diff --git a/modules/photo/include/opencv2/photo.hpp b/modules/photo/include/opencv2/photo.hpp
index 446e817508..5e11333ee9 100644
--- a/modules/photo/include/opencv2/photo.hpp
+++ b/modules/photo/include/opencv2/photo.hpp
@@ -138,6 +138,31 @@ parameter.
CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float h = 3,
int templateWindowSize = 7, int searchWindowSize = 21);
+/** @brief Perform image denoising using Non-local Means Denoising algorithm
+ with several computational
+optimizations. Noise expected to be a gaussian white noise
+
+@param src Input 8-bit 1-channel, 2-channel, 3-channel or 4-channel image.
+@param dst Output image with the same size and type as src .
+@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
+Should be odd. Recommended value 7 pixels
+@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
+given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
+denoising time. Recommended value 21 pixels
+@param h Array of parameters regulating filter strength, one per
+channel. Big h value perfectly removes noise but also removes image
+details, smaller h value preserves details but also preserves some
+noise
+
+This function expected to be applied to grayscale images. For colored images look at
+fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
+image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
+image to CIELAB colorspace and then separately denoise L and AB components with different h
+parameter.
+ */
+CV_EXPORTS_W void fastNlMeansDenoising( InputArray src, OutputArray dst, float *h,
+ int templateWindowSize = 7, int searchWindowSize = 21);
+
/** @brief Perform image denoising using Non-local Means Denoising
algorithm
with several computational optimizations. Noise expected to be a
@@ -163,6 +188,33 @@ parameter.
CV_EXPORTS_W void fastNlMeansDenoisingAbs( InputArray src, OutputArray dst, float h = 3,
int templateWindowSize = 7, int searchWindowSize = 21);
+/** @brief Perform image denoising using Non-local Means Denoising
+algorithm
+with several computational optimizations. Noise expected to be a
+gaussian white noise. Uses squared sum of absolute value distances
+instead of sum of squared distances for weight calculation
+
+@param src Input 8-bit or 16-bit 1-channel, 2-channel, 3-channel or 4-channel image.
+@param dst Output image with the same size and type as src .
+@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
+Should be odd. Recommended value 7 pixels
+@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
+given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
+denoising time. Recommended value 21 pixels
+@param h Array of parameters regulating filter strength, one per
+channel. Big h value perfectly removes noise but also removes image
+details, smaller h value preserves details but also preserves some
+noise
+
+This function expected to be applied to grayscale images. For colored images look at
+fastNlMeansDenoisingColored. Advanced usage of this functions can be manual denoising of colored
+image in different colorspaces. Such approach is used in fastNlMeansDenoisingColored by converting
+image to CIELAB colorspace and then separately denoise L and AB components with different h
+parameter.
+ */
+CV_EXPORTS_W void fastNlMeansDenoisingAbs( InputArray src, OutputArray dst, float *h,
+ int templateWindowSize = 7, int searchWindowSize = 21);
+
/** @brief Modification of fastNlMeansDenoising function for colored images
@param src Input 8-bit 3-channel image.
@@ -204,14 +256,73 @@ Should be odd. Recommended value 7 pixels
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels
-@param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
-removes noise but also removes image details, smaller h value preserves details but also preserves
-some noise
+@param h Parameter regulating filter strength. Bigger h value
+perfectly removes noise but also removes image details, smaller h
+value preserves details but also preserves some noise
*/
CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
int imgToDenoiseIndex, int temporalWindowSize,
float h = 3, int templateWindowSize = 7, int searchWindowSize = 21);
+/** @brief Modification of fastNlMeansDenoising function for images sequence where consequtive images have been
+captured in small period of time. For example video. This version of the function is for grayscale
+images or for manual manipulation with colorspaces. For more details see
+
+
+@param srcImgs Input 8-bit 1-channel, 2-channel, 3-channel or
+4-channel images sequence. All images should have the same type and
+size.
+@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
+@param temporalWindowSize Number of surrounding images to use for target image denoising. Should
+be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
+imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
+srcImgs[imgToDenoiseIndex] image.
+@param dst Output image with the same size and type as srcImgs images.
+@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
+Should be odd. Recommended value 7 pixels
+@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
+given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
+denoising time. Recommended value 21 pixels
+@param h Array of parameters regulating filter strength, one for each
+channel. Bigger h value perfectly removes noise but also removes image
+details, smaller h value preserves details but also preserves some
+noise
+ */
+CV_EXPORTS_W void fastNlMeansDenoisingMulti( InputArrayOfArrays srcImgs, OutputArray dst,
+ int imgToDenoiseIndex, int temporalWindowSize,
+ float *h , int templateWindowSize = 7, int searchWindowSize = 21);
+
+/** @brief Modification of fastNlMeansDenoising function for images
+sequence where consequtive images have been captured in small period
+of time. For example video. This version of the function is for
+grayscale images or for manual manipulation with colorspaces. For more
+details see
+. Uses
+squared sum of absolute value distances instead of sum of squared
+distances for weight calculation
+
+@param srcImgs Input 8-bit or 16-bit 1-channel, 2-channel, 3-channel
+or 4-channel images sequence. All images should have the same type and
+size.
+@param imgToDenoiseIndex Target image to denoise index in srcImgs sequence
+@param temporalWindowSize Number of surrounding images to use for target image denoising. Should
+be odd. Images from imgToDenoiseIndex - temporalWindowSize / 2 to
+imgToDenoiseIndex - temporalWindowSize / 2 from srcImgs will be used to denoise
+srcImgs[imgToDenoiseIndex] image.
+@param dst Output image with the same size and type as srcImgs images.
+@param templateWindowSize Size in pixels of the template patch that is used to compute weights.
+Should be odd. Recommended value 7 pixels
+@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
+given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
+denoising time. Recommended value 21 pixels
+@param h Parameter regulating filter strength. Bigger h value
+perfectly removes noise but also removes image details, smaller h
+value preserves details but also preserves some noise
+ */
+CV_EXPORTS_W void fastNlMeansDenoisingMultiAbs( InputArrayOfArrays srcImgs, OutputArray dst,
+ int imgToDenoiseIndex, int temporalWindowSize,
+ float h = 3, int templateWindowSize = 7, int searchWindowSize = 21);
+
/** @brief Modification of fastNlMeansDenoising function for images
sequence where consequtive images have been captured in small period
of time. For example video. This version of the function is for
@@ -235,13 +346,14 @@ Should be odd. Recommended value 7 pixels
@param searchWindowSize Size in pixels of the window that is used to compute weighted average for
given pixel. Should be odd. Affect performance linearly: greater searchWindowsSize - greater
denoising time. Recommended value 21 pixels
-@param h Parameter regulating filter strength for luminance component. Bigger h value perfectly
-removes noise but also removes image details, smaller h value preserves details but also preserves
-some noise
+@param h Array of parameters regulating filter strength, one for each
+channel. Bigger h value perfectly removes noise but also removes image
+details, smaller h value preserves details but also preserves some
+noise
*/
CV_EXPORTS_W void fastNlMeansDenoisingMultiAbs( InputArrayOfArrays srcImgs, OutputArray dst,
int imgToDenoiseIndex, int temporalWindowSize,
- float h = 3, int templateWindowSize = 7, int searchWindowSize = 21);
+ float *h, int templateWindowSize = 7, int searchWindowSize = 21);
/** @brief Modification of fastNlMeansDenoisingMulti function for colored images sequences
diff --git a/modules/photo/src/denoising.cpp b/modules/photo/src/denoising.cpp
index 30f638d4c8..9f63254b01 100644
--- a/modules/photo/src/denoising.cpp
+++ b/modules/photo/src/denoising.cpp
@@ -90,6 +90,51 @@ void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float h,
}
}
+void cv::fastNlMeansDenoising( InputArray _src, OutputArray _dst, float *h,
+ int templateWindowSize, int searchWindowSize)
+{
+ Size src_size = _src.size();
+ CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
+ src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
+ ocl_fastNlMeansDenoising(_src, _dst, h, CV_MAT_CN(_src.type()),
+ templateWindowSize, searchWindowSize, false))
+
+ Mat src = _src.getMat();
+ _dst.create(src_size, src.type());
+ Mat dst = _dst.getMat();
+
+#ifdef HAVE_TEGRA_OPTIMIZATION
+ if(tegra::fastNlMeansDenoising(src, dst, h, templateWindowSize, searchWindowSize))
+ return;
+#endif
+
+ switch (src.type()) {
+ case CV_8U:
+ parallel_for_(cv::Range(0, src.rows),
+ FastNlMeansDenoisingInvoker(
+ src, dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_8UC2:
+ parallel_for_(cv::Range(0, src.rows),
+ FastNlMeansDenoisingInvoker(
+ src, dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_8UC3:
+ parallel_for_(cv::Range(0, src.rows),
+ FastNlMeansDenoisingInvoker(
+ src, dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_8UC4:
+ parallel_for_(cv::Range(0, src.rows),
+ FastNlMeansDenoisingInvoker(
+ src, dst, templateWindowSize, searchWindowSize, h));
+ break;
+ default:
+ CV_Error(Error::StsBadArg,
+ "Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
+ }
+}
+
void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float h,
int templateWindowSize, int searchWindowSize)
{
@@ -150,6 +195,66 @@ void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float h,
}
}
+void cv::fastNlMeansDenoisingAbs( InputArray _src, OutputArray _dst, float *h,
+ int templateWindowSize, int searchWindowSize)
+{
+ Size src_size = _src.size();
+ CV_OCL_RUN(_src.dims() <= 2 && (_src.isUMat() || _dst.isUMat()) &&
+ src_size.width > 5 && src_size.height > 5, // low accuracy on small sizes
+ ocl_fastNlMeansDenoising(_src, _dst, h, CV_MAT_CN(_src.type()),
+ templateWindowSize, searchWindowSize, true))
+
+ Mat src = _src.getMat();
+ _dst.create(src_size, src.type());
+ Mat dst = _dst.getMat();
+
+ switch (src.type()) {
+ case CV_8U:
+ parallel_for_(cv::Range(0, src.rows),
+ FastNlMeansDenoisingInvoker(
+ src, dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_8UC2:
+ parallel_for_(cv::Range(0, src.rows),
+ FastNlMeansDenoisingInvoker(
+ src, dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_8UC3:
+ parallel_for_(cv::Range(0, src.rows),
+ FastNlMeansDenoisingInvoker(
+ src, dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_8UC4:
+ parallel_for_(cv::Range(0, src.rows),
+ FastNlMeansDenoisingInvoker(
+ src, dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_16U:
+ parallel_for_(cv::Range(0, src.rows),
+ FastNlMeansDenoisingInvoker(
+ src, dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_16UC2:
+ parallel_for_(cv::Range(0, src.rows),
+ FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, Vec2i>(
+ src, dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_16UC3:
+ parallel_for_(cv::Range(0, src.rows),
+ FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, Vec3i>(
+ src, dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_16UC4:
+ parallel_for_(cv::Range(0, src.rows),
+ FastNlMeansDenoisingInvoker, int64, uint64, DistAbs, Vec4i>(
+ src, dst, templateWindowSize, searchWindowSize, h));
+ break;
+ default:
+ CV_Error(Error::StsBadArg,
+ "Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3, CV_8UC4, CV_16U, CV_16UC2, CV_16UC3 and CV_16UC4 are supported");
+ }
+}
+
void cv::fastNlMeansDenoisingColored( InputArray _src, OutputArray _dst,
float h, float hForColorComponents,
int templateWindowSize, int searchWindowSize)
@@ -269,6 +374,52 @@ void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _ds
}
}
+void cv::fastNlMeansDenoisingMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
+ int imgToDenoiseIndex, int temporalWindowSize,
+ float *h, int templateWindowSize, int searchWindowSize)
+{
+ std::vector srcImgs;
+ _srcImgs.getMatVector(srcImgs);
+
+ fastNlMeansDenoisingMultiCheckPreconditions(
+ srcImgs, imgToDenoiseIndex,
+ temporalWindowSize, templateWindowSize, searchWindowSize);
+
+ _dst.create(srcImgs[0].size(), srcImgs[0].type());
+ Mat dst = _dst.getMat();
+
+ switch (srcImgs[0].type())
+ {
+ case CV_8U:
+ parallel_for_(cv::Range(0, srcImgs[0].rows),
+ FastNlMeansMultiDenoisingInvoker(
+ srcImgs, imgToDenoiseIndex, temporalWindowSize,
+ dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_8UC2:
+ parallel_for_(cv::Range(0, srcImgs[0].rows),
+ FastNlMeansMultiDenoisingInvoker(
+ srcImgs, imgToDenoiseIndex, temporalWindowSize,
+ dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_8UC3:
+ parallel_for_(cv::Range(0, srcImgs[0].rows),
+ FastNlMeansMultiDenoisingInvoker(
+ srcImgs, imgToDenoiseIndex, temporalWindowSize,
+ dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_8UC4:
+ parallel_for_(cv::Range(0, srcImgs[0].rows),
+ FastNlMeansMultiDenoisingInvoker(
+ srcImgs, imgToDenoiseIndex, temporalWindowSize,
+ dst, templateWindowSize, searchWindowSize, h));
+ break;
+ default:
+ CV_Error(Error::StsBadArg,
+ "Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3 and CV_8UC4 are supported");
+ }
+}
+
void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float h, int templateWindowSize, int searchWindowSize)
@@ -339,6 +490,76 @@ void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray
}
}
+void cv::fastNlMeansDenoisingMultiAbs( InputArrayOfArrays _srcImgs, OutputArray _dst,
+ int imgToDenoiseIndex, int temporalWindowSize,
+ float *h, int templateWindowSize, int searchWindowSize)
+{
+ std::vector srcImgs;
+ _srcImgs.getMatVector(srcImgs);
+
+ fastNlMeansDenoisingMultiCheckPreconditions(
+ srcImgs, imgToDenoiseIndex,
+ temporalWindowSize, templateWindowSize, searchWindowSize);
+
+ _dst.create(srcImgs[0].size(), srcImgs[0].type());
+ Mat dst = _dst.getMat();
+
+ switch (srcImgs[0].type())
+ {
+ case CV_8U:
+ parallel_for_(cv::Range(0, srcImgs[0].rows),
+ FastNlMeansMultiDenoisingInvoker(
+ srcImgs, imgToDenoiseIndex, temporalWindowSize,
+ dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_8UC2:
+ parallel_for_(cv::Range(0, srcImgs[0].rows),
+ FastNlMeansMultiDenoisingInvoker(
+ srcImgs, imgToDenoiseIndex, temporalWindowSize,
+ dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_8UC3:
+ parallel_for_(cv::Range(0, srcImgs[0].rows),
+ FastNlMeansMultiDenoisingInvoker(
+ srcImgs, imgToDenoiseIndex, temporalWindowSize,
+ dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_8UC4:
+ parallel_for_(cv::Range(0, srcImgs[0].rows),
+ FastNlMeansMultiDenoisingInvoker(
+ srcImgs, imgToDenoiseIndex, temporalWindowSize,
+ dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_16U:
+ parallel_for_(cv::Range(0, srcImgs[0].rows),
+ FastNlMeansMultiDenoisingInvoker(
+ srcImgs, imgToDenoiseIndex, temporalWindowSize,
+ dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_16UC2:
+ parallel_for_(cv::Range(0, srcImgs[0].rows),
+ FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, Vec2i>(
+ srcImgs, imgToDenoiseIndex, temporalWindowSize,
+ dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_16UC3:
+ parallel_for_(cv::Range(0, srcImgs[0].rows),
+ FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, Vec3i>(
+ srcImgs, imgToDenoiseIndex, temporalWindowSize,
+ dst, templateWindowSize, searchWindowSize, h));
+ break;
+ case CV_16UC4:
+ parallel_for_(cv::Range(0, srcImgs[0].rows),
+ FastNlMeansMultiDenoisingInvoker, int64, uint64, DistAbs, Vec4i>(
+ srcImgs, imgToDenoiseIndex, temporalWindowSize,
+ dst, templateWindowSize, searchWindowSize, h));
+ break;
+ default:
+ CV_Error(Error::StsBadArg,
+ "Unsupported image format! Only CV_8U, CV_8UC2, CV_8UC3, CV_8UC4, CV_16U, CV_16UC2, CV_16UC3 and CV_16UC4 are supported");
+ }
+}
+
void cv::fastNlMeansDenoisingColoredMulti( InputArrayOfArrays _srcImgs, OutputArray _dst,
int imgToDenoiseIndex, int temporalWindowSize,
float h, float hForColorComponents,
diff --git a/modules/photo/src/fast_nlmeans_denoising_invoker.hpp b/modules/photo/src/fast_nlmeans_denoising_invoker.hpp
index ff35550df9..6e74acf038 100644
--- a/modules/photo/src/fast_nlmeans_denoising_invoker.hpp
+++ b/modules/photo/src/fast_nlmeans_denoising_invoker.hpp
@@ -236,7 +236,7 @@ void FastNlMeansDenoisingInvoker::operator() (const Range& ra
for (int x = 0; x < search_window_size_; x++)
{
int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift_;
- int weight = almost_dist2weight_[almostAvgDist];
+ WT weight = almost_dist2weight_[almostAvgDist];
T p = cur_row_ptr[border_size_ + search_window_x + x];
incWithWeight(estimation, weights_sum, weight, p);
}
diff --git a/modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp b/modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp
index efd482f6b2..9833ea7d3c 100644
--- a/modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp
+++ b/modules/photo/src/fast_nlmeans_denoising_invoker_commons.hpp
@@ -387,7 +387,7 @@ template struct incWithWeight_
-static inline void incWithWeight(IT* estimation, IT* weights_sum, IT weight, T p)
+static inline void incWithWeight(IT* estimation, IT* weights_sum, WT weight, T p)
{
return incWithWeight_::f(estimation, weights_sum, weight, p);
}
diff --git a/modules/photo/src/fast_nlmeans_multi_denoising_invoker.hpp b/modules/photo/src/fast_nlmeans_multi_denoising_invoker.hpp
index cd3833a56e..3f13f400d5 100644
--- a/modules/photo/src/fast_nlmeans_multi_denoising_invoker.hpp
+++ b/modules/photo/src/fast_nlmeans_multi_denoising_invoker.hpp
@@ -262,7 +262,7 @@ void FastNlMeansMultiDenoisingInvoker::operator() (const Rang
{
int almostAvgDist = dist_sums_row[x] >> almost_template_window_size_sq_bin_shift;
- int weight = almost_dist2weight[almostAvgDist];
+ WT weight = almost_dist2weight[almostAvgDist];
T p = cur_row_ptr[border_size_ + search_window_x + x];
incWithWeight(estimation, weights_sum, weight, p);
}
diff --git a/modules/photo/src/opencl/nlmeans.cl b/modules/photo/src/opencl/nlmeans.cl
index 936aed6fa8..879665f48a 100644
--- a/modules/photo/src/opencl/nlmeans.cl
+++ b/modules/photo/src/opencl/nlmeans.cl
@@ -36,7 +36,7 @@ __kernel void calcAlmostDist2Weight(__global wlut_t * almostDist2Weight, int alm
#endif
wlut_t weight = convert_wlut_t(fixedPointMult * (isnan(w) ? (w_t)1.0 : w));
almostDist2Weight[almostDist] =
- weight < WEIGHT_THRESHOLD * fixedPointMult ? (wlut_t)0 : weight;
+ weight < (wlut_t)(WEIGHT_THRESHOLD * fixedPointMult) ? (wlut_t)0 : weight;
}
}