave(const int i, const cv::Size& origObjSize, const cv::FileNode& fn)
|
||||
: index(i), weaks((int)fn[SC_OCT_WEAKS]), scale(pow(2,(float)fn[SC_OCT_SCALE])),
|
||||
size(cvRound(origObjSize.width * scale), cvRound(origObjSize.height * scale)) {}
|
||||
|
||||
@ -115,16 +121,16 @@ struct Feature
|
||||
static const char *const SC_F_RECT;
|
||||
};
|
||||
|
||||
const char *const Octave::SC_OCT_SCALE = "scale";
|
||||
const char *const Octave::SC_OCT_WEAKS = "weaks";
|
||||
const char *const Octave::SC_OCT_SHRINKAGE = "shrinkingFactor";
|
||||
const char *const SOctave::SC_OCT_SCALE = "scale";
|
||||
const char *const SOctave::SC_OCT_WEAKS = "weaks";
|
||||
const char *const SOctave::SC_OCT_SHRINKAGE = "shrinkingFactor";
|
||||
const char *const Weak::SC_WEAK_THRESHOLD = "treeThreshold";
|
||||
const char *const Feature::SC_F_CHANNEL = "channel";
|
||||
const char *const Feature::SC_F_RECT = "rect";
|
||||
|
||||
struct Level
|
||||
{
|
||||
const Octave* octave;
|
||||
const SOctave* octave;
|
||||
|
||||
float origScale;
|
||||
float relScale;
|
||||
@ -135,7 +141,7 @@ struct Level
|
||||
|
||||
float scaling[2]; // 0-th for channels <= 6, 1-st otherwise
|
||||
|
||||
Level(const Octave& oct, const float scale, const int shrinkage, const int w, const int h)
|
||||
Level(const SOctave& oct, const float scale, const int shrinkage, const int w, const int h)
|
||||
: octave(&oct), origScale(scale), relScale(scale / oct.scale),
|
||||
workRect(cv::Size(cvRound(w / (float)shrinkage),cvRound(h / (float)shrinkage))),
|
||||
objSize(cv::Size(cvRound(oct.size.width * relScale), cvRound(oct.size.height * relScale)))
|
||||
@ -205,7 +211,8 @@ struct ChannelStorage
|
||||
|
||||
}
|
||||
|
||||
struct SoftCascadeDetector::Fields
|
||||
|
||||
struct Detector::Fields
|
||||
{
|
||||
float minScale;
|
||||
float maxScale;
|
||||
@ -216,7 +223,7 @@ struct SoftCascadeDetector::Fields
|
||||
|
||||
int shrinkage;
|
||||
|
||||
std::vector<Octave> octaves;
|
||||
std::vector<SOctave> octaves;
|
||||
std::vector<Weak> weaks;
|
||||
std::vector<Node> nodes;
|
||||
std::vector<float> leaves;
|
||||
@ -226,14 +233,14 @@ struct SoftCascadeDetector::Fields
|
||||
|
||||
cv::Size frameSize;
|
||||
|
||||
typedef std::vector<Octave>::iterator octIt_t;
|
||||
typedef std::vector<SOctave>::iterator octIt_t;
|
||||
typedef std::vector<Detection> dvector;
|
||||
|
||||
void detectAt(const int dx, const int dy, const Level& level, const ChannelStorage& storage, dvector& detections) const
|
||||
{
|
||||
float detectionScore = 0.f;
|
||||
|
||||
const Octave& octave = *(level.octave);
|
||||
const SOctave& octave = *(level.octave);
|
||||
|
||||
int stBegin = octave.index * octave.weaks, stEnd = stBegin + octave.weaks;
|
||||
|
||||
@ -279,7 +286,7 @@ struct SoftCascadeDetector::Fields
|
||||
octIt_t res = octaves.begin();
|
||||
for (octIt_t oct = octaves.begin(); oct < octaves.end(); ++oct)
|
||||
{
|
||||
const Octave& octave =*oct;
|
||||
const SOctave& octave =*oct;
|
||||
float logOctave = log(octave.scale);
|
||||
float logAbsScale = fabs(logFactor - logOctave);
|
||||
|
||||
@ -373,7 +380,7 @@ struct SoftCascadeDetector::Fields
|
||||
for (int octIndex = 0; it != it_end; ++it, ++octIndex)
|
||||
{
|
||||
FileNode fns = *it;
|
||||
Octave octave(octIndex, cv::Size(origObjWidth, origObjHeight), fns);
|
||||
SOctave octave(octIndex, cv::Size(origObjWidth, origObjHeight), fns);
|
||||
CV_Assert(octave.weaks > 0);
|
||||
octaves.push_back(octave);
|
||||
|
||||
@ -409,17 +416,17 @@ struct SoftCascadeDetector::Fields
|
||||
}
|
||||
};
|
||||
|
||||
SoftCascadeDetector::SoftCascadeDetector(const double mins, const double maxs, const int nsc, const int rej)
|
||||
Detector::Detector(const double mins, const double maxs, const int nsc, const int rej)
|
||||
: fields(0), minScale(mins), maxScale(maxs), scales(nsc), rejCriteria(rej) {}
|
||||
|
||||
SoftCascadeDetector::~SoftCascadeDetector() { delete fields;}
|
||||
Detector::~Detector() { delete fields;}
|
||||
|
||||
void SoftCascadeDetector::read(const FileNode& fn)
|
||||
void Detector::read(const cv::FileNode& fn)
|
||||
{
|
||||
Algorithm::read(fn);
|
||||
}
|
||||
|
||||
bool SoftCascadeDetector::load(const FileNode& fn)
|
||||
bool Detector::load(const cv::FileNode& fn)
|
||||
{
|
||||
if (fields) delete fields;
|
||||
|
||||
@ -429,6 +436,7 @@ bool SoftCascadeDetector::load(const FileNode& fn)
|
||||
|
||||
namespace {
|
||||
|
||||
using cv::softcascade::Detection;
|
||||
typedef std::vector<Detection> dvector;
|
||||
|
||||
|
||||
@ -472,13 +480,13 @@ void DollarNMS(dvector& objects)
|
||||
|
||||
static void suppress(int type, std::vector<Detection>& objects)
|
||||
{
|
||||
CV_Assert(type == SoftCascadeDetector::DOLLAR);
|
||||
CV_Assert(type == Detector::DOLLAR);
|
||||
DollarNMS(objects);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void SoftCascadeDetector::detectNoRoi(const cv::Mat& image, std::vector<Detection>& objects) const
|
||||
void Detector::detectNoRoi(const cv::Mat& image, std::vector<Detection>& objects) const
|
||||
{
|
||||
Fields& fld = *fields;
|
||||
// create integrals
|
||||
@ -502,10 +510,10 @@ void SoftCascadeDetector::detectNoRoi(const cv::Mat& image, std::vector<Detectio
|
||||
}
|
||||
}
|
||||
|
||||
// if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects);
|
||||
if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects);
|
||||
}
|
||||
|
||||
void SoftCascadeDetector::detect(cv::InputArray _image, cv::InputArray _rois, std::vector<Detection>& objects) const
|
||||
void Detector::detect(cv::InputArray _image, cv::InputArray _rois, std::vector<Detection>& objects) const
|
||||
{
|
||||
// only color images are suppered
|
||||
cv::Mat image = _image.getMat();
|
||||
@ -557,7 +565,7 @@ void SoftCascadeDetector::detect(cv::InputArray _image, cv::InputArray _rois, st
|
||||
if (rejCriteria != NO_REJECT) suppress(rejCriteria, objects);
|
||||
}
|
||||
|
||||
void SoftCascadeDetector::detect(InputArray _image, InputArray _rois, OutputArray _rects, OutputArray _confs) const
|
||||
void Detector::detect(InputArray _image, InputArray _rois, OutputArray _rects, OutputArray _confs) const
|
||||
{
|
||||
std::vector<Detection> objects;
|
||||
detect( _image, _rois, objects);
|
||||
|
@ -42,10 +42,10 @@
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
namespace cv { namespace scascade
|
||||
namespace cv { namespace softcascade
|
||||
{
|
||||
|
||||
CV_INIT_ALGORITHM(SoftCascadeDetector, "SoftCascade.SoftCascadeDetector",
|
||||
CV_INIT_ALGORITHM(Detector, "SoftCascade.Detector",
|
||||
obj.info()->addParam(obj, "minScale", obj.minScale);
|
||||
obj.info()->addParam(obj, "maxScale", obj.maxScale);
|
||||
obj.info()->addParam(obj, "scales", obj.scales);
|
||||
@ -54,7 +54,7 @@ CV_INIT_ALGORITHM(SoftCascadeDetector, "SoftCascade.SoftCascadeDetector",
|
||||
|
||||
bool initModule_softcascade(void)
|
||||
{
|
||||
Ptr<Algorithm> sc1 = createSoftCascadeDetector();
|
||||
Ptr<Algorithm> sc1 = createDetector();
|
||||
return (sc1->info() != 0);
|
||||
}
|
||||
|
||||
|
@ -42,15 +42,17 @@
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
|
||||
using namespace cv::softcascade;
|
||||
|
||||
TEST(ChannelFeatureBuilderTest, info)
|
||||
{
|
||||
cv::Ptr<cv::scascade::ChannelFeatureBuilder> builder = cv::scascade::ChannelFeatureBuilder::create();
|
||||
cv::Ptr<ChannelFeatureBuilder> builder = ChannelFeatureBuilder::create();
|
||||
ASSERT_TRUE(builder->info() != 0);
|
||||
}
|
||||
|
||||
TEST(ChannelFeatureBuilderTest, compute)
|
||||
{
|
||||
cv::Ptr<cv::scascade::ChannelFeatureBuilder> builder = cv::scascade::ChannelFeatureBuilder::create();
|
||||
cv::Ptr<ChannelFeatureBuilder> builder = ChannelFeatureBuilder::create();
|
||||
|
||||
cv::Mat colored = cv::imread(cvtest::TS::ptr()->get_data_path() + "cascadeandhog/images/image_00000000_0.png");
|
||||
cv::Mat ints;
|
||||
|
@ -44,12 +44,13 @@
|
||||
#include <fstream>
|
||||
|
||||
#include "test_precomp.hpp"
|
||||
typedef cv::scascade::Detection Detection;
|
||||
|
||||
using namespace cv::softcascade;
|
||||
|
||||
TEST(SoftCascadeDetector, readCascade)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/cascades/inria_caltech-17.01.2013.xml";
|
||||
cv::scascade::SoftCascadeDetector cascade;
|
||||
Detector cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(fs.isOpened());
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
@ -58,7 +59,7 @@ TEST(SoftCascadeDetector, readCascade)
|
||||
TEST(SoftCascadeDetector, detect)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path()+ "cascadeandhog/cascades/inria_caltech-17.01.2013.xml";
|
||||
cv::scascade::SoftCascadeDetector cascade;
|
||||
Detector cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
@ -74,7 +75,7 @@ TEST(SoftCascadeDetector, detect)
|
||||
TEST(SoftCascadeDetector, detectSeparate)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/cascades/inria_caltech-17.01.2013.xml";
|
||||
cv::scascade::SoftCascadeDetector cascade;
|
||||
Detector cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
@ -90,7 +91,7 @@ TEST(SoftCascadeDetector, detectSeparate)
|
||||
TEST(SoftCascadeDetector, detectRoi)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/cascades/inria_caltech-17.01.2013.xml";
|
||||
cv::scascade::SoftCascadeDetector cascade;
|
||||
Detector cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
@ -108,7 +109,7 @@ TEST(SoftCascadeDetector, detectRoi)
|
||||
TEST(SoftCascadeDetector, detectNoRoi)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/cascades/inria_caltech-17.01.2013.xml";
|
||||
cv::scascade::SoftCascadeDetector cascade;
|
||||
Detector cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
@ -126,7 +127,7 @@ TEST(SoftCascadeDetector, detectNoRoi)
|
||||
TEST(SoftCascadeDetector, detectEmptyRoi)
|
||||
{
|
||||
std::string xml = cvtest::TS::ptr()->get_data_path() + "cascadeandhog/cascades/inria_caltech-17.01.2013.xml";
|
||||
cv::scascade::SoftCascadeDetector cascade;
|
||||
Detector cascade;
|
||||
cv::FileStorage fs(xml, cv::FileStorage::READ);
|
||||
ASSERT_TRUE(cascade.load(fs.getFirstTopLevelNode()));
|
||||
|
||||
|
@ -57,8 +57,10 @@ using namespace std;
|
||||
|
||||
namespace {
|
||||
|
||||
using namespace cv::softcascade;
|
||||
|
||||
typedef vector<string> svector;
|
||||
class ScaledDataset : public cv::scascade::Dataset
|
||||
class ScaledDataset : public Dataset
|
||||
{
|
||||
public:
|
||||
ScaledDataset(const string& path, const int octave);
|
||||
@ -210,7 +212,7 @@ TEST(DISABLED_SoftCascade, training)
|
||||
float octave = powf(2.f, (float)(*it));
|
||||
cv::Size model = cv::Size( cvRound(64 * octave) / shrinkage, cvRound(128 * octave) / shrinkage );
|
||||
|
||||
cv::Ptr<cv::scascade::FeaturePool> pool = cv::scascade::FeaturePool::create(model, nfeatures);
|
||||
cv::Ptr<FeaturePool> pool = FeaturePool::create(model, nfeatures);
|
||||
nfeatures = pool->size();
|
||||
int npositives = 20;
|
||||
int nnegatives = 40;
|
||||
@ -218,7 +220,6 @@ TEST(DISABLED_SoftCascade, training)
|
||||
cv::Rect boundingBox = cv::Rect( cvRound(20 * octave), cvRound(20 * octave),
|
||||
cvRound(64 * octave), cvRound(128 * octave));
|
||||
|
||||
typedef cv::scascade::SoftCascadeOctave Octave;
|
||||
cv::Ptr<Octave> boost = Octave::create(boundingBox, npositives, nnegatives, *it, shrinkage, nfeatures);
|
||||
|
||||
std::string path = cvtest::TS::ptr()->get_data_path() + "softcascade/sample_training_set";
|
||||
|
Loading…
Reference in New Issue
Block a user