mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 19:20:28 +08:00
Update obj. detect sample
This commit is contained in:
parent
eb00dce78e
commit
cca2c4b314
@ -153,51 +153,39 @@ void postprocess(Mat& frame, const std::vector<Mat>& outs, Net& net)
|
||||
std::vector<int> classIds;
|
||||
std::vector<float> confidences;
|
||||
std::vector<Rect> boxes;
|
||||
if (net.getLayer(0)->outputNameToIndex("im_info") != -1) // Faster-RCNN or R-FCN
|
||||
if (outLayerType == "DetectionOutput")
|
||||
{
|
||||
// Network produces output blob with a shape 1x1xNx7 where N is a number of
|
||||
// detections and an every detection is a vector of values
|
||||
// [batchId, classId, confidence, left, top, right, bottom]
|
||||
CV_Assert(outs.size() == 1);
|
||||
float* data = (float*)outs[0].data;
|
||||
for (size_t i = 0; i < outs[0].total(); i += 7)
|
||||
CV_Assert(outs.size() > 0);
|
||||
for (size_t k = 0; k < outs.size(); k++)
|
||||
{
|
||||
float confidence = data[i + 2];
|
||||
if (confidence > confThreshold)
|
||||
float* data = (float*)outs[k].data;
|
||||
for (size_t i = 0; i < outs[k].total(); i += 7)
|
||||
{
|
||||
int left = (int)data[i + 3];
|
||||
int top = (int)data[i + 4];
|
||||
int right = (int)data[i + 5];
|
||||
int bottom = (int)data[i + 6];
|
||||
int width = right - left + 1;
|
||||
int height = bottom - top + 1;
|
||||
classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id.
|
||||
boxes.push_back(Rect(left, top, width, height));
|
||||
confidences.push_back(confidence);
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (outLayerType == "DetectionOutput")
|
||||
{
|
||||
// Network produces output blob with a shape 1x1xNx7 where N is a number of
|
||||
// detections and an every detection is a vector of values
|
||||
// [batchId, classId, confidence, left, top, right, bottom]
|
||||
CV_Assert(outs.size() == 1);
|
||||
float* data = (float*)outs[0].data;
|
||||
for (size_t i = 0; i < outs[0].total(); i += 7)
|
||||
{
|
||||
float confidence = data[i + 2];
|
||||
if (confidence > confThreshold)
|
||||
{
|
||||
int left = (int)(data[i + 3] * frame.cols);
|
||||
int top = (int)(data[i + 4] * frame.rows);
|
||||
int right = (int)(data[i + 5] * frame.cols);
|
||||
int bottom = (int)(data[i + 6] * frame.rows);
|
||||
int width = right - left + 1;
|
||||
int height = bottom - top + 1;
|
||||
classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id.
|
||||
boxes.push_back(Rect(left, top, width, height));
|
||||
confidences.push_back(confidence);
|
||||
float confidence = data[i + 2];
|
||||
if (confidence > confThreshold)
|
||||
{
|
||||
int left = (int)data[i + 3];
|
||||
int top = (int)data[i + 4];
|
||||
int right = (int)data[i + 5];
|
||||
int bottom = (int)data[i + 6];
|
||||
int width = right - left + 1;
|
||||
int height = bottom - top + 1;
|
||||
if (width * height <= 1)
|
||||
{
|
||||
left = (int)(data[i + 3] * frame.cols);
|
||||
top = (int)(data[i + 4] * frame.rows);
|
||||
right = (int)(data[i + 5] * frame.cols);
|
||||
bottom = (int)(data[i + 6] * frame.rows);
|
||||
width = right - left + 1;
|
||||
height = bottom - top + 1;
|
||||
}
|
||||
classIds.push_back((int)(data[i + 1]) - 1); // Skip 0th background class id.
|
||||
boxes.push_back(Rect(left, top, width, height));
|
||||
confidences.push_back(confidence);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -102,7 +102,7 @@ def postprocess(frame, outs):
|
||||
classIds = []
|
||||
confidences = []
|
||||
boxes = []
|
||||
if net.getLayer(0).outputNameToIndex('im_info') != -1: # Faster-RCNN or R-FCN
|
||||
if lastLayer.type == 'DetectionOutput':
|
||||
# Network produces output blob with a shape 1x1xNx7 where N is a number of
|
||||
# detections and an every detection is a vector of values
|
||||
# [batchId, classId, confidence, left, top, right, bottom]
|
||||
@ -116,23 +116,13 @@ def postprocess(frame, outs):
|
||||
bottom = int(detection[6])
|
||||
width = right - left + 1
|
||||
height = bottom - top + 1
|
||||
classIds.append(int(detection[1]) - 1) # Skip background label
|
||||
confidences.append(float(confidence))
|
||||
boxes.append([left, top, width, height])
|
||||
elif lastLayer.type == 'DetectionOutput':
|
||||
# Network produces output blob with a shape 1x1xNx7 where N is a number of
|
||||
# detections and an every detection is a vector of values
|
||||
# [batchId, classId, confidence, left, top, right, bottom]
|
||||
for out in outs:
|
||||
for detection in out[0, 0]:
|
||||
confidence = detection[2]
|
||||
if confidence > confThreshold:
|
||||
left = int(detection[3] * frameWidth)
|
||||
top = int(detection[4] * frameHeight)
|
||||
right = int(detection[5] * frameWidth)
|
||||
bottom = int(detection[6] * frameHeight)
|
||||
width = right - left + 1
|
||||
height = bottom - top + 1
|
||||
if width * height <= 1:
|
||||
left = int(detection[3] * frameWidth)
|
||||
top = int(detection[4] * frameHeight)
|
||||
right = int(detection[5] * frameWidth)
|
||||
bottom = int(detection[6] * frameHeight)
|
||||
width = right - left + 1
|
||||
height = bottom - top + 1
|
||||
classIds.append(int(detection[1]) - 1) # Skip background label
|
||||
confidences.append(float(confidence))
|
||||
boxes.append([left, top, width, height])
|
||||
|
Loading…
Reference in New Issue
Block a user