mirror of
https://github.com/opencv/opencv.git
synced 2024-12-04 00:39:11 +08:00
Remove inline sorting algorithms from core headers
This commit is contained in:
parent
20534c9beb
commit
cc6bdfb045
@ -53,15 +53,6 @@
|
||||
#define __END__ __CV_END__
|
||||
#define EXIT __CV_EXIT__
|
||||
|
||||
#define CV_DECLARE_QSORT( func_name, T, less_than ) \
|
||||
void func_name( T* array, size_t length, int aux );
|
||||
|
||||
#define less_than( a, b ) ((a) < (b))
|
||||
|
||||
CV_DECLARE_QSORT( icvSort_32f, float, less_than )
|
||||
|
||||
CV_DECLARE_QSORT( icvSort_32s, int, less_than )
|
||||
|
||||
#ifndef PATH_MAX
|
||||
#define PATH_MAX 512
|
||||
#endif /* PATH_MAX */
|
||||
|
@ -76,15 +76,18 @@ typedef struct CvValArray
|
||||
size_t step;
|
||||
} CvValArray;
|
||||
|
||||
#define CMP_VALUES( idx1, idx2 ) \
|
||||
( *( (float*) (aux->data + ((int) (idx1)) * aux->step ) ) < \
|
||||
*( (float*) (aux->data + ((int) (idx2)) * aux->step ) ) )
|
||||
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortIndexedValArray_16s, short, CMP_VALUES, CvValArray* )
|
||||
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortIndexedValArray_32s, int, CMP_VALUES, CvValArray* )
|
||||
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortIndexedValArray_32f, float, CMP_VALUES, CvValArray* )
|
||||
template<typename T, typename Idx>
|
||||
class LessThanValArray
|
||||
{
|
||||
public:
|
||||
LessThanValArray( const T* _aux ) : aux(_aux) {}
|
||||
bool operator()(Idx a, Idx b) const
|
||||
{
|
||||
return *( (float*) (aux->data + ((int) (a)) * aux->step ) ) <
|
||||
*( (float*) (aux->data + ((int) (b)) * aux->step ) );
|
||||
}
|
||||
const T* aux;
|
||||
};
|
||||
|
||||
CV_BOOST_IMPL
|
||||
void cvGetSortedIndices( CvMat* val, CvMat* idx, int sortcols )
|
||||
@ -130,8 +133,9 @@ void cvGetSortedIndices( CvMat* val, CvMat* idx, int sortcols )
|
||||
{
|
||||
CV_MAT_ELEM( *idx, short, i, j ) = (short) j;
|
||||
}
|
||||
icvSortIndexedValArray_16s( (short*) (idx->data.ptr + (size_t)i * idx->step),
|
||||
idx->cols, &va );
|
||||
std::sort((short*) (idx->data.ptr + (size_t)i * idx->step),
|
||||
(short*) (idx->data.ptr + (size_t)i * idx->step) + idx->cols,
|
||||
LessThanValArray<CvValArray, short>(&va));
|
||||
va.data += istep;
|
||||
}
|
||||
break;
|
||||
@ -143,8 +147,9 @@ void cvGetSortedIndices( CvMat* val, CvMat* idx, int sortcols )
|
||||
{
|
||||
CV_MAT_ELEM( *idx, int, i, j ) = j;
|
||||
}
|
||||
icvSortIndexedValArray_32s( (int*) (idx->data.ptr + (size_t)i * idx->step),
|
||||
idx->cols, &va );
|
||||
std::sort((int*) (idx->data.ptr + (size_t)i * idx->step),
|
||||
(int*) (idx->data.ptr + (size_t)i * idx->step) + idx->cols,
|
||||
LessThanValArray<CvValArray, int>(&va));
|
||||
va.data += istep;
|
||||
}
|
||||
break;
|
||||
@ -156,8 +161,9 @@ void cvGetSortedIndices( CvMat* val, CvMat* idx, int sortcols )
|
||||
{
|
||||
CV_MAT_ELEM( *idx, float, i, j ) = (float) j;
|
||||
}
|
||||
icvSortIndexedValArray_32f( (float*) (idx->data.ptr + (size_t)i * idx->step),
|
||||
idx->cols, &va );
|
||||
std::sort((float*) (idx->data.ptr + (size_t)i * idx->step),
|
||||
(float*) (idx->data.ptr + (size_t)i * idx->step) + idx->cols,
|
||||
LessThanValArray<CvValArray, float>(&va));
|
||||
va.data += istep;
|
||||
}
|
||||
break;
|
||||
@ -545,7 +551,7 @@ CvClassifier* cvCreateStumpClassifier( CvMat* trainData,
|
||||
|
||||
va.data = data + i * ((size_t) cstep);
|
||||
va.step = sstep;
|
||||
icvSortIndexedValArray_32s( idx, l, &va );
|
||||
std::sort(idx, idx + l, LessThanValArray<CvValArray, int>(&va));
|
||||
if( findStumpThreshold_32s[(int) ((CvStumpTrainParams*) trainParams)->error]
|
||||
( data + i * ((size_t) cstep), sstep,
|
||||
wdata, wstep, ydata, ystep, (uchar*) idx, sizeof( int ), l,
|
||||
@ -1028,7 +1034,7 @@ CvClassifier* cvCreateMTStumpClassifier( CvMat* trainData,
|
||||
{
|
||||
va.data = t_data + ti * t_cstep;
|
||||
va.step = t_sstep;
|
||||
icvSortIndexedValArray_32s( t_idx, l, &va );
|
||||
std::sort(t_idx, t_idx + l, LessThanValArray<CvValArray, int>(&va));
|
||||
if( findStumpThreshold_32s[stumperror](
|
||||
t_data + ti * t_cstep, t_sstep,
|
||||
wdata, wstep, ydata, ystep,
|
||||
@ -2096,7 +2102,7 @@ static void icvZeroApproxMed( float* approx, CvBtTrainer* trainer )
|
||||
trainer->f[i] = *((float*) (trainer->ydata + idx * trainer->ystep));
|
||||
}
|
||||
|
||||
icvSort_32f( trainer->f, trainer->numsamples, 0 );
|
||||
std::sort(trainer->f, trainer->f + trainer->numsamples);
|
||||
approx[0] = trainer->f[trainer->numsamples / 2];
|
||||
}
|
||||
|
||||
@ -2341,7 +2347,7 @@ static void icvBtNext_LADREG( CvCARTClassifier** trees, CvBtTrainer* trainer )
|
||||
}
|
||||
if( respnum > 0 )
|
||||
{
|
||||
icvSort_32f( resp, respnum, 0 );
|
||||
std::sort(resp, resp + respnum);
|
||||
val = resp[respnum / 2];
|
||||
}
|
||||
else
|
||||
@ -2394,7 +2400,7 @@ static void icvBtNext_MREG( CvCARTClassifier** trees, CvBtTrainer* trainer )
|
||||
}
|
||||
|
||||
/* delta = quantile_alpha{abs(resid_i)} */
|
||||
icvSort_32f( resp, trainer->numsamples, 0 );
|
||||
std::sort(resp, resp + trainer->numsamples);
|
||||
delta = resp[(int)(trainer->param[1] * (trainer->numsamples - 1))];
|
||||
|
||||
/* yhat_i */
|
||||
@ -2434,7 +2440,7 @@ static void icvBtNext_MREG( CvCARTClassifier** trees, CvBtTrainer* trainer )
|
||||
if( respnum > 0 )
|
||||
{
|
||||
/* rhat = median(y_i - F_(m-1)(x_i)) */
|
||||
icvSort_32f( resp, respnum, 0 );
|
||||
std::sort(resp, resp + respnum);
|
||||
rhat = resp[respnum / 2];
|
||||
|
||||
/* val = sum{sign(r_i - rhat_i) * min(delta, abs(r_i - rhat_i)}
|
||||
@ -2531,7 +2537,7 @@ static void icvBtNext_L2CLASS( CvCARTClassifier** trees, CvBtTrainer* trainer )
|
||||
float threshold;
|
||||
int count;
|
||||
|
||||
icvSort_32f( sorted_weights, trainer->numsamples, 0 );
|
||||
std::sort(sorted_weights, sorted_weights + trainer->numsamples);
|
||||
|
||||
sum_weights *= (1.0F - trainer->param[1]);
|
||||
|
||||
@ -2693,7 +2699,7 @@ static void icvBtNext_LKCLASS( CvCARTClassifier** trees, CvBtTrainer* trainer )
|
||||
float threshold;
|
||||
int count;
|
||||
|
||||
icvSort_32f( sorted_weights, trainer->numsamples, 0 );
|
||||
std::sort(sorted_weights, sorted_weights + trainer->numsamples);
|
||||
|
||||
sum_weights *= (1.0F - trainer->param[1]);
|
||||
|
||||
@ -3504,7 +3510,7 @@ CvMat* cvTrimWeights( CvMat* weights, CvMat* idx, float factor )
|
||||
sum_weights += sorted_weights[i];
|
||||
}
|
||||
|
||||
icvSort_32f( sorted_weights, num, 0 );
|
||||
std::sort(sorted_weights, sorted_weights + num);
|
||||
|
||||
sum_weights *= (1.0F - factor);
|
||||
|
||||
|
@ -50,11 +50,6 @@
|
||||
#include <direct.h>
|
||||
#endif /* _WIN32 */
|
||||
|
||||
|
||||
CV_IMPLEMENT_QSORT( icvSort_32f, float, less_than )
|
||||
|
||||
CV_IMPLEMENT_QSORT( icvSort_32s, int, less_than )
|
||||
|
||||
int icvMkDir( const char* filename )
|
||||
{
|
||||
char path[PATH_MAX];
|
||||
|
@ -1088,7 +1088,7 @@ CvIntHaarClassifier* icvCreateCARTStageClassifier( CvHaarTrainingData* data,
|
||||
numpos++;
|
||||
}
|
||||
}
|
||||
icvSort_32f( eval.data.fl, numpos, 0 );
|
||||
std::sort(eval.data.fl, eval.data.fl + numpos);
|
||||
threshold = eval.data.fl[(int) ((1.0F - minhitrate) * numpos)];
|
||||
|
||||
numneg = 0;
|
||||
@ -2291,7 +2291,7 @@ static CvMat* icvGetUsedValues( CvHaarTrainingData* training_data,
|
||||
feature_idx->data.i[total++] = cart->compidx[j];
|
||||
}
|
||||
}
|
||||
icvSort_32s( feature_idx->data.i, total, 0 );
|
||||
std::sort(feature_idx->data.i, feature_idx->data.i + total);
|
||||
|
||||
last = 0;
|
||||
for( i = 1; i < total; i++ )
|
||||
|
@ -18,12 +18,14 @@ logRatio( double val )
|
||||
return log( val/(1. - val) );
|
||||
}
|
||||
|
||||
#define CV_CMP_FLT(i,j) (i < j)
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortFlt, float, CV_CMP_FLT, const float* )
|
||||
|
||||
#define CV_CMP_NUM_IDX(i,j) (aux[i] < aux[j])
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortIntAux, int, CV_CMP_NUM_IDX, const float* )
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortUShAux, unsigned short, CV_CMP_NUM_IDX, const float* )
|
||||
template<typename T, typename Idx>
|
||||
class LessThanIdx
|
||||
{
|
||||
public:
|
||||
LessThanIdx( const T* _arr ) : arr(_arr) {}
|
||||
bool operator()(Idx a, Idx b) const { return arr[a] < arr[b]; }
|
||||
const T* arr;
|
||||
};
|
||||
|
||||
#define CV_THRESHOLD_EPS (0.00001F)
|
||||
|
||||
@ -722,7 +724,7 @@ void CvCascadeBoostTrainData::get_ord_var_data( CvDTreeNode* n, int vi, float* o
|
||||
sampleValues[i] = (*featureEvaluator)( vi, sampleIndices[i]);
|
||||
}
|
||||
}
|
||||
icvSortIntAux( sortedIndicesBuf, nodeSampleCount, &sampleValues[0] );
|
||||
std::sort(sortedIndicesBuf, sortedIndicesBuf + nodeSampleCount, LessThanIdx<float, int>(&sampleValues[0]) );
|
||||
for( int i = 0; i < nodeSampleCount; i++ )
|
||||
ordValuesBuf[i] = (&sampleValues[0])[sortedIndicesBuf[i]];
|
||||
*sortedIndices = sortedIndicesBuf;
|
||||
@ -791,9 +793,9 @@ struct FeatureIdxOnlyPrecalc
|
||||
*(idst + fi*sample_count + si) = si;
|
||||
}
|
||||
if ( is_buf_16u )
|
||||
icvSortUShAux( udst + fi*sample_count, sample_count, valCachePtr );
|
||||
std::sort(udst + fi*sample_count, udst + (fi + 1)*sample_count, LessThanIdx<float, unsigned short>(valCachePtr) );
|
||||
else
|
||||
icvSortIntAux( idst + fi*sample_count, sample_count, valCachePtr );
|
||||
std::sort(idst + fi*sample_count, idst + (fi + 1)*sample_count, LessThanIdx<float, int>(valCachePtr) );
|
||||
}
|
||||
}
|
||||
const CvFeatureEvaluator* featureEvaluator;
|
||||
@ -827,9 +829,9 @@ struct FeatureValAndIdxPrecalc
|
||||
*(idst + fi*sample_count + si) = si;
|
||||
}
|
||||
if ( is_buf_16u )
|
||||
icvSortUShAux( udst + fi*sample_count, sample_count, valCache->ptr<float>(fi) );
|
||||
std::sort(idst + fi*sample_count, idst + (fi + 1)*sample_count, LessThanIdx<float, unsigned short>(valCache->ptr<float>(fi)) );
|
||||
else
|
||||
icvSortIntAux( idst + fi*sample_count, sample_count, valCache->ptr<float>(fi) );
|
||||
std::sort(idst + fi*sample_count, idst + (fi + 1)*sample_count, LessThanIdx<float, int>(valCache->ptr<float>(fi)) );
|
||||
}
|
||||
}
|
||||
const CvFeatureEvaluator* featureEvaluator;
|
||||
@ -1602,7 +1604,7 @@ bool CvCascadeBoost::isErrDesired()
|
||||
if( ((CvCascadeBoostTrainData*)data)->featureEvaluator->getCls( i ) == 1.0F )
|
||||
eval[numPos++] = predict( i, true );
|
||||
|
||||
icvSortFlt( &eval[0], numPos, 0 );
|
||||
std::sort(&eval[0], &eval[0] + numPos);
|
||||
|
||||
int thresholdIdx = (int)((1.0F - minHitRate) * numPos);
|
||||
|
||||
|
@ -154,7 +154,7 @@ public:
|
||||
continue;
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
return i == modelPoints && iters < maxAttempts;
|
||||
}
|
||||
|
||||
@ -235,7 +235,7 @@ public:
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if( maxGoodCount > 0 )
|
||||
{
|
||||
if( bestMask.data != bestMask0.data )
|
||||
@ -250,7 +250,7 @@ public:
|
||||
}
|
||||
else
|
||||
_model.release();
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -267,9 +267,6 @@ public:
|
||||
int maxIters;
|
||||
};
|
||||
|
||||
|
||||
static CV_IMPLEMENT_QSORT( sortDistances, int, CV_LT )
|
||||
|
||||
class LMeDSPointSetRegistrator : public RANSACPointSetRegistrator
|
||||
{
|
||||
public:
|
||||
@ -347,7 +344,7 @@ public:
|
||||
else
|
||||
errf = err;
|
||||
CV_Assert( errf.isContinuous() && errf.type() == CV_32F && (int)errf.total() == count );
|
||||
sortDistances( (int*)errf.data, count, 0 );
|
||||
std::sort((int*)errf.data, (int*)errf.data + count);
|
||||
|
||||
double median = count % 2 != 0 ?
|
||||
errf.at<float>(count/2) : (errf.at<float>(count/2-1) + errf.at<float>(count/2))*0.5;
|
||||
@ -359,7 +356,7 @@ public:
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if( minMedian < DBL_MAX )
|
||||
{
|
||||
sigma = 2.5*1.4826*(1 + 5./(count - modelPoints))*std::sqrt(minMedian);
|
||||
@ -378,7 +375,7 @@ public:
|
||||
}
|
||||
else
|
||||
_model.release();
|
||||
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
@ -534,7 +531,7 @@ int cv::estimateAffine3D(InputArray _from, InputArray _to,
|
||||
const double epsilon = DBL_EPSILON;
|
||||
param1 = param1 <= 0 ? 3 : param1;
|
||||
param2 = (param2 < epsilon) ? 0.99 : (param2 > 1 - epsilon) ? 0.99 : param2;
|
||||
|
||||
|
||||
return createRANSACPointSetRegistrator(new Affine3DEstimatorCallback, 4, param1, param2)->run(dFrom, dTo, _out, _inliers);
|
||||
}
|
||||
|
||||
|
@ -809,7 +809,7 @@ void cv::SpinImageModel::selectRandomSubset(float ratio)
|
||||
left[pos] = left.back();
|
||||
left.resize(left.size() - 1);
|
||||
}
|
||||
sort(subset, std::less<int>());
|
||||
std::sort(subset.begin(), subset.end());
|
||||
}
|
||||
}
|
||||
|
||||
@ -928,7 +928,7 @@ void cv::SpinImageModel::matchSpinToModel(const Mat& spin, std::vector<int>& ind
|
||||
if(total < 5)
|
||||
return;
|
||||
|
||||
sort(cleanCorrs, std::less<float>());
|
||||
std::sort(cleanCorrs.begin(), cleanCorrs.end());
|
||||
|
||||
float lower_fourth = cleanCorrs[(1 * total) / 4 - 1];
|
||||
float upper_fourth = cleanCorrs[(3 * total) / 4 - 0];
|
||||
@ -1016,7 +1016,7 @@ private:
|
||||
std::vector<int> nonzero(model.spinImages.rows);
|
||||
for(int i = 0; i < model.spinImages.rows; ++i)
|
||||
nonzero[i] = countNonZero(model.spinImages.row(i));
|
||||
sort(nonzero, std::less<int>());
|
||||
std::sort(nonzero.begin(), nonzero.end());
|
||||
model.lambda = static_cast<float>( nonzero[ nonzero.size()/2 ] ) / 2;
|
||||
}
|
||||
|
||||
|
@ -455,235 +455,6 @@ CV_INLINE CvSize cvGetMatSize( const CvMat* mat )
|
||||
#define CV_DESCALE(x,n) (((x) + (1 << ((n)-1))) >> (n))
|
||||
#define CV_FLT_TO_FIX(x,n) cvRound((x)*(1<<(n)))
|
||||
|
||||
/****************************************************************************************\
|
||||
|
||||
Generic implementation of QuickSort algorithm.
|
||||
----------------------------------------------
|
||||
Using this macro user can declare customized sort function that can be much faster
|
||||
than built-in qsort function because of lower overhead on elements
|
||||
comparison and exchange. The macro takes less_than (or LT) argument - a macro or function
|
||||
that takes 2 arguments returns non-zero if the first argument should be before the second
|
||||
one in the sorted sequence and zero otherwise.
|
||||
|
||||
Example:
|
||||
|
||||
Suppose that the task is to sort points by ascending of y coordinates and if
|
||||
y's are equal x's should ascend.
|
||||
|
||||
The code is:
|
||||
------------------------------------------------------------------------------
|
||||
#define cmp_pts( pt1, pt2 ) \
|
||||
((pt1).y < (pt2).y || ((pt1).y < (pt2).y && (pt1).x < (pt2).x))
|
||||
|
||||
[static] CV_IMPLEMENT_QSORT( icvSortPoints, CvPoint, cmp_pts )
|
||||
------------------------------------------------------------------------------
|
||||
|
||||
After that the function "void icvSortPoints( CvPoint* array, size_t total, int aux );"
|
||||
is available to user.
|
||||
|
||||
aux is an additional parameter, which can be used when comparing elements.
|
||||
The current implementation was derived from *BSD system qsort():
|
||||
|
||||
* Copyright (c) 1992, 1993
|
||||
* The Regents of the University of California. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* This product includes software developed by the University of
|
||||
* California, Berkeley and its contributors.
|
||||
* 4. Neither the name of the University nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
|
||||
\****************************************************************************************/
|
||||
|
||||
#define CV_IMPLEMENT_QSORT_EX( func_name, T, LT, user_data_type ) \
|
||||
void func_name( T *array, size_t total, user_data_type aux ) \
|
||||
{ \
|
||||
int isort_thresh = 7; \
|
||||
T t; \
|
||||
int sp = 0; \
|
||||
\
|
||||
struct \
|
||||
{ \
|
||||
T *lb; \
|
||||
T *ub; \
|
||||
} \
|
||||
stack[48]; \
|
||||
\
|
||||
aux = aux; \
|
||||
\
|
||||
if( total <= 1 ) \
|
||||
return; \
|
||||
\
|
||||
stack[0].lb = array; \
|
||||
stack[0].ub = array + (total - 1); \
|
||||
\
|
||||
while( sp >= 0 ) \
|
||||
{ \
|
||||
T* left = stack[sp].lb; \
|
||||
T* right = stack[sp--].ub; \
|
||||
\
|
||||
for(;;) \
|
||||
{ \
|
||||
int i, n = (int)(right - left) + 1, m; \
|
||||
T* ptr; \
|
||||
T* ptr2; \
|
||||
\
|
||||
if( n <= isort_thresh ) \
|
||||
{ \
|
||||
insert_sort: \
|
||||
for( ptr = left + 1; ptr <= right; ptr++ ) \
|
||||
{ \
|
||||
for( ptr2 = ptr; ptr2 > left && LT(ptr2[0],ptr2[-1]); ptr2--) \
|
||||
CV_SWAP( ptr2[0], ptr2[-1], t ); \
|
||||
} \
|
||||
break; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
T* left0; \
|
||||
T* left1; \
|
||||
T* right0; \
|
||||
T* right1; \
|
||||
T* pivot; \
|
||||
T* a; \
|
||||
T* b; \
|
||||
T* c; \
|
||||
int swap_cnt = 0; \
|
||||
\
|
||||
left0 = left; \
|
||||
right0 = right; \
|
||||
pivot = left + (n/2); \
|
||||
\
|
||||
if( n > 40 ) \
|
||||
{ \
|
||||
int d = n / 8; \
|
||||
a = left, b = left + d, c = left + 2*d; \
|
||||
left = LT(*a, *b) ? (LT(*b, *c) ? b : (LT(*a, *c) ? c : a)) \
|
||||
: (LT(*c, *b) ? b : (LT(*a, *c) ? a : c)); \
|
||||
\
|
||||
a = pivot - d, b = pivot, c = pivot + d; \
|
||||
pivot = LT(*a, *b) ? (LT(*b, *c) ? b : (LT(*a, *c) ? c : a)) \
|
||||
: (LT(*c, *b) ? b : (LT(*a, *c) ? a : c)); \
|
||||
\
|
||||
a = right - 2*d, b = right - d, c = right; \
|
||||
right = LT(*a, *b) ? (LT(*b, *c) ? b : (LT(*a, *c) ? c : a)) \
|
||||
: (LT(*c, *b) ? b : (LT(*a, *c) ? a : c)); \
|
||||
} \
|
||||
\
|
||||
a = left, b = pivot, c = right; \
|
||||
pivot = LT(*a, *b) ? (LT(*b, *c) ? b : (LT(*a, *c) ? c : a)) \
|
||||
: (LT(*c, *b) ? b : (LT(*a, *c) ? a : c)); \
|
||||
if( pivot != left0 ) \
|
||||
{ \
|
||||
CV_SWAP( *pivot, *left0, t ); \
|
||||
pivot = left0; \
|
||||
} \
|
||||
left = left1 = left0 + 1; \
|
||||
right = right1 = right0; \
|
||||
\
|
||||
for(;;) \
|
||||
{ \
|
||||
while( left <= right && !LT(*pivot, *left) ) \
|
||||
{ \
|
||||
if( !LT(*left, *pivot) ) \
|
||||
{ \
|
||||
if( left > left1 ) \
|
||||
CV_SWAP( *left1, *left, t ); \
|
||||
swap_cnt = 1; \
|
||||
left1++; \
|
||||
} \
|
||||
left++; \
|
||||
} \
|
||||
\
|
||||
while( left <= right && !LT(*right, *pivot) ) \
|
||||
{ \
|
||||
if( !LT(*pivot, *right) ) \
|
||||
{ \
|
||||
if( right < right1 ) \
|
||||
CV_SWAP( *right1, *right, t ); \
|
||||
swap_cnt = 1; \
|
||||
right1--; \
|
||||
} \
|
||||
right--; \
|
||||
} \
|
||||
\
|
||||
if( left > right ) \
|
||||
break; \
|
||||
CV_SWAP( *left, *right, t ); \
|
||||
swap_cnt = 1; \
|
||||
left++; \
|
||||
right--; \
|
||||
} \
|
||||
\
|
||||
if( swap_cnt == 0 ) \
|
||||
{ \
|
||||
left = left0, right = right0; \
|
||||
goto insert_sort; \
|
||||
} \
|
||||
\
|
||||
n = MIN( (int)(left1 - left0), (int)(left - left1) ); \
|
||||
for( i = 0; i < n; i++ ) \
|
||||
CV_SWAP( left0[i], left[i-n], t ); \
|
||||
\
|
||||
n = MIN( (int)(right0 - right1), (int)(right1 - right) ); \
|
||||
for( i = 0; i < n; i++ ) \
|
||||
CV_SWAP( left[i], right0[i-n+1], t ); \
|
||||
n = (int)(left - left1); \
|
||||
m = (int)(right1 - right); \
|
||||
if( n > 1 ) \
|
||||
{ \
|
||||
if( m > 1 ) \
|
||||
{ \
|
||||
if( n > m ) \
|
||||
{ \
|
||||
stack[++sp].lb = left0; \
|
||||
stack[sp].ub = left0 + n - 1; \
|
||||
left = right0 - m + 1, right = right0; \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
stack[++sp].lb = right0 - m + 1; \
|
||||
stack[sp].ub = right0; \
|
||||
left = left0, right = left0 + n - 1; \
|
||||
} \
|
||||
} \
|
||||
else \
|
||||
left = left0, right = left0 + n - 1; \
|
||||
} \
|
||||
else if( m > 1 ) \
|
||||
left = right0 - m + 1, right = right0; \
|
||||
else \
|
||||
break; \
|
||||
} \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
|
||||
#define CV_IMPLEMENT_QSORT( func_name, T, cmp ) \
|
||||
CV_IMPLEMENT_QSORT_EX( func_name, T, cmp, int )
|
||||
|
||||
/****************************************************************************************\
|
||||
* Structures and macros for integration with IPP *
|
||||
\****************************************************************************************/
|
||||
|
@ -3108,237 +3108,6 @@ template<typename _Tp> static inline _Tp gcd(_Tp a, _Tp b)
|
||||
return a;
|
||||
}
|
||||
|
||||
/****************************************************************************************\
|
||||
|
||||
Generic implementation of QuickSort algorithm
|
||||
Use it as: vector<_Tp> a; ... sort(a,<less_than_predictor>);
|
||||
|
||||
The current implementation was derived from *BSD system qsort():
|
||||
|
||||
* Copyright (c) 1992, 1993
|
||||
* The Regents of the University of California. All rights reserved.
|
||||
*
|
||||
* Redistribution and use in source and binary forms, with or without
|
||||
* modification, are permitted provided that the following conditions
|
||||
* are met:
|
||||
* 1. Redistributions of source code must retain the above copyright
|
||||
* notice, this list of conditions and the following disclaimer.
|
||||
* 2. Redistributions in binary form must reproduce the above copyright
|
||||
* notice, this list of conditions and the following disclaimer in the
|
||||
* documentation and/or other materials provided with the distribution.
|
||||
* 3. All advertising materials mentioning features or use of this software
|
||||
* must display the following acknowledgement:
|
||||
* This product includes software developed by the University of
|
||||
* California, Berkeley and its contributors.
|
||||
* 4. Neither the name of the University nor the names of its contributors
|
||||
* may be used to endorse or promote products derived from this software
|
||||
* without specific prior written permission.
|
||||
*
|
||||
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
||||
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||||
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
||||
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||||
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||||
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||||
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||||
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||||
* SUCH DAMAGE.
|
||||
|
||||
\****************************************************************************************/
|
||||
|
||||
template<typename _Tp, class _LT> void sort( std::vector<_Tp>& vec, _LT LT=_LT() )
|
||||
{
|
||||
int isort_thresh = 7;
|
||||
int sp = 0;
|
||||
|
||||
struct
|
||||
{
|
||||
_Tp *lb;
|
||||
_Tp *ub;
|
||||
} stack[48];
|
||||
|
||||
size_t total = vec.size();
|
||||
|
||||
if( total <= 1 )
|
||||
return;
|
||||
|
||||
_Tp* arr = &vec[0];
|
||||
stack[0].lb = arr;
|
||||
stack[0].ub = arr + (total - 1);
|
||||
|
||||
while( sp >= 0 )
|
||||
{
|
||||
_Tp* left = stack[sp].lb;
|
||||
_Tp* right = stack[sp--].ub;
|
||||
|
||||
for(;;)
|
||||
{
|
||||
int i, n = (int)(right - left) + 1, m;
|
||||
_Tp* ptr;
|
||||
_Tp* ptr2;
|
||||
|
||||
if( n <= isort_thresh )
|
||||
{
|
||||
insert_sort:
|
||||
for( ptr = left + 1; ptr <= right; ptr++ )
|
||||
{
|
||||
for( ptr2 = ptr; ptr2 > left && LT(ptr2[0],ptr2[-1]); ptr2--)
|
||||
std::swap( ptr2[0], ptr2[-1] );
|
||||
}
|
||||
break;
|
||||
}
|
||||
else
|
||||
{
|
||||
_Tp* left0;
|
||||
_Tp* left1;
|
||||
_Tp* right0;
|
||||
_Tp* right1;
|
||||
_Tp* pivot;
|
||||
_Tp* a;
|
||||
_Tp* b;
|
||||
_Tp* c;
|
||||
int swap_cnt = 0;
|
||||
|
||||
left0 = left;
|
||||
right0 = right;
|
||||
pivot = left + (n/2);
|
||||
|
||||
if( n > 40 )
|
||||
{
|
||||
int d = n / 8;
|
||||
a = left, b = left + d, c = left + 2*d;
|
||||
left = LT(*a, *b) ? (LT(*b, *c) ? b : (LT(*a, *c) ? c : a))
|
||||
: (LT(*c, *b) ? b : (LT(*a, *c) ? a : c));
|
||||
|
||||
a = pivot - d, b = pivot, c = pivot + d;
|
||||
pivot = LT(*a, *b) ? (LT(*b, *c) ? b : (LT(*a, *c) ? c : a))
|
||||
: (LT(*c, *b) ? b : (LT(*a, *c) ? a : c));
|
||||
|
||||
a = right - 2*d, b = right - d, c = right;
|
||||
right = LT(*a, *b) ? (LT(*b, *c) ? b : (LT(*a, *c) ? c : a))
|
||||
: (LT(*c, *b) ? b : (LT(*a, *c) ? a : c));
|
||||
}
|
||||
|
||||
a = left, b = pivot, c = right;
|
||||
pivot = LT(*a, *b) ? (LT(*b, *c) ? b : (LT(*a, *c) ? c : a))
|
||||
: (LT(*c, *b) ? b : (LT(*a, *c) ? a : c));
|
||||
if( pivot != left0 )
|
||||
{
|
||||
std::swap( *pivot, *left0 );
|
||||
pivot = left0;
|
||||
}
|
||||
left = left1 = left0 + 1;
|
||||
right = right1 = right0;
|
||||
|
||||
for(;;)
|
||||
{
|
||||
while( left <= right && !LT(*pivot, *left) )
|
||||
{
|
||||
if( !LT(*left, *pivot) )
|
||||
{
|
||||
if( left > left1 )
|
||||
std::swap( *left1, *left );
|
||||
swap_cnt = 1;
|
||||
left1++;
|
||||
}
|
||||
left++;
|
||||
}
|
||||
|
||||
while( left <= right && !LT(*right, *pivot) )
|
||||
{
|
||||
if( !LT(*pivot, *right) )
|
||||
{
|
||||
if( right < right1 )
|
||||
std::swap( *right1, *right );
|
||||
swap_cnt = 1;
|
||||
right1--;
|
||||
}
|
||||
right--;
|
||||
}
|
||||
|
||||
if( left > right )
|
||||
break;
|
||||
std::swap( *left, *right );
|
||||
swap_cnt = 1;
|
||||
left++;
|
||||
right--;
|
||||
}
|
||||
|
||||
if( swap_cnt == 0 )
|
||||
{
|
||||
left = left0, right = right0;
|
||||
goto insert_sort;
|
||||
}
|
||||
|
||||
n = std::min( (int)(left1 - left0), (int)(left - left1) );
|
||||
for( i = 0; i < n; i++ )
|
||||
std::swap( left0[i], left[i-n] );
|
||||
|
||||
n = std::min( (int)(right0 - right1), (int)(right1 - right) );
|
||||
for( i = 0; i < n; i++ )
|
||||
std::swap( left[i], right0[i-n+1] );
|
||||
n = (int)(left - left1);
|
||||
m = (int)(right1 - right);
|
||||
if( n > 1 )
|
||||
{
|
||||
if( m > 1 )
|
||||
{
|
||||
if( n > m )
|
||||
{
|
||||
stack[++sp].lb = left0;
|
||||
stack[sp].ub = left0 + n - 1;
|
||||
left = right0 - m + 1, right = right0;
|
||||
}
|
||||
else
|
||||
{
|
||||
stack[++sp].lb = right0 - m + 1;
|
||||
stack[sp].ub = right0;
|
||||
left = left0, right = left0 + n - 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
left = left0, right = left0 + n - 1;
|
||||
}
|
||||
else if( m > 1 )
|
||||
left = right0 - m + 1, right = right0;
|
||||
else
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
template<typename _Tp> class CV_EXPORTS LessThan
|
||||
{
|
||||
public:
|
||||
bool operator()(const _Tp& a, const _Tp& b) const { return a < b; }
|
||||
};
|
||||
|
||||
template<typename _Tp> class CV_EXPORTS GreaterEq
|
||||
{
|
||||
public:
|
||||
bool operator()(const _Tp& a, const _Tp& b) const { return a >= b; }
|
||||
};
|
||||
|
||||
template<typename _Tp> class CV_EXPORTS LessThanIdx
|
||||
{
|
||||
public:
|
||||
LessThanIdx( const _Tp* _arr ) : arr(_arr) {}
|
||||
bool operator()(int a, int b) const { return arr[a] < arr[b]; }
|
||||
const _Tp* arr;
|
||||
};
|
||||
|
||||
template<typename _Tp> class CV_EXPORTS GreaterEqIdx
|
||||
{
|
||||
public:
|
||||
GreaterEqIdx( const _Tp* _arr ) : arr(_arr) {}
|
||||
bool operator()(int a, int b) const { return arr[a] >= arr[b]; }
|
||||
const _Tp* arr;
|
||||
};
|
||||
|
||||
|
||||
// This function splits the input sequence or set into one or more equivalence classes and
|
||||
// returns the vector of labels - 0-based class indexes for each element.
|
||||
// predicate(a,b) returns true if the two sequence elements certainly belong to the same class.
|
||||
|
@ -2393,7 +2393,7 @@ template<typename T> static void sort_( const Mat& src, Mat& dst, int flags )
|
||||
for( j = 0; j < len; j++ )
|
||||
ptr[j] = ((const T*)(src.data + src.step*j))[i];
|
||||
}
|
||||
std::sort( ptr, ptr + len, LessThan<T>() );
|
||||
std::sort( ptr, ptr + len );
|
||||
if( sortDescending )
|
||||
for( j = 0; j < len/2; j++ )
|
||||
std::swap(ptr[j], ptr[len-1-j]);
|
||||
@ -2403,6 +2403,15 @@ template<typename T> static void sort_( const Mat& src, Mat& dst, int flags )
|
||||
}
|
||||
}
|
||||
|
||||
template<typename _Tp> class LessThanIdx
|
||||
{
|
||||
public:
|
||||
LessThanIdx( const _Tp* _arr ) : arr(_arr) {}
|
||||
bool operator()(int a, int b) const { return arr[a] < arr[b]; }
|
||||
const _Tp* arr;
|
||||
};
|
||||
|
||||
|
||||
|
||||
template<typename T> static void sortIdx_( const Mat& src, Mat& dst, int flags )
|
||||
{
|
||||
|
@ -1054,10 +1054,11 @@ static int preprocessMSER_8UC3( MSCRNode* node,
|
||||
return Ne;
|
||||
}
|
||||
|
||||
#define cmp_mscr_edge(edge1, edge2) \
|
||||
((edge1).chi < (edge2).chi)
|
||||
|
||||
static CV_IMPLEMENT_QSORT( QuickSortMSCREdge, MSCREdge, cmp_mscr_edge )
|
||||
class LessThanEdge
|
||||
{
|
||||
public:
|
||||
bool operator()(const MSCREdge& a, const MSCREdge& b) const { return a.chi < b.chi; }
|
||||
};
|
||||
|
||||
// to find the root of one region
|
||||
static MSCRNode* findMSCR( MSCRNode* x )
|
||||
@ -1112,7 +1113,7 @@ extractMSER_8UC3( CvMat* src,
|
||||
CvMat* dy = cvCreateMat( src->rows-1, src->cols, CV_64FC1 );
|
||||
Ne = preprocessMSER_8UC3( map, edge, &emean, src, mask, dx, dy, Ne, params.edgeBlurSize );
|
||||
emean = emean / (double)Ne;
|
||||
QuickSortMSCREdge( edge, Ne, 0 );
|
||||
std::sort(edge, edge + Ne, LessThanEdge());
|
||||
MSCREdge* edge_ub = edge+Ne;
|
||||
MSCREdge* edgeptr = edge;
|
||||
TempMSCR* mscrptr = mscr;
|
||||
|
@ -92,7 +92,7 @@ void cv::goodFeaturesToTrack( InputArray _image, OutputArray _corners,
|
||||
}
|
||||
}
|
||||
|
||||
sort( tmpCorners, greaterThanPtr<float>() );
|
||||
std::sort( tmpCorners.begin(), tmpCorners.end(), greaterThanPtr<float>() );
|
||||
std::vector<Point2f> corners;
|
||||
size_t i, j, total = tmpCorners.size(), ncorners = 0;
|
||||
|
||||
|
@ -157,8 +157,13 @@ namespace
|
||||
releaseVector(voteOutBuf);
|
||||
}
|
||||
|
||||
#define votes_cmp_gt(l1, l2) (aux[l1][0] > aux[l2][0])
|
||||
static CV_IMPLEMENT_QSORT_EX( sortIndexies, size_t, votes_cmp_gt, const Vec3i* )
|
||||
class Vec3iGreaterThanIdx
|
||||
{
|
||||
public:
|
||||
Vec3iGreaterThanIdx( const Vec3i* _arr ) : arr(_arr) {}
|
||||
bool operator()(size_t a, size_t b) const { return arr[a][0] > arr[b][0]; }
|
||||
const Vec3i* arr;
|
||||
};
|
||||
|
||||
void GHT_Pos::filterMinDist()
|
||||
{
|
||||
@ -173,7 +178,7 @@ namespace
|
||||
std::vector<size_t> indexies(oldSize);
|
||||
for (size_t i = 0; i < oldSize; ++i)
|
||||
indexies[i] = i;
|
||||
sortIndexies(&indexies[0], oldSize, &oldVoteBuf[0]);
|
||||
std::sort(indexies.begin(), indexies.end(), Vec3iGreaterThanIdx(&oldVoteBuf[0]));
|
||||
|
||||
posOutBuf.clear();
|
||||
voteOutBuf.clear();
|
||||
|
@ -56,7 +56,10 @@ struct LinePolar
|
||||
struct hough_cmp_gt
|
||||
{
|
||||
hough_cmp_gt(const int* _aux) : aux(_aux) {}
|
||||
bool operator()(int l1, int l2) const { return aux[l1] > aux[l2]; }
|
||||
bool operator()(int l1, int l2) const
|
||||
{
|
||||
return aux[l1] > aux[l2] || (aux[l1] == aux[l2] && l1 < l2);
|
||||
}
|
||||
const int* aux;
|
||||
};
|
||||
|
||||
@ -128,7 +131,7 @@ HoughLinesStandard( const Mat& img, float rho, float theta,
|
||||
}
|
||||
|
||||
// stage 3. sort the detected lines by accumulator value
|
||||
cv::sort(_sort_buf, hough_cmp_gt(accum));
|
||||
std::sort(_sort_buf.begin(), _sort_buf.end(), hough_cmp_gt(accum));
|
||||
|
||||
// stage 4. store the first min(total,linesMax) lines to the output buffer
|
||||
linesMax = std::min(linesMax, (int)_sort_buf.size());
|
||||
|
@ -389,7 +389,7 @@ void LDetector::getMostStable2D(const Mat& image, std::vector<KeyPoint>& keypoin
|
||||
|
||||
if( (int)keypoints.size() > maxPoints )
|
||||
{
|
||||
sort(keypoints, CmpKeypointScores());
|
||||
std::sort(keypoints.begin(), keypoints.end(), CmpKeypointScores());
|
||||
keypoints.resize(maxPoints);
|
||||
}
|
||||
}
|
||||
@ -602,7 +602,7 @@ void LDetector::operator()(const std::vector<Mat>& pyr, std::vector<KeyPoint>& k
|
||||
|
||||
if( maxCount > 0 && keypoints.size() > (size_t)maxCount )
|
||||
{
|
||||
sort(keypoints, CmpKeypointScores());
|
||||
std::sort(keypoints.begin(), keypoints.end(), CmpKeypointScores());
|
||||
keypoints.resize(maxCount);
|
||||
}
|
||||
}
|
||||
|
@ -351,9 +351,12 @@ CvBoostTree::find_split_ord_class( CvDTreeNode* node, int vi, float init_quality
|
||||
return split;
|
||||
}
|
||||
|
||||
|
||||
#define CV_CMP_NUM_PTR(a,b) (*(a) < *(b))
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortDblPtr, double*, CV_CMP_NUM_PTR, int )
|
||||
template<typename T>
|
||||
class LessThanPtr
|
||||
{
|
||||
public:
|
||||
bool operator()(T* a, T* b) const { return *a < *b; }
|
||||
};
|
||||
|
||||
CvDTreeSplit*
|
||||
CvBoostTree::find_split_cat_class( CvDTreeNode* node, int vi, float init_quality, CvDTreeSplit* _split, uchar* _ext_buf )
|
||||
@ -412,7 +415,7 @@ CvBoostTree::find_split_cat_class( CvDTreeNode* node, int vi, float init_quality
|
||||
|
||||
// sort rows of c_jk by increasing c_j,1
|
||||
// (i.e. by the weight of samples in j-th category that belong to class 1)
|
||||
icvSortDblPtr( dbl_ptr, mi, 0 );
|
||||
std::sort(dbl_ptr, dbl_ptr + mi, LessThanPtr<double>());
|
||||
|
||||
for( subset_i = 0; subset_i < mi-1; subset_i++ )
|
||||
{
|
||||
@ -594,7 +597,7 @@ CvBoostTree::find_split_cat_reg( CvDTreeNode* node, int vi, float init_quality,
|
||||
sum_ptr[i] = sum + i;
|
||||
}
|
||||
|
||||
icvSortDblPtr( sum_ptr, mi, 0 );
|
||||
std::sort(sum_ptr, sum_ptr + mi, LessThanPtr<double>());
|
||||
|
||||
// revert back to unnormalized sums
|
||||
// (there should be a very little loss in accuracy)
|
||||
@ -1421,9 +1424,6 @@ CvBoost::update_weights( CvBoostTree* tree )
|
||||
}
|
||||
|
||||
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSort_64f, double, CV_LT, int )
|
||||
|
||||
|
||||
void
|
||||
CvBoost::trim_weights()
|
||||
{
|
||||
@ -1440,7 +1440,7 @@ CvBoost::trim_weights()
|
||||
// use weak_eval as temporary buffer for sorted weights
|
||||
cvCopy( weights, weak_eval );
|
||||
|
||||
icvSort_64f( weak_eval->data.db, count, 0 );
|
||||
std::sort(weak_eval->data.db, weak_eval->data.db + count);
|
||||
|
||||
// as weight trimming occurs immediately after updating the weights,
|
||||
// where they are renormalized, we assume that the weight sum = 1.
|
||||
|
@ -44,13 +44,18 @@ static const float ord_nan = FLT_MAX*0.5f;
|
||||
static const int min_block_size = 1 << 16;
|
||||
static const int block_size_delta = 1 << 10;
|
||||
|
||||
#define CV_CMP_NUM_PTR(a,b) (*(a) < *(b))
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortIntPtr, int*, CV_CMP_NUM_PTR, int )
|
||||
template<typename T>
|
||||
class LessThanPtr
|
||||
{
|
||||
public:
|
||||
bool operator()(T* a, T* b) const { return *a < *b; }
|
||||
};
|
||||
|
||||
#define CV_CMP_PAIRS(a,b) (*((a).i) < *((b).i))
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortPairs, CvPair16u32s, CV_CMP_PAIRS, int )
|
||||
|
||||
///
|
||||
class LessThanPairs
|
||||
{
|
||||
public:
|
||||
bool operator()(const CvPair16u32s& a, const CvPair16u32s& b) const { return *a.i < *b.i; }
|
||||
};
|
||||
|
||||
void CvERTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx,
|
||||
@ -353,7 +358,7 @@ void CvERTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
|
||||
if (is_buf_16u)
|
||||
{
|
||||
icvSortPairs( pair16u32s_ptr, sample_count, 0 );
|
||||
std::sort(pair16u32s_ptr, pair16u32s_ptr + sample_count, LessThanPairs());
|
||||
// count the categories
|
||||
for( i = 1; i < num_valid; i++ )
|
||||
if (*pair16u32s_ptr[i].i != *pair16u32s_ptr[i-1].i)
|
||||
@ -361,7 +366,7 @@ void CvERTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
}
|
||||
else
|
||||
{
|
||||
icvSortIntPtr( int_ptr, sample_count, 0 );
|
||||
std::sort(int_ptr, int_ptr + sample_count, LessThanPtr<int>());
|
||||
// count the categories
|
||||
for( i = 1; i < num_valid; i++ )
|
||||
c_count += *int_ptr[i] != *int_ptr[i-1];
|
||||
|
@ -5,9 +5,6 @@
|
||||
#define pCvSeq CvSeq*
|
||||
#define pCvDTreeNode CvDTreeNode*
|
||||
|
||||
#define CV_CMP_FLOAT(a,b) ((a) < (b))
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortFloat, float, CV_CMP_FLOAT, float)
|
||||
|
||||
//===========================================================================
|
||||
//----------------------------- CvGBTreesParams -----------------------------
|
||||
//===========================================================================
|
||||
@ -285,7 +282,7 @@ CvGBTrees::train( const CvMat* _train_data, int _tflag,
|
||||
} break;
|
||||
default: CV_Error(CV_StsUnmatchedFormats, "_sample_idx should be a 32sC1, 8sC1 or 8uC1 vector.");
|
||||
}
|
||||
icvSortFloat(sample_idx->data.fl, sample_idx_len, 0);
|
||||
std::sort(sample_idx->data.fl, sample_idx->data.fl + sample_idx_len);
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -470,7 +467,7 @@ void CvGBTrees::find_gradient(const int k)
|
||||
int idx = *(sample_data + subsample_data[i]*s_step);
|
||||
residuals[i] = fabs(resp_data[idx] - current_data[idx]);
|
||||
}
|
||||
icvSortFloat(residuals, n, 0.0f);
|
||||
std::sort(residuals, residuals + n);
|
||||
|
||||
delta = residuals[int(ceil(n*alpha))];
|
||||
|
||||
@ -693,7 +690,7 @@ float CvGBTrees::find_optimal_value( const CvMat* _Idx )
|
||||
float* residuals = new float[n];
|
||||
for (int i=0; i<n; ++i, ++idx)
|
||||
residuals[i] = (resp_data[*idx] - cur_data[*idx]);
|
||||
icvSortFloat(residuals, n, 0.0f);
|
||||
std::sort(residuals, residuals + n);
|
||||
if (n % 2)
|
||||
gamma = residuals[n/2];
|
||||
else gamma = (residuals[n/2-1] + residuals[n/2]) / 2.0f;
|
||||
@ -705,7 +702,7 @@ float CvGBTrees::find_optimal_value( const CvMat* _Idx )
|
||||
float* residuals = new float[n];
|
||||
for (int i=0; i<n; ++i, ++idx)
|
||||
residuals[i] = (resp_data[*idx] - cur_data[*idx]);
|
||||
icvSortFloat(residuals, n, 0.0f);
|
||||
std::sort(residuals, residuals + n);
|
||||
|
||||
int n_half = n >> 1;
|
||||
float r_median = (n == n_half<<1) ?
|
||||
|
@ -120,16 +120,27 @@ bool CvDTreeTrainData::set_params( const CvDTreeParams& _params )
|
||||
return ok;
|
||||
}
|
||||
|
||||
#define CV_CMP_NUM_PTR(a,b) (*(a) < *(b))
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortIntPtr, int*, CV_CMP_NUM_PTR, int )
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortDblPtr, double*, CV_CMP_NUM_PTR, int )
|
||||
template<typename T>
|
||||
class LessThanPtr
|
||||
{
|
||||
public:
|
||||
bool operator()(T* a, T* b) const { return *a < *b; }
|
||||
};
|
||||
|
||||
#define CV_CMP_NUM_IDX(i,j) (aux[i] < aux[j])
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortIntAux, int, CV_CMP_NUM_IDX, const float* )
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortUShAux, unsigned short, CV_CMP_NUM_IDX, const float* )
|
||||
template<typename T, typename Idx>
|
||||
class LessThanIdx
|
||||
{
|
||||
public:
|
||||
LessThanIdx( const T* _arr ) : arr(_arr) {}
|
||||
bool operator()(Idx a, Idx b) const { return arr[a] < arr[b]; }
|
||||
const T* arr;
|
||||
};
|
||||
|
||||
#define CV_CMP_PAIRS(a,b) (*((a).i) < *((b).i))
|
||||
static CV_IMPLEMENT_QSORT_EX( icvSortPairs, CvPair16u32s, CV_CMP_PAIRS, int )
|
||||
class LessThanPairs
|
||||
{
|
||||
public:
|
||||
bool operator()(const CvPair16u32s& a, const CvPair16u32s& b) const { return *a.i < *b.i; }
|
||||
};
|
||||
|
||||
void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
const CvMat* _responses, const CvMat* _var_idx, const CvMat* _sample_idx,
|
||||
@ -461,7 +472,7 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
c_count = num_valid > 0;
|
||||
if (is_buf_16u)
|
||||
{
|
||||
icvSortPairs( pair16u32s_ptr, sample_count, 0 );
|
||||
std::sort(pair16u32s_ptr, pair16u32s_ptr + sample_count, LessThanPairs());
|
||||
// count the categories
|
||||
for( i = 1; i < num_valid; i++ )
|
||||
if (*pair16u32s_ptr[i].i != *pair16u32s_ptr[i-1].i)
|
||||
@ -469,7 +480,7 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
}
|
||||
else
|
||||
{
|
||||
icvSortIntPtr( int_ptr, sample_count, 0 );
|
||||
std::sort(int_ptr, int_ptr + sample_count, LessThanPtr<int>());
|
||||
// count the categories
|
||||
for( i = 1; i < num_valid; i++ )
|
||||
c_count += *int_ptr[i] != *int_ptr[i-1];
|
||||
@ -561,9 +572,9 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
|
||||
}
|
||||
if (is_buf_16u)
|
||||
icvSortUShAux( udst, sample_count, _fdst);
|
||||
std::sort(udst, udst + sample_count, LessThanIdx<float, unsigned short>(_fdst));
|
||||
else
|
||||
icvSortIntAux( idst, sample_count, _fdst );
|
||||
std::sort(idst, idst + sample_count, LessThanIdx<float, int>(_fdst));
|
||||
}
|
||||
|
||||
if( vi < var_count )
|
||||
@ -2239,7 +2250,7 @@ CvDTreeSplit* CvDTree::find_split_cat_class( CvDTreeNode* node, int vi, float in
|
||||
int_ptr = (int**)(c_weights + _mi);
|
||||
for( j = 0; j < mi; j++ )
|
||||
int_ptr[j] = cjk + j*2 + 1;
|
||||
icvSortIntPtr( int_ptr, mi, 0 );
|
||||
std::sort(int_ptr, int_ptr + mi, LessThanPtr<int>());
|
||||
subset_i = 0;
|
||||
subset_n = mi;
|
||||
}
|
||||
@ -2466,7 +2477,7 @@ CvDTreeSplit* CvDTree::find_split_cat_reg( CvDTreeNode* node, int vi, float init
|
||||
sum_ptr[i] = sum + i;
|
||||
}
|
||||
|
||||
icvSortDblPtr( sum_ptr, mi, 0 );
|
||||
std::sort(sum_ptr, sum_ptr + mi, LessThanPtr<double>());
|
||||
|
||||
// revert back to unnormalized sums
|
||||
// (there should be a very little loss of accuracy)
|
||||
|
Loading…
Reference in New Issue
Block a user