mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 20:50:25 +08:00
Merge pull request #6025 from sovrasov:new_python_tests
This commit is contained in:
commit
cd1426ba8d
@ -361,7 +361,7 @@ public:
|
||||
*/
|
||||
CV_WRAP virtual void detectRegions( InputArray image,
|
||||
CV_OUT std::vector<std::vector<Point> >& msers,
|
||||
std::vector<Rect>& bboxes ) = 0;
|
||||
CV_OUT std::vector<Rect>& bboxes ) = 0;
|
||||
|
||||
CV_WRAP virtual void setDelta(int delta) = 0;
|
||||
CV_WRAP virtual int getDelta() const = 0;
|
||||
|
52
modules/python/test/test.py
Normal file → Executable file
52
modules/python/test/test.py
Normal file → Executable file
@ -23,48 +23,16 @@ try:
|
||||
except ImportError:
|
||||
from urllib import urlopen
|
||||
|
||||
class NewOpenCVTests(unittest.TestCase):
|
||||
|
||||
# path to local repository folder containing 'samples' folder
|
||||
repoPath = None
|
||||
# github repository url
|
||||
repoUrl = 'https://raw.github.com/Itseez/opencv/master'
|
||||
|
||||
def get_sample(self, filename, iscolor = cv2.IMREAD_COLOR):
|
||||
if not filename in self.image_cache:
|
||||
filedata = None
|
||||
if NewOpenCVTests.repoPath is not None:
|
||||
candidate = NewOpenCVTests.repoPath + '/' + filename
|
||||
if os.path.isfile(candidate):
|
||||
with open(candidate, 'rb') as f:
|
||||
filedata = f.read()
|
||||
if filedata is None:
|
||||
filedata = urlopen(NewOpenCVTests.repoUrl + '/' + filename).read()
|
||||
self.image_cache[filename] = cv2.imdecode(np.fromstring(filedata, dtype=np.uint8), iscolor)
|
||||
return self.image_cache[filename]
|
||||
|
||||
def setUp(self):
|
||||
self.image_cache = {}
|
||||
|
||||
def hashimg(self, im):
|
||||
""" Compute a hash for an image, useful for image comparisons """
|
||||
return hashlib.md5(im.tostring()).digest()
|
||||
|
||||
if sys.version_info[:2] == (2, 6):
|
||||
def assertLess(self, a, b, msg=None):
|
||||
if not a < b:
|
||||
self.fail('%s not less than %s' % (repr(a), repr(b)))
|
||||
|
||||
def assertLessEqual(self, a, b, msg=None):
|
||||
if not a <= b:
|
||||
self.fail('%s not less than or equal to %s' % (repr(a), repr(b)))
|
||||
|
||||
def assertGreater(self, a, b, msg=None):
|
||||
if not a > b:
|
||||
self.fail('%s not greater than %s' % (repr(a), repr(b)))
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
# Tests to run first; check the handful of basic operations that the later tests rely on
|
||||
|
||||
basedir = os.path.abspath(os.path.dirname(__file__))
|
||||
|
||||
def load_tests(loader, tests, pattern):
|
||||
tests.addTests(loader.discover(basedir, pattern='test_*.py'))
|
||||
return tests
|
||||
|
||||
class Hackathon244Tests(NewOpenCVTests):
|
||||
|
||||
def test_int_array(self):
|
||||
@ -165,6 +133,10 @@ if __name__ == '__main__':
|
||||
print("Testing OpenCV", cv2.__version__)
|
||||
print("Local repo path:", args.repo)
|
||||
NewOpenCVTests.repoPath = args.repo
|
||||
try:
|
||||
NewOpenCVTests.extraTestDataPath = os.environ['OPENCV_TEST_DATA_PATH']
|
||||
except KeyError:
|
||||
print('Missing opencv extra repository. Some of tests may fail.')
|
||||
random.seed(0)
|
||||
unit_argv = [sys.argv[0]] + other;
|
||||
unittest.main(argv=unit_argv)
|
||||
unittest.main(argv=unit_argv)
|
71
modules/python/test/test_calibration.py
Normal file
71
modules/python/test/test_calibration.py
Normal file
@ -0,0 +1,71 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
camera calibration for distorted images with chess board samples
|
||||
reads distorted images, calculates the calibration and write undistorted images
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class calibration_test(NewOpenCVTests):
|
||||
|
||||
def test_calibration(self):
|
||||
|
||||
from glob import glob
|
||||
img_names = []
|
||||
for i in range(1, 15):
|
||||
if i < 10:
|
||||
img_names.append('samples/data/left0{}.jpg'.format(str(i)))
|
||||
elif i != 10:
|
||||
img_names.append('samples/data/left{}.jpg'.format(str(i)))
|
||||
|
||||
square_size = 1.0
|
||||
pattern_size = (9, 6)
|
||||
pattern_points = np.zeros((np.prod(pattern_size), 3), np.float32)
|
||||
pattern_points[:, :2] = np.indices(pattern_size).T.reshape(-1, 2)
|
||||
pattern_points *= square_size
|
||||
|
||||
obj_points = []
|
||||
img_points = []
|
||||
h, w = 0, 0
|
||||
img_names_undistort = []
|
||||
for fn in img_names:
|
||||
img = self.get_sample(fn, 0)
|
||||
if img is None:
|
||||
continue
|
||||
|
||||
h, w = img.shape[:2]
|
||||
found, corners = cv2.findChessboardCorners(img, pattern_size)
|
||||
if found:
|
||||
term = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_COUNT, 30, 0.1)
|
||||
cv2.cornerSubPix(img, corners, (5, 5), (-1, -1), term)
|
||||
|
||||
if not found:
|
||||
continue
|
||||
|
||||
img_points.append(corners.reshape(-1, 2))
|
||||
obj_points.append(pattern_points)
|
||||
|
||||
# calculate camera distortion
|
||||
rms, camera_matrix, dist_coefs, rvecs, tvecs = cv2.calibrateCamera(obj_points, img_points, (w, h), None, None, flags = 0)
|
||||
|
||||
eps = 0.01
|
||||
normCamEps = 10.0
|
||||
normDistEps = 0.001
|
||||
|
||||
cameraMatrixTest = [[ 532.80992189, 0., 342.4952186 ],
|
||||
[ 0., 532.93346422, 233.8879292 ],
|
||||
[ 0., 0., 1. ]]
|
||||
|
||||
distCoeffsTest = [ -2.81325576e-01, 2.91130406e-02,
|
||||
1.21234330e-03, -1.40825372e-04, 1.54865844e-01]
|
||||
|
||||
self.assertLess(abs(rms - 0.196334638034), eps)
|
||||
self.assertLess(cv2.norm(camera_matrix - cameraMatrixTest, cv2.NORM_L1), normCamEps)
|
||||
self.assertLess(cv2.norm(dist_coefs - distCoeffsTest, cv2.NORM_L1), normDistEps)
|
92
modules/python/test/test_camshift.py
Normal file
92
modules/python/test/test_camshift.py
Normal file
@ -0,0 +1,92 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Camshift tracker
|
||||
================
|
||||
|
||||
This is a demo that shows mean-shift based tracking
|
||||
You select a color objects such as your face and it tracks it.
|
||||
This reads from video camera (0 by default, or the camera number the user enters)
|
||||
|
||||
http://www.robinhewitt.com/research/track/camshift.html
|
||||
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
|
||||
if PY3:
|
||||
xrange = range
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
from tst_scene_render import TestSceneRender
|
||||
|
||||
from tests_common import NewOpenCVTests, intersectionRate
|
||||
|
||||
class camshift_test(NewOpenCVTests):
|
||||
|
||||
framesNum = 300
|
||||
frame = None
|
||||
selection = None
|
||||
drag_start = None
|
||||
show_backproj = False
|
||||
track_window = None
|
||||
render = None
|
||||
errors = 0
|
||||
|
||||
def prepareRender(self):
|
||||
|
||||
self.render = TestSceneRender(self.get_sample('samples/data/pca_test1.jpg'), deformation = True)
|
||||
|
||||
def runTracker(self):
|
||||
|
||||
framesCounter = 0
|
||||
self.selection = True
|
||||
|
||||
xmin, ymin, xmax, ymax = self.render.getCurrentRect()
|
||||
|
||||
self.track_window = (xmin, ymin, xmax - xmin, ymax - ymin)
|
||||
|
||||
while True:
|
||||
framesCounter += 1
|
||||
self.frame = self.render.getNextFrame()
|
||||
hsv = cv2.cvtColor(self.frame, cv2.COLOR_BGR2HSV)
|
||||
mask = cv2.inRange(hsv, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
|
||||
|
||||
if self.selection:
|
||||
x0, y0, x1, y1 = self.render.getCurrentRect() + 50
|
||||
x0 -= 100
|
||||
y0 -= 100
|
||||
|
||||
hsv_roi = hsv[y0:y1, x0:x1]
|
||||
mask_roi = mask[y0:y1, x0:x1]
|
||||
hist = cv2.calcHist( [hsv_roi], [0], mask_roi, [16], [0, 180] )
|
||||
cv2.normalize(hist, hist, 0, 255, cv2.NORM_MINMAX)
|
||||
self.hist = hist.reshape(-1)
|
||||
self.selection = False
|
||||
|
||||
if self.track_window and self.track_window[2] > 0 and self.track_window[3] > 0:
|
||||
self.selection = None
|
||||
prob = cv2.calcBackProject([hsv], [0], self.hist, [0, 180], 1)
|
||||
prob &= mask
|
||||
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 )
|
||||
track_box, self.track_window = cv2.CamShift(prob, self.track_window, term_crit)
|
||||
|
||||
trackingRect = np.array(self.track_window)
|
||||
trackingRect[2] += trackingRect[0]
|
||||
trackingRect[3] += trackingRect[1]
|
||||
|
||||
if intersectionRate(self.render.getCurrentRect(), trackingRect) < 0.4:
|
||||
self.errors += 1
|
||||
|
||||
if framesCounter > self.framesNum:
|
||||
break
|
||||
|
||||
self.assertLess(float(self.errors) / self.framesNum, 0.4)
|
||||
|
||||
def test_camshift(self):
|
||||
self.prepareRender()
|
||||
self.runTracker()
|
46
modules/python/test/test_dft.py
Normal file
46
modules/python/test/test_dft.py
Normal file
@ -0,0 +1,46 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Test for disctrete fourier transform (dft)
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class dft_test(NewOpenCVTests):
|
||||
def test_dft(self):
|
||||
|
||||
img = self.get_sample('samples/data/rubberwhale1.png', 0)
|
||||
eps = 0.001
|
||||
|
||||
#test direct transform
|
||||
refDft = np.fft.fft2(img)
|
||||
refDftShift = np.fft.fftshift(refDft)
|
||||
refMagnitide = np.log(1.0 + np.abs(refDftShift))
|
||||
|
||||
testDft = cv2.dft(np.float32(img),flags = cv2.DFT_COMPLEX_OUTPUT)
|
||||
testDftShift = np.fft.fftshift(testDft)
|
||||
testMagnitude = np.log(1.0 + cv2.magnitude(testDftShift[:,:,0], testDftShift[:,:,1]))
|
||||
|
||||
refMagnitide = cv2.normalize(refMagnitide, 0.0, 1.0, cv2.NORM_MINMAX)
|
||||
testMagnitude = cv2.normalize(testMagnitude, 0.0, 1.0, cv2.NORM_MINMAX)
|
||||
|
||||
self.assertLess(cv2.norm(refMagnitide - testMagnitude), eps)
|
||||
|
||||
#test inverse transform
|
||||
img_back = np.fft.ifft2(refDft)
|
||||
img_back = np.abs(img_back)
|
||||
|
||||
img_backTest = cv2.idft(testDft)
|
||||
img_backTest = cv2.magnitude(img_backTest[:,:,0], img_backTest[:,:,1])
|
||||
|
||||
img_backTest = cv2.normalize(img_backTest, 0.0, 1.0, cv2.NORM_MINMAX)
|
||||
img_back = cv2.normalize(img_back, 0.0, 1.0, cv2.NORM_MINMAX)
|
||||
|
||||
self.assertLess(cv2.norm(img_back - img_backTest), eps)
|
197
modules/python/test/test_digits.py
Normal file
197
modules/python/test/test_digits.py
Normal file
@ -0,0 +1,197 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
SVM and KNearest digit recognition.
|
||||
|
||||
Sample loads a dataset of handwritten digits from '../data/digits.png'.
|
||||
Then it trains a SVM and KNearest classifiers on it and evaluates
|
||||
their accuracy.
|
||||
|
||||
Following preprocessing is applied to the dataset:
|
||||
- Moment-based image deskew (see deskew())
|
||||
- Digit images are split into 4 10x10 cells and 16-bin
|
||||
histogram of oriented gradients is computed for each
|
||||
cell
|
||||
- Transform histograms to space with Hellinger metric (see [1] (RootSIFT))
|
||||
|
||||
|
||||
[1] R. Arandjelovic, A. Zisserman
|
||||
"Three things everyone should know to improve object retrieval"
|
||||
http://www.robots.ox.ac.uk/~vgg/publications/2012/Arandjelovic12/arandjelovic12.pdf
|
||||
|
||||
'''
|
||||
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
# built-in modules
|
||||
from multiprocessing.pool import ThreadPool
|
||||
|
||||
import cv2
|
||||
|
||||
import numpy as np
|
||||
from numpy.linalg import norm
|
||||
|
||||
|
||||
SZ = 20 # size of each digit is SZ x SZ
|
||||
CLASS_N = 10
|
||||
DIGITS_FN = 'samples/data/digits.png'
|
||||
|
||||
def split2d(img, cell_size, flatten=True):
|
||||
h, w = img.shape[:2]
|
||||
sx, sy = cell_size
|
||||
cells = [np.hsplit(row, w//sx) for row in np.vsplit(img, h//sy)]
|
||||
cells = np.array(cells)
|
||||
if flatten:
|
||||
cells = cells.reshape(-1, sy, sx)
|
||||
return cells
|
||||
|
||||
def deskew(img):
|
||||
m = cv2.moments(img)
|
||||
if abs(m['mu02']) < 1e-2:
|
||||
return img.copy()
|
||||
skew = m['mu11']/m['mu02']
|
||||
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
|
||||
img = cv2.warpAffine(img, M, (SZ, SZ), flags=cv2.WARP_INVERSE_MAP | cv2.INTER_LINEAR)
|
||||
return img
|
||||
|
||||
class StatModel(object):
|
||||
def load(self, fn):
|
||||
self.model.load(fn) # Known bug: https://github.com/Itseez/opencv/issues/4969
|
||||
def save(self, fn):
|
||||
self.model.save(fn)
|
||||
|
||||
class KNearest(StatModel):
|
||||
def __init__(self, k = 3):
|
||||
self.k = k
|
||||
self.model = cv2.ml.KNearest_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
retval, results, neigh_resp, dists = self.model.findNearest(samples, self.k)
|
||||
return results.ravel()
|
||||
|
||||
class SVM(StatModel):
|
||||
def __init__(self, C = 1, gamma = 0.5):
|
||||
self.model = cv2.ml.SVM_create()
|
||||
self.model.setGamma(gamma)
|
||||
self.model.setC(C)
|
||||
self.model.setKernel(cv2.ml.SVM_RBF)
|
||||
self.model.setType(cv2.ml.SVM_C_SVC)
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
return self.model.predict(samples)[1].ravel()
|
||||
|
||||
|
||||
def evaluate_model(model, digits, samples, labels):
|
||||
resp = model.predict(samples)
|
||||
err = (labels != resp).mean()
|
||||
|
||||
confusion = np.zeros((10, 10), np.int32)
|
||||
for i, j in zip(labels, resp):
|
||||
confusion[int(i), int(j)] += 1
|
||||
|
||||
return err, confusion
|
||||
|
||||
def preprocess_simple(digits):
|
||||
return np.float32(digits).reshape(-1, SZ*SZ) / 255.0
|
||||
|
||||
def preprocess_hog(digits):
|
||||
samples = []
|
||||
for img in digits:
|
||||
gx = cv2.Sobel(img, cv2.CV_32F, 1, 0)
|
||||
gy = cv2.Sobel(img, cv2.CV_32F, 0, 1)
|
||||
mag, ang = cv2.cartToPolar(gx, gy)
|
||||
bin_n = 16
|
||||
bin = np.int32(bin_n*ang/(2*np.pi))
|
||||
bin_cells = bin[:10,:10], bin[10:,:10], bin[:10,10:], bin[10:,10:]
|
||||
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
|
||||
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
|
||||
hist = np.hstack(hists)
|
||||
|
||||
# transform to Hellinger kernel
|
||||
eps = 1e-7
|
||||
hist /= hist.sum() + eps
|
||||
hist = np.sqrt(hist)
|
||||
hist /= norm(hist) + eps
|
||||
|
||||
samples.append(hist)
|
||||
return np.float32(samples)
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class digits_test(NewOpenCVTests):
|
||||
|
||||
def load_digits(self, fn):
|
||||
digits_img = self.get_sample(fn, 0)
|
||||
digits = split2d(digits_img, (SZ, SZ))
|
||||
labels = np.repeat(np.arange(CLASS_N), len(digits)/CLASS_N)
|
||||
return digits, labels
|
||||
|
||||
def test_digits(self):
|
||||
|
||||
digits, labels = self.load_digits(DIGITS_FN)
|
||||
|
||||
# shuffle digits
|
||||
rand = np.random.RandomState(321)
|
||||
shuffle = rand.permutation(len(digits))
|
||||
digits, labels = digits[shuffle], labels[shuffle]
|
||||
|
||||
digits2 = list(map(deskew, digits))
|
||||
samples = preprocess_hog(digits2)
|
||||
|
||||
train_n = int(0.9*len(samples))
|
||||
digits_train, digits_test = np.split(digits2, [train_n])
|
||||
samples_train, samples_test = np.split(samples, [train_n])
|
||||
labels_train, labels_test = np.split(labels, [train_n])
|
||||
errors = list()
|
||||
confusionMatrixes = list()
|
||||
|
||||
model = KNearest(k=4)
|
||||
model.train(samples_train, labels_train)
|
||||
error, confusion = evaluate_model(model, digits_test, samples_test, labels_test)
|
||||
errors.append(error)
|
||||
confusionMatrixes.append(confusion)
|
||||
|
||||
model = SVM(C=2.67, gamma=5.383)
|
||||
model.train(samples_train, labels_train)
|
||||
error, confusion = evaluate_model(model, digits_test, samples_test, labels_test)
|
||||
errors.append(error)
|
||||
confusionMatrixes.append(confusion)
|
||||
|
||||
eps = 0.001
|
||||
normEps = len(samples_test) * 0.02
|
||||
|
||||
confusionKNN = [[45, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[ 0, 57, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[ 0, 0, 59, 1, 0, 0, 0, 0, 1, 0],
|
||||
[ 0, 0, 0, 43, 0, 0, 0, 1, 0, 0],
|
||||
[ 0, 0, 0, 0, 38, 0, 2, 0, 0, 0],
|
||||
[ 0, 0, 0, 2, 0, 48, 0, 0, 1, 0],
|
||||
[ 0, 1, 0, 0, 0, 0, 51, 0, 0, 0],
|
||||
[ 0, 0, 1, 0, 0, 0, 0, 54, 0, 0],
|
||||
[ 0, 0, 0, 0, 0, 1, 0, 0, 46, 0],
|
||||
[ 1, 1, 0, 1, 1, 0, 0, 0, 2, 42]]
|
||||
|
||||
confusionSVM = [[45, 0, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[ 0, 57, 0, 0, 0, 0, 0, 0, 0, 0],
|
||||
[ 0, 0, 59, 2, 0, 0, 0, 0, 0, 0],
|
||||
[ 0, 0, 0, 43, 0, 0, 0, 1, 0, 0],
|
||||
[ 0, 0, 0, 0, 40, 0, 0, 0, 0, 0],
|
||||
[ 0, 0, 0, 1, 0, 50, 0, 0, 0, 0],
|
||||
[ 0, 0, 0, 0, 1, 0, 51, 0, 0, 0],
|
||||
[ 0, 0, 1, 0, 0, 0, 0, 54, 0, 0],
|
||||
[ 0, 0, 0, 0, 0, 0, 0, 0, 47, 0],
|
||||
[ 0, 1, 0, 1, 0, 0, 0, 0, 1, 45]]
|
||||
|
||||
self.assertLess(cv2.norm(confusionMatrixes[0] - confusionKNN, cv2.NORM_L1), normEps)
|
||||
self.assertLess(cv2.norm(confusionMatrixes[1] - confusionSVM, cv2.NORM_L1), normEps)
|
||||
|
||||
self.assertLess(errors[0] - 0.034, eps)
|
||||
self.assertLess(errors[1] - 0.018, eps)
|
90
modules/python/test/test_facedetect.py
Normal file
90
modules/python/test/test_facedetect.py
Normal file
@ -0,0 +1,90 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
face detection using haar cascades
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
def detect(img, cascade):
|
||||
rects = cascade.detectMultiScale(img, scaleFactor=1.3, minNeighbors=4, minSize=(30, 30),
|
||||
flags=cv2.CASCADE_SCALE_IMAGE)
|
||||
if len(rects) == 0:
|
||||
return []
|
||||
rects[:,2:] += rects[:,:2]
|
||||
return rects
|
||||
|
||||
from tests_common import NewOpenCVTests, intersectionRate
|
||||
|
||||
class facedetect_test(NewOpenCVTests):
|
||||
|
||||
def test_facedetect(self):
|
||||
import sys, getopt
|
||||
|
||||
cascade_fn = self.repoPath + '/data/haarcascades/haarcascade_frontalface_alt.xml'
|
||||
nested_fn = self.repoPath + '/data/haarcascades/haarcascade_eye.xml'
|
||||
|
||||
cascade = cv2.CascadeClassifier(cascade_fn)
|
||||
nested = cv2.CascadeClassifier(nested_fn)
|
||||
|
||||
samples = ['samples/data/lena.jpg', 'cv/cascadeandhog/images/mona-lisa.png']
|
||||
|
||||
faces = []
|
||||
eyes = []
|
||||
|
||||
testFaces = [
|
||||
#lena
|
||||
[[218, 200, 389, 371],
|
||||
[ 244, 240, 294, 290],
|
||||
[ 309, 246, 352, 289]],
|
||||
|
||||
#lisa
|
||||
[[167, 119, 307, 259],
|
||||
[188, 153, 229, 194],
|
||||
[236, 153, 277, 194]]
|
||||
]
|
||||
|
||||
for sample in samples:
|
||||
|
||||
img = self.get_sample( sample)
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
gray = cv2.GaussianBlur(gray, (5, 5), 5.1)
|
||||
|
||||
rects = detect(gray, cascade)
|
||||
faces.append(rects)
|
||||
|
||||
if not nested.empty():
|
||||
for x1, y1, x2, y2 in rects:
|
||||
roi = gray[y1:y2, x1:x2]
|
||||
subrects = detect(roi.copy(), nested)
|
||||
|
||||
for rect in subrects:
|
||||
rect[0] += x1
|
||||
rect[2] += x1
|
||||
rect[1] += y1
|
||||
rect[3] += y1
|
||||
|
||||
eyes.append(subrects)
|
||||
|
||||
faces_matches = 0
|
||||
eyes_matches = 0
|
||||
|
||||
eps = 0.8
|
||||
|
||||
for i in range(len(faces)):
|
||||
for j in range(len(testFaces)):
|
||||
if intersectionRate(faces[i][0], testFaces[j][0]) > eps:
|
||||
faces_matches += 1
|
||||
#check eyes
|
||||
if len(eyes[i]) == 2:
|
||||
if intersectionRate(eyes[i][0], testFaces[j][1]) > eps and intersectionRate(eyes[i][1] , testFaces[j][2]) > eps:
|
||||
eyes_matches += 1
|
||||
elif intersectionRate(eyes[i][1], testFaces[j][1]) > eps and intersectionRate(eyes[i][0], testFaces[j][2]) > eps:
|
||||
eyes_matches += 1
|
||||
|
||||
self.assertEqual(faces_matches, 2)
|
||||
self.assertEqual(eyes_matches, 2)
|
160
modules/python/test/test_feature_homography.py
Normal file
160
modules/python/test/test_feature_homography.py
Normal file
@ -0,0 +1,160 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Feature homography
|
||||
==================
|
||||
|
||||
Example of using features2d framework for interactive video homography matching.
|
||||
ORB features and FLANN matcher are used. The actual tracking is implemented by
|
||||
PlaneTracker class in plane_tracker.py
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
|
||||
if PY3:
|
||||
xrange = range
|
||||
|
||||
# local modules
|
||||
from tst_scene_render import TestSceneRender
|
||||
|
||||
def intersectionRate(s1, s2):
|
||||
|
||||
x1, y1, x2, y2 = s1
|
||||
s1 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]])
|
||||
|
||||
area, intersection = cv2.intersectConvexConvex(s1, np.array(s2))
|
||||
return 2 * area / (cv2.contourArea(s1) + cv2.contourArea(np.array(s2)))
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class feature_homography_test(NewOpenCVTests):
|
||||
|
||||
render = None
|
||||
tracker = None
|
||||
framesCounter = 0
|
||||
frame = None
|
||||
|
||||
def test_feature_homography(self):
|
||||
|
||||
self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'),
|
||||
self.get_sample('samples/data/box.png'), noise = 0.5, speed = 0.5)
|
||||
self.frame = self.render.getNextFrame()
|
||||
self.tracker = PlaneTracker()
|
||||
self.tracker.clear()
|
||||
self.tracker.add_target(self.frame, self.render.getCurrentRect())
|
||||
|
||||
while self.framesCounter < 100:
|
||||
self.framesCounter += 1
|
||||
tracked = self.tracker.track(self.frame)
|
||||
if len(tracked) > 0:
|
||||
tracked = tracked[0]
|
||||
self.assertGreater(intersectionRate(self.render.getCurrentRect(), np.int32(tracked.quad)), 0.6)
|
||||
else:
|
||||
self.assertEqual(0, 1, 'Tracking error')
|
||||
self.frame = self.render.getNextFrame()
|
||||
|
||||
|
||||
# built-in modules
|
||||
from collections import namedtuple
|
||||
|
||||
FLANN_INDEX_KDTREE = 1
|
||||
FLANN_INDEX_LSH = 6
|
||||
flann_params= dict(algorithm = FLANN_INDEX_LSH,
|
||||
table_number = 6, # 12
|
||||
key_size = 12, # 20
|
||||
multi_probe_level = 1) #2
|
||||
|
||||
MIN_MATCH_COUNT = 10
|
||||
|
||||
'''
|
||||
image - image to track
|
||||
rect - tracked rectangle (x1, y1, x2, y2)
|
||||
keypoints - keypoints detected inside rect
|
||||
descrs - their descriptors
|
||||
data - some user-provided data
|
||||
'''
|
||||
PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data')
|
||||
|
||||
'''
|
||||
target - reference to PlanarTarget
|
||||
p0 - matched points coords in target image
|
||||
p1 - matched points coords in input frame
|
||||
H - homography matrix from p0 to p1
|
||||
quad - target bounary quad in input frame
|
||||
'''
|
||||
TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad')
|
||||
|
||||
class PlaneTracker:
|
||||
def __init__(self):
|
||||
self.detector = cv2.AKAZE_create(threshold = 0.003)
|
||||
self.matcher = cv2.FlannBasedMatcher(flann_params, {}) # bug : need to pass empty dict (#1329)
|
||||
self.targets = []
|
||||
self.frame_points = []
|
||||
|
||||
def add_target(self, image, rect, data=None):
|
||||
'''Add a new tracking target.'''
|
||||
x0, y0, x1, y1 = rect
|
||||
raw_points, raw_descrs = self.detect_features(image)
|
||||
points, descs = [], []
|
||||
for kp, desc in zip(raw_points, raw_descrs):
|
||||
x, y = kp.pt
|
||||
if x0 <= x <= x1 and y0 <= y <= y1:
|
||||
points.append(kp)
|
||||
descs.append(desc)
|
||||
descs = np.uint8(descs)
|
||||
self.matcher.add([descs])
|
||||
target = PlanarTarget(image = image, rect=rect, keypoints = points, descrs=descs, data=data)
|
||||
self.targets.append(target)
|
||||
|
||||
def clear(self):
|
||||
'''Remove all targets'''
|
||||
self.targets = []
|
||||
self.matcher.clear()
|
||||
|
||||
def track(self, frame):
|
||||
'''Returns a list of detected TrackedTarget objects'''
|
||||
self.frame_points, frame_descrs = self.detect_features(frame)
|
||||
if len(self.frame_points) < MIN_MATCH_COUNT:
|
||||
return []
|
||||
matches = self.matcher.knnMatch(frame_descrs, k = 2)
|
||||
matches = [m[0] for m in matches if len(m) == 2 and m[0].distance < m[1].distance * 0.75]
|
||||
if len(matches) < MIN_MATCH_COUNT:
|
||||
return []
|
||||
matches_by_id = [[] for _ in xrange(len(self.targets))]
|
||||
for m in matches:
|
||||
matches_by_id[m.imgIdx].append(m)
|
||||
tracked = []
|
||||
for imgIdx, matches in enumerate(matches_by_id):
|
||||
if len(matches) < MIN_MATCH_COUNT:
|
||||
continue
|
||||
target = self.targets[imgIdx]
|
||||
p0 = [target.keypoints[m.trainIdx].pt for m in matches]
|
||||
p1 = [self.frame_points[m.queryIdx].pt for m in matches]
|
||||
p0, p1 = np.float32((p0, p1))
|
||||
H, status = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0)
|
||||
status = status.ravel() != 0
|
||||
if status.sum() < MIN_MATCH_COUNT:
|
||||
continue
|
||||
p0, p1 = p0[status], p1[status]
|
||||
|
||||
x0, y0, x1, y1 = target.rect
|
||||
quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
|
||||
quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)
|
||||
|
||||
track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad)
|
||||
tracked.append(track)
|
||||
tracked.sort(key = lambda t: len(t.p0), reverse=True)
|
||||
return tracked
|
||||
|
||||
def detect_features(self, frame):
|
||||
'''detect_features(self, frame) -> keypoints, descrs'''
|
||||
keypoints, descrs = self.detector.detectAndCompute(frame, None)
|
||||
if descrs is None: # detectAndCompute returns descs=None if no keypoints found
|
||||
descrs = []
|
||||
return keypoints, descrs
|
66
modules/python/test/test_fitline.py
Normal file
66
modules/python/test/test_fitline.py
Normal file
@ -0,0 +1,66 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Robust line fitting.
|
||||
==================
|
||||
|
||||
Example of using cv2.fitLine function for fitting line
|
||||
to points in presence of outliers.
|
||||
|
||||
Switch through different M-estimator functions and see,
|
||||
how well the robust functions fit the line even
|
||||
in case of ~50% of outliers.
|
||||
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
w, h = 512, 256
|
||||
|
||||
def toint(p):
|
||||
return tuple(map(int, p))
|
||||
|
||||
def sample_line(p1, p2, n, noise=0.0):
|
||||
np.random.seed(10)
|
||||
p1 = np.float32(p1)
|
||||
t = np.random.rand(n,1)
|
||||
return p1 + (p2-p1)*t + np.random.normal(size=(n, 2))*noise
|
||||
|
||||
dist_func_names = ['DIST_L2', 'DIST_L1', 'DIST_L12', 'DIST_FAIR', 'DIST_WELSCH', 'DIST_HUBER']
|
||||
|
||||
class fitline_test(NewOpenCVTests):
|
||||
|
||||
def test_fitline(self):
|
||||
|
||||
noise = 5
|
||||
n = 200
|
||||
r = 5 / 100.0
|
||||
outn = int(n*r)
|
||||
|
||||
p0, p1 = (90, 80), (w-90, h-80)
|
||||
line_points = sample_line(p0, p1, n-outn, noise)
|
||||
outliers = np.random.rand(outn, 2) * (w, h)
|
||||
points = np.vstack([line_points, outliers])
|
||||
|
||||
lines = []
|
||||
|
||||
for name in dist_func_names:
|
||||
func = getattr(cv2, name)
|
||||
vx, vy, cx, cy = cv2.fitLine(np.float32(points), func, 0, 0.01, 0.01)
|
||||
line = [float(vx), float(vy), float(cx), float(cy)]
|
||||
lines.append(line)
|
||||
|
||||
eps = 0.05
|
||||
|
||||
refVec = (np.float32(p1) - p0) / cv2.norm(np.float32(p1) - p0)
|
||||
|
||||
for i in range(len(lines)):
|
||||
self.assertLessEqual(cv2.norm(refVec - lines[i][0:2], cv2.NORM_L2), eps)
|
60
modules/python/test/test_gaussian_mix.py
Normal file
60
modules/python/test/test_gaussian_mix.py
Normal file
@ -0,0 +1,60 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
|
||||
if PY3:
|
||||
xrange = range
|
||||
|
||||
import numpy as np
|
||||
from numpy import random
|
||||
import cv2
|
||||
|
||||
def make_gaussians(cluster_n, img_size):
|
||||
points = []
|
||||
ref_distrs = []
|
||||
for i in xrange(cluster_n):
|
||||
mean = (0.1 + 0.8*random.rand(2)) * img_size
|
||||
a = (random.rand(2, 2)-0.5)*img_size*0.1
|
||||
cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
|
||||
n = 100 + random.randint(900)
|
||||
pts = random.multivariate_normal(mean, cov, n)
|
||||
points.append( pts )
|
||||
ref_distrs.append( (mean, cov) )
|
||||
points = np.float32( np.vstack(points) )
|
||||
return points, ref_distrs
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class gaussian_mix_test(NewOpenCVTests):
|
||||
|
||||
def test_gaussian_mix(self):
|
||||
|
||||
np.random.seed(10)
|
||||
cluster_n = 5
|
||||
img_size = 512
|
||||
|
||||
points, ref_distrs = make_gaussians(cluster_n, img_size)
|
||||
|
||||
em = cv2.ml.EM_create()
|
||||
em.setClustersNumber(cluster_n)
|
||||
em.setCovarianceMatrixType(cv2.ml.EM_COV_MAT_GENERIC)
|
||||
em.trainEM(points)
|
||||
means = em.getMeans()
|
||||
covs = em.getCovs() # Known bug: https://github.com/Itseez/opencv/pull/4232
|
||||
found_distrs = zip(means, covs)
|
||||
|
||||
matches_count = 0
|
||||
|
||||
meanEps = 0.05
|
||||
covEps = 0.1
|
||||
|
||||
for i in range(cluster_n):
|
||||
for j in range(cluster_n):
|
||||
if (cv2.norm(means[i] - ref_distrs[j][0], cv2.NORM_L2) / cv2.norm(ref_distrs[j][0], cv2.NORM_L2) < meanEps and
|
||||
cv2.norm(covs[i] - ref_distrs[j][1], cv2.NORM_L2) / cv2.norm(ref_distrs[j][1], cv2.NORM_L2) < covEps):
|
||||
matches_count += 1
|
||||
|
||||
self.assertEqual(matches_count, cluster_n)
|
67
modules/python/test/test_grabcut.py
Normal file
67
modules/python/test/test_grabcut.py
Normal file
@ -0,0 +1,67 @@
|
||||
#!/usr/bin/env python
|
||||
'''
|
||||
===============================================================================
|
||||
Interactive Image Segmentation using GrabCut algorithm.
|
||||
===============================================================================
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import sys
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class grabcut_test(NewOpenCVTests):
|
||||
|
||||
def verify(self, mask, exp):
|
||||
|
||||
maxDiffRatio = 0.02
|
||||
expArea = np.count_nonzero(exp)
|
||||
nonIntersectArea = np.count_nonzero(mask != exp)
|
||||
curRatio = float(nonIntersectArea) / expArea
|
||||
return curRatio < maxDiffRatio
|
||||
|
||||
def scaleMask(self, mask):
|
||||
|
||||
return np.where((mask==cv2.GC_FGD) + (mask==cv2.GC_PR_FGD),255,0).astype('uint8')
|
||||
|
||||
def test_grabcut(self):
|
||||
|
||||
img = self.get_sample('cv/shared/airplane.png')
|
||||
mask_prob = self.get_sample("cv/grabcut/mask_probpy.png", 0)
|
||||
exp_mask1 = self.get_sample("cv/grabcut/exp_mask1py.png", 0)
|
||||
exp_mask2 = self.get_sample("cv/grabcut/exp_mask2py.png", 0)
|
||||
|
||||
if img is None:
|
||||
self.assertTrue(False, 'Missing test data')
|
||||
|
||||
rect = (24, 126, 459, 168)
|
||||
mask = np.zeros(img.shape[:2], dtype = np.uint8)
|
||||
bgdModel = np.zeros((1,65),np.float64)
|
||||
fgdModel = np.zeros((1,65),np.float64)
|
||||
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 0, cv2.GC_INIT_WITH_RECT)
|
||||
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 2, cv2.GC_EVAL)
|
||||
|
||||
if mask_prob is None:
|
||||
mask_prob = mask.copy()
|
||||
cv2.imwrite(self.extraTestDataPath + '/cv/grabcut/mask_probpy.png', mask_prob)
|
||||
if exp_mask1 is None:
|
||||
exp_mask1 = self.scaleMask(mask)
|
||||
cv2.imwrite(self.extraTestDataPath + '/cv/grabcut/exp_mask1py.png', exp_mask1)
|
||||
|
||||
self.assertEqual(self.verify(self.scaleMask(mask), exp_mask1), True)
|
||||
|
||||
mask = mask_prob
|
||||
bgdModel = np.zeros((1,65),np.float64)
|
||||
fgdModel = np.zeros((1,65),np.float64)
|
||||
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 0, cv2.GC_INIT_WITH_MASK)
|
||||
cv2.grabCut(img, mask, rect, bgdModel, fgdModel, 1, cv2.GC_EVAL)
|
||||
|
||||
if exp_mask2 is None:
|
||||
exp_mask2 = self.scaleMask(mask)
|
||||
cv2.imwrite(self.extraTestDataPath + '/cv/grabcut/exp_mask2py.png', exp_mask2)
|
||||
|
||||
self.assertEqual(self.verify(self.scaleMask(mask), exp_mask2), True)
|
81
modules/python/test/test_houghcircles.py
Normal file
81
modules/python/test/test_houghcircles.py
Normal file
@ -0,0 +1,81 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
'''
|
||||
This example illustrates how to use cv2.HoughCircles() function.
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import sys
|
||||
from numpy import pi, sin, cos
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
def circleApproximation(circle):
|
||||
|
||||
nPoints = 30
|
||||
phi = 0
|
||||
dPhi = 2*pi / nPoints
|
||||
contour = []
|
||||
for i in range(nPoints):
|
||||
contour.append(([circle[0] + circle[2]*cos(i*dPhi),
|
||||
circle[1] + circle[2]*sin(i*dPhi)]))
|
||||
|
||||
return np.array(contour).astype(int)
|
||||
|
||||
def convContoursIntersectiponRate(c1, c2):
|
||||
|
||||
s1 = cv2.contourArea(c1)
|
||||
s2 = cv2.contourArea(c2)
|
||||
|
||||
s, _ = cv2.intersectConvexConvex(c1, c2)
|
||||
|
||||
return 2*s/(s1+s2)
|
||||
|
||||
class houghcircles_test(NewOpenCVTests):
|
||||
|
||||
def test_houghcircles(self):
|
||||
|
||||
fn = "samples/data/board.jpg"
|
||||
|
||||
src = self.get_sample(fn, 1)
|
||||
img = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
|
||||
img = cv2.medianBlur(img, 5)
|
||||
|
||||
circles = cv2.HoughCircles(img, cv2.HOUGH_GRADIENT, 1, 10, np.array([]), 100, 30, 1, 30)[0]
|
||||
|
||||
testCircles = [[38, 181, 17.6],
|
||||
[99.7, 166, 13.12],
|
||||
[142.7, 160, 13.52],
|
||||
[223.6, 110, 8.62],
|
||||
[79.1, 206.7, 8.62],
|
||||
[47.5, 351.6, 11.64],
|
||||
[189.5, 354.4, 11.64],
|
||||
[189.8, 298.9, 10.64],
|
||||
[189.5, 252.4, 14.62],
|
||||
[252.5, 393.4, 15.62],
|
||||
[602.9, 467.5, 11.42],
|
||||
[222, 210.4, 9.12],
|
||||
[263.1, 216.7, 9.12],
|
||||
[359.8, 222.6, 9.12],
|
||||
[518.9, 120.9, 9.12],
|
||||
[413.8, 113.4, 9.12],
|
||||
[489, 127.2, 9.12],
|
||||
[448.4, 121.3, 9.12],
|
||||
[384.6, 128.9, 8.62]]
|
||||
|
||||
matches_counter = 0
|
||||
|
||||
for i in range(len(testCircles)):
|
||||
for j in range(len(circles)):
|
||||
|
||||
tstCircle = circleApproximation(testCircles[i])
|
||||
circle = circleApproximation(circles[j])
|
||||
if convContoursIntersectiponRate(tstCircle, circle) > 0.6:
|
||||
matches_counter += 1
|
||||
|
||||
self.assertGreater(float(matches_counter) / len(testCircles), .5)
|
||||
self.assertLess(float(len(circles) - matches_counter) / len(circles), .75)
|
65
modules/python/test/test_houghlines.py
Normal file
65
modules/python/test/test_houghlines.py
Normal file
@ -0,0 +1,65 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
'''
|
||||
This example illustrates how to use Hough Transform to find lines
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import sys
|
||||
import math
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
def linesDiff(line1, line2):
|
||||
|
||||
norm1 = cv2.norm(line1 - line2, cv2.NORM_L2)
|
||||
line3 = line1[2:4] + line1[0:2]
|
||||
norm2 = cv2.norm(line3 - line2, cv2.NORM_L2)
|
||||
|
||||
return min(norm1, norm2)
|
||||
|
||||
class houghlines_test(NewOpenCVTests):
|
||||
|
||||
def test_houghlines(self):
|
||||
|
||||
fn = "/samples/data/pic1.png"
|
||||
|
||||
src = self.get_sample(fn)
|
||||
dst = cv2.Canny(src, 50, 200)
|
||||
|
||||
lines = cv2.HoughLinesP(dst, 1, math.pi/180.0, 40, np.array([]), 50, 10)[:,0,:]
|
||||
|
||||
eps = 5
|
||||
testLines = [
|
||||
#rect1
|
||||
[ 232, 25, 43, 25],
|
||||
[ 43, 129, 232, 129],
|
||||
[ 43, 129, 43, 25],
|
||||
[232, 129, 232, 25],
|
||||
#rect2
|
||||
[251, 86, 314, 183],
|
||||
[252, 86, 323, 40],
|
||||
[315, 183, 386, 137],
|
||||
[324, 40, 386, 136],
|
||||
#triangle
|
||||
[245, 205, 377, 205],
|
||||
[244, 206, 305, 278],
|
||||
[306, 279, 377, 205],
|
||||
#rect3
|
||||
[153, 177, 196, 177],
|
||||
[153, 277, 153, 179],
|
||||
[153, 277, 196, 277],
|
||||
[196, 177, 196, 277]]
|
||||
|
||||
matches_counter = 0
|
||||
|
||||
for i in range(len(testLines)):
|
||||
for j in range(len(lines)):
|
||||
if linesDiff(testLines[i], lines[j]) < eps:
|
||||
matches_counter += 1
|
||||
|
||||
self.assertGreater(float(matches_counter) / len(testLines), .7)
|
70
modules/python/test/test_kmeans.py
Normal file
70
modules/python/test/test_kmeans.py
Normal file
@ -0,0 +1,70 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
K-means clusterization test
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
from numpy import random
|
||||
import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
if PY3:
|
||||
xrange = range
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
def make_gaussians(cluster_n, img_size):
|
||||
points = []
|
||||
ref_distrs = []
|
||||
sizes = []
|
||||
for i in xrange(cluster_n):
|
||||
mean = (0.1 + 0.8*random.rand(2)) * img_size
|
||||
a = (random.rand(2, 2)-0.5)*img_size*0.1
|
||||
cov = np.dot(a.T, a) + img_size*0.05*np.eye(2)
|
||||
n = 100 + random.randint(900)
|
||||
pts = random.multivariate_normal(mean, cov, n)
|
||||
points.append( pts )
|
||||
ref_distrs.append( (mean, cov) )
|
||||
sizes.append(n)
|
||||
points = np.float32( np.vstack(points) )
|
||||
return points, ref_distrs, sizes
|
||||
|
||||
def getMainLabelConfidence(labels, nLabels):
|
||||
|
||||
n = len(labels)
|
||||
labelsDict = dict.fromkeys(range(nLabels), 0)
|
||||
labelsConfDict = dict.fromkeys(range(nLabels))
|
||||
|
||||
for i in range(n):
|
||||
labelsDict[labels[i][0]] += 1
|
||||
|
||||
for i in range(nLabels):
|
||||
labelsConfDict[i] = float(labelsDict[i]) / n
|
||||
|
||||
return max(labelsConfDict.values())
|
||||
|
||||
class kmeans_test(NewOpenCVTests):
|
||||
|
||||
def test_kmeans(self):
|
||||
|
||||
np.random.seed(10)
|
||||
|
||||
cluster_n = 5
|
||||
img_size = 512
|
||||
|
||||
points, _, clusterSizes = make_gaussians(cluster_n, img_size)
|
||||
|
||||
term_crit = (cv2.TERM_CRITERIA_EPS, 30, 0.1)
|
||||
ret, labels, centers = cv2.kmeans(points, cluster_n, None, term_crit, 10, 0)
|
||||
|
||||
self.assertEqual(len(centers), cluster_n)
|
||||
|
||||
offset = 0
|
||||
for i in range(cluster_n):
|
||||
confidence = getMainLabelConfidence(labels[offset : (offset + clusterSizes[i])], cluster_n)
|
||||
offset += clusterSizes[i]
|
||||
self.assertGreater(confidence, 0.9)
|
167
modules/python/test/test_letter_recog.py
Normal file
167
modules/python/test/test_letter_recog.py
Normal file
@ -0,0 +1,167 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
The sample demonstrates how to train Random Trees classifier
|
||||
(or Boosting classifier, or MLP, or Knearest, or Support Vector Machines) using the provided dataset.
|
||||
|
||||
We use the sample database letter-recognition.data
|
||||
from UCI Repository, here is the link:
|
||||
|
||||
Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. (1998).
|
||||
UCI Repository of machine learning databases
|
||||
[http://www.ics.uci.edu/~mlearn/MLRepository.html].
|
||||
Irvine, CA: University of California, Department of Information and Computer Science.
|
||||
|
||||
The dataset consists of 20000 feature vectors along with the
|
||||
responses - capital latin letters A..Z.
|
||||
The first 10000 samples are used for training
|
||||
and the remaining 10000 - to test the classifier.
|
||||
======================================================
|
||||
Models: RTrees, KNearest, Boost, SVM, MLP
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
def load_base(fn):
|
||||
a = np.loadtxt(fn, np.float32, delimiter=',', converters={ 0 : lambda ch : ord(ch)-ord('A') })
|
||||
samples, responses = a[:,1:], a[:,0]
|
||||
return samples, responses
|
||||
|
||||
class LetterStatModel(object):
|
||||
class_n = 26
|
||||
train_ratio = 0.5
|
||||
|
||||
def load(self, fn):
|
||||
self.model.load(fn)
|
||||
def save(self, fn):
|
||||
self.model.save(fn)
|
||||
|
||||
def unroll_samples(self, samples):
|
||||
sample_n, var_n = samples.shape
|
||||
new_samples = np.zeros((sample_n * self.class_n, var_n+1), np.float32)
|
||||
new_samples[:,:-1] = np.repeat(samples, self.class_n, axis=0)
|
||||
new_samples[:,-1] = np.tile(np.arange(self.class_n), sample_n)
|
||||
return new_samples
|
||||
|
||||
def unroll_responses(self, responses):
|
||||
sample_n = len(responses)
|
||||
new_responses = np.zeros(sample_n*self.class_n, np.int32)
|
||||
resp_idx = np.int32( responses + np.arange(sample_n)*self.class_n )
|
||||
new_responses[resp_idx] = 1
|
||||
return new_responses
|
||||
|
||||
class RTrees(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ml.RTrees_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
self.model.setMaxDepth(20)
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
||||
|
||||
def predict(self, samples):
|
||||
ret, resp = self.model.predict(samples)
|
||||
return resp.ravel()
|
||||
|
||||
|
||||
class KNearest(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ml.KNearest_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
retval, results, neigh_resp, dists = self.model.findNearest(samples, k = 10)
|
||||
return results.ravel()
|
||||
|
||||
|
||||
class Boost(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ml.Boost_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
new_samples = self.unroll_samples(samples)
|
||||
new_responses = self.unroll_responses(responses)
|
||||
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL, cv2.ml.VAR_CATEGORICAL], np.uint8)
|
||||
|
||||
self.model.setWeakCount(15)
|
||||
self.model.setMaxDepth(10)
|
||||
self.model.train(cv2.ml.TrainData_create(new_samples, cv2.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
|
||||
|
||||
def predict(self, samples):
|
||||
new_samples = self.unroll_samples(samples)
|
||||
ret, resp = self.model.predict(new_samples)
|
||||
|
||||
return resp.ravel().reshape(-1, self.class_n).argmax(1)
|
||||
|
||||
|
||||
class SVM(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ml.SVM_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.setType(cv2.ml.SVM_C_SVC)
|
||||
self.model.setC(1)
|
||||
self.model.setKernel(cv2.ml.SVM_RBF)
|
||||
self.model.setGamma(.1)
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
||||
|
||||
def predict(self, samples):
|
||||
ret, resp = self.model.predict(samples)
|
||||
return resp.ravel()
|
||||
|
||||
|
||||
class MLP(LetterStatModel):
|
||||
def __init__(self):
|
||||
self.model = cv2.ml.ANN_MLP_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
|
||||
layer_sizes = np.int32([var_n, 100, 100, self.class_n])
|
||||
|
||||
self.model.setLayerSizes(layer_sizes)
|
||||
self.model.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
|
||||
self.model.setBackpropMomentumScale(0)
|
||||
self.model.setBackpropWeightScale(0.001)
|
||||
self.model.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 20, 0.01))
|
||||
self.model.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
|
||||
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, np.float32(new_responses))
|
||||
|
||||
def predict(self, samples):
|
||||
ret, resp = self.model.predict(samples)
|
||||
return resp.argmax(-1)
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class letter_recog_test(NewOpenCVTests):
|
||||
|
||||
def test_letter_recog(self):
|
||||
|
||||
eps = 0.01
|
||||
|
||||
models = [RTrees, KNearest, Boost, SVM, MLP]
|
||||
models = dict( [(cls.__name__.lower(), cls) for cls in models] )
|
||||
testErrors = {RTrees: (98.930000, 92.390000), KNearest: (94.960000, 92.010000),
|
||||
Boost: (85.970000, 74.920000), SVM: (99.780000, 95.680000), MLP: (90.060000, 87.410000)}
|
||||
|
||||
for model in models:
|
||||
Model = models[model]
|
||||
classifier = Model()
|
||||
|
||||
samples, responses = load_base(self.repoPath + '/samples/data/letter-recognition.data')
|
||||
train_n = int(len(samples)*classifier.train_ratio)
|
||||
|
||||
classifier.train(samples[:train_n], responses[:train_n])
|
||||
train_rate = np.mean(classifier.predict(samples[:train_n]) == responses[:train_n].astype(int))
|
||||
test_rate = np.mean(classifier.predict(samples[train_n:]) == responses[train_n:].astype(int))
|
||||
|
||||
self.assertLess(train_rate - testErrors[Model][0], eps)
|
||||
self.assertLess(test_rate - testErrors[Model][1], eps)
|
96
modules/python/test/test_lk_homography.py
Normal file
96
modules/python/test/test_lk_homography.py
Normal file
@ -0,0 +1,96 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Lucas-Kanade homography tracker test
|
||||
===============================
|
||||
Uses goodFeaturesToTrack for track initialization and back-tracking for match verification
|
||||
between frames. Finds homography between reference and current views.
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
#local modules
|
||||
from tst_scene_render import TestSceneRender
|
||||
from tests_common import NewOpenCVTests, isPointInRect
|
||||
|
||||
lk_params = dict( winSize = (19, 19),
|
||||
maxLevel = 2,
|
||||
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
|
||||
|
||||
feature_params = dict( maxCorners = 1000,
|
||||
qualityLevel = 0.01,
|
||||
minDistance = 8,
|
||||
blockSize = 19 )
|
||||
|
||||
def checkedTrace(img0, img1, p0, back_threshold = 1.0):
|
||||
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
|
||||
p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
|
||||
d = abs(p0-p0r).reshape(-1, 2).max(-1)
|
||||
status = d < back_threshold
|
||||
return p1, status
|
||||
|
||||
class lk_homography_test(NewOpenCVTests):
|
||||
|
||||
render = None
|
||||
framesCounter = 0
|
||||
frame = frame0 = None
|
||||
p0 = None
|
||||
p1 = None
|
||||
gray0 = gray1 = None
|
||||
numFeaturesInRectOnStart = 0
|
||||
|
||||
def test_lk_homography(self):
|
||||
self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'),
|
||||
self.get_sample('samples/data/box.png'), noise = 0.1, speed = 1.0)
|
||||
|
||||
frame = self.render.getNextFrame()
|
||||
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
self.frame0 = frame.copy()
|
||||
self.p0 = cv2.goodFeaturesToTrack(frame_gray, **feature_params)
|
||||
|
||||
isForegroundHomographyFound = False
|
||||
|
||||
if self.p0 is not None:
|
||||
self.p1 = self.p0
|
||||
self.gray0 = frame_gray
|
||||
self.gray1 = frame_gray
|
||||
currRect = self.render.getCurrentRect()
|
||||
for (x,y) in self.p0[:,0]:
|
||||
if isPointInRect((x,y), currRect):
|
||||
self.numFeaturesInRectOnStart += 1
|
||||
|
||||
while self.framesCounter < 200:
|
||||
self.framesCounter += 1
|
||||
frame = self.render.getNextFrame()
|
||||
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
if self.p0 is not None:
|
||||
p2, trace_status = checkedTrace(self.gray1, frame_gray, self.p1)
|
||||
|
||||
self.p1 = p2[trace_status].copy()
|
||||
self.p0 = self.p0[trace_status].copy()
|
||||
self.gray1 = frame_gray
|
||||
|
||||
if len(self.p0) < 4:
|
||||
self.p0 = None
|
||||
continue
|
||||
H, status = cv2.findHomography(self.p0, self.p1, cv2.RANSAC, 5.0)
|
||||
|
||||
goodPointsInRect = 0
|
||||
goodPointsOutsideRect = 0
|
||||
for (x0, y0), (x1, y1), good in zip(self.p0[:,0], self.p1[:,0], status[:,0]):
|
||||
if good:
|
||||
if isPointInRect((x1,y1), self.render.getCurrentRect()):
|
||||
goodPointsInRect += 1
|
||||
else: goodPointsOutsideRect += 1
|
||||
|
||||
if goodPointsOutsideRect < goodPointsInRect:
|
||||
isForegroundHomographyFound = True
|
||||
self.assertGreater(float(goodPointsInRect) / (self.numFeaturesInRectOnStart + 1), 0.6)
|
||||
else:
|
||||
p = cv2.goodFeaturesToTrack(frame_gray, **feature_params)
|
||||
|
||||
self.assertEqual(isForegroundHomographyFound, True)
|
111
modules/python/test/test_lk_track.py
Normal file
111
modules/python/test/test_lk_track.py
Normal file
@ -0,0 +1,111 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Lucas-Kanade tracker
|
||||
====================
|
||||
|
||||
Lucas-Kanade sparse optical flow demo. Uses goodFeaturesToTrack
|
||||
for track initialization and back-tracking for match verification
|
||||
between frames.
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
#local modules
|
||||
from tst_scene_render import TestSceneRender
|
||||
from tests_common import NewOpenCVTests, intersectionRate, isPointInRect
|
||||
|
||||
lk_params = dict( winSize = (15, 15),
|
||||
maxLevel = 2,
|
||||
criteria = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 0.03))
|
||||
|
||||
feature_params = dict( maxCorners = 500,
|
||||
qualityLevel = 0.3,
|
||||
minDistance = 7,
|
||||
blockSize = 7 )
|
||||
|
||||
def getRectFromPoints(points):
|
||||
|
||||
distances = []
|
||||
for point in points:
|
||||
distances.append(cv2.norm(point, cv2.NORM_L2))
|
||||
|
||||
x0, y0 = points[np.argmin(distances)]
|
||||
x1, y1 = points[np.argmax(distances)]
|
||||
|
||||
return np.array([x0, y0, x1, y1])
|
||||
|
||||
|
||||
class lk_track_test(NewOpenCVTests):
|
||||
|
||||
track_len = 10
|
||||
detect_interval = 5
|
||||
tracks = []
|
||||
frame_idx = 0
|
||||
render = None
|
||||
|
||||
def test_lk_track(self):
|
||||
|
||||
self.render = TestSceneRender(self.get_sample('samples/data/graf1.png'), self.get_sample('samples/data/box.png'))
|
||||
self.runTracker()
|
||||
|
||||
def runTracker(self):
|
||||
foregroundPointsNum = 0
|
||||
|
||||
while True:
|
||||
frame = self.render.getNextFrame()
|
||||
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
|
||||
|
||||
if len(self.tracks) > 0:
|
||||
img0, img1 = self.prev_gray, frame_gray
|
||||
p0 = np.float32([tr[-1][0] for tr in self.tracks]).reshape(-1, 1, 2)
|
||||
p1, st, err = cv2.calcOpticalFlowPyrLK(img0, img1, p0, None, **lk_params)
|
||||
p0r, st, err = cv2.calcOpticalFlowPyrLK(img1, img0, p1, None, **lk_params)
|
||||
d = abs(p0-p0r).reshape(-1, 2).max(-1)
|
||||
good = d < 1
|
||||
new_tracks = []
|
||||
for tr, (x, y), good_flag in zip(self.tracks, p1.reshape(-1, 2), good):
|
||||
if not good_flag:
|
||||
continue
|
||||
tr.append([(x, y), self.frame_idx])
|
||||
if len(tr) > self.track_len:
|
||||
del tr[0]
|
||||
new_tracks.append(tr)
|
||||
self.tracks = new_tracks
|
||||
|
||||
if self.frame_idx % self.detect_interval == 0:
|
||||
goodTracksCount = 0
|
||||
for tr in self.tracks:
|
||||
oldRect = self.render.getRectInTime(self.render.timeStep * tr[0][1])
|
||||
newRect = self.render.getRectInTime(self.render.timeStep * tr[-1][1])
|
||||
if isPointInRect(tr[0][0], oldRect) and isPointInRect(tr[-1][0], newRect):
|
||||
goodTracksCount += 1
|
||||
|
||||
if self.frame_idx == self.detect_interval:
|
||||
foregroundPointsNum = goodTracksCount
|
||||
|
||||
fgIndex = float(foregroundPointsNum) / (foregroundPointsNum + 1)
|
||||
fgRate = float(goodTracksCount) / (len(self.tracks) + 1)
|
||||
|
||||
if self.frame_idx > 0:
|
||||
self.assertGreater(fgIndex, 0.9)
|
||||
self.assertGreater(fgRate, 0.2)
|
||||
|
||||
mask = np.zeros_like(frame_gray)
|
||||
mask[:] = 255
|
||||
for x, y in [np.int32(tr[-1][0]) for tr in self.tracks]:
|
||||
cv2.circle(mask, (x, y), 5, 0, -1)
|
||||
p = cv2.goodFeaturesToTrack(frame_gray, mask = mask, **feature_params)
|
||||
if p is not None:
|
||||
for x, y in np.float32(p).reshape(-1, 2):
|
||||
self.tracks.append([[(x, y), self.frame_idx]])
|
||||
|
||||
self.frame_idx += 1
|
||||
self.prev_gray = frame_gray
|
||||
|
||||
if self.frame_idx > 300:
|
||||
break
|
51
modules/python/test/test_morphology.py
Normal file
51
modules/python/test/test_morphology.py
Normal file
@ -0,0 +1,51 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Morphology operations.
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class morphology_test(NewOpenCVTests):
|
||||
|
||||
def test_morphology(self):
|
||||
|
||||
fn = 'samples/data/rubberwhale1.png'
|
||||
img = self.get_sample(fn)
|
||||
|
||||
modes = ['erode/dilate', 'open/close', 'blackhat/tophat', 'gradient']
|
||||
str_modes = ['ellipse', 'rect', 'cross']
|
||||
|
||||
referenceHashes = { modes[0]: '071a526425b79e45b4d0d71ef51b0562', modes[1] : '071a526425b79e45b4d0d71ef51b0562',
|
||||
modes[2] : '427e89f581b7df1b60a831b1ed4c8618', modes[3] : '0dd8ad251088a63d0dd022bcdc57361c'}
|
||||
|
||||
def update(cur_mode):
|
||||
cur_str_mode = str_modes[0]
|
||||
sz = 10
|
||||
iters = 1
|
||||
opers = cur_mode.split('/')
|
||||
if len(opers) > 1:
|
||||
sz = sz - 10
|
||||
op = opers[sz > 0]
|
||||
sz = abs(sz)
|
||||
else:
|
||||
op = opers[0]
|
||||
sz = sz*2+1
|
||||
|
||||
str_name = 'MORPH_' + cur_str_mode.upper()
|
||||
oper_name = 'MORPH_' + op.upper()
|
||||
|
||||
st = cv2.getStructuringElement(getattr(cv2, str_name), (sz, sz))
|
||||
return cv2.morphologyEx(img, getattr(cv2, oper_name), st, iterations=iters)
|
||||
|
||||
for mode in modes:
|
||||
res = update(mode)
|
||||
self.assertEqual(self.hashimg(res), referenceHashes[mode])
|
69
modules/python/test/test_mser.py
Normal file
69
modules/python/test/test_mser.py
Normal file
@ -0,0 +1,69 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
MSER detector test
|
||||
'''
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class mser_test(NewOpenCVTests):
|
||||
def test_mser(self):
|
||||
|
||||
img = self.get_sample('cv/mser/puzzle.png', 0)
|
||||
smallImg = [
|
||||
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 0, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 0, 0, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 0, 0, 255, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255],
|
||||
[255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 255]
|
||||
]
|
||||
thresharr = [ 0, 70, 120, 180, 255 ]
|
||||
kDelta = 5
|
||||
mserExtractor = cv2.MSER_create()
|
||||
mserExtractor.setDelta(kDelta)
|
||||
np.random.seed(10)
|
||||
|
||||
for i in range(100):
|
||||
|
||||
use_big_image = int(np.random.rand(1,1)*7) != 0
|
||||
invert = int(np.random.rand(1,1)*2) != 0
|
||||
binarize = int(np.random.rand(1,1)*5) != 0 if use_big_image else False
|
||||
blur = int(np.random.rand(1,1)*2) != 0
|
||||
thresh = thresharr[int(np.random.rand(1,1)*5)]
|
||||
src0 = img if use_big_image else np.array(smallImg).astype('uint8')
|
||||
src = src0.copy()
|
||||
|
||||
kMinArea = 256 if use_big_image else 10
|
||||
kMaxArea = int(src.shape[0]*src.shape[1]/4)
|
||||
|
||||
mserExtractor.setMinArea(kMinArea)
|
||||
mserExtractor.setMaxArea(kMaxArea)
|
||||
if invert:
|
||||
cv2.bitwise_not(src, src)
|
||||
if binarize:
|
||||
_, src = cv2.threshold(src, thresh, 255, cv2.THRESH_BINARY)
|
||||
if blur:
|
||||
src = cv2.GaussianBlur(src, (5, 5), 1.5, 1.5)
|
||||
minRegs = 7 if use_big_image else 2
|
||||
maxRegs = 1000 if use_big_image else 15
|
||||
if binarize and (thresh == 0 or thresh == 255):
|
||||
minRegs = maxRegs = 0
|
||||
msers, boxes = mserExtractor.detectRegions(src)
|
||||
nmsers = len(msers)
|
||||
self.assertEqual(nmsers, len(boxes))
|
||||
self.assertLessEqual(minRegs, nmsers)
|
||||
self.assertGreaterEqual(maxRegs, nmsers)
|
62
modules/python/test/test_peopledetect.py
Normal file
62
modules/python/test/test_peopledetect.py
Normal file
@ -0,0 +1,62 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
example to detect upright people in images using HOG features
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
|
||||
def inside(r, q):
|
||||
rx, ry, rw, rh = r
|
||||
qx, qy, qw, qh = q
|
||||
return rx > qx and ry > qy and rx + rw < qx + qw and ry + rh < qy + qh
|
||||
|
||||
from tests_common import NewOpenCVTests, intersectionRate
|
||||
|
||||
class peopledetect_test(NewOpenCVTests):
|
||||
def test_peopledetect(self):
|
||||
|
||||
hog = cv2.HOGDescriptor()
|
||||
hog.setSVMDetector( cv2.HOGDescriptor_getDefaultPeopleDetector() )
|
||||
|
||||
dirPath = 'samples/data/'
|
||||
samples = ['basketball1.png', 'basketball2.png']
|
||||
|
||||
testPeople = [
|
||||
[[23, 76, 164, 477], [440, 22, 637, 478]],
|
||||
[[23, 76, 164, 477], [440, 22, 637, 478]]
|
||||
]
|
||||
|
||||
eps = 0.5
|
||||
|
||||
for sample in samples:
|
||||
|
||||
img = self.get_sample(dirPath + sample, 0)
|
||||
|
||||
found, w = hog.detectMultiScale(img, winStride=(8,8), padding=(32,32), scale=1.05)
|
||||
found_filtered = []
|
||||
for ri, r in enumerate(found):
|
||||
for qi, q in enumerate(found):
|
||||
if ri != qi and inside(r, q):
|
||||
break
|
||||
else:
|
||||
found_filtered.append(r)
|
||||
|
||||
matches = 0
|
||||
|
||||
for i in range(len(found_filtered)):
|
||||
for j in range(len(testPeople)):
|
||||
|
||||
found_rect = (found_filtered[i][0], found_filtered[i][1],
|
||||
found_filtered[i][0] + found_filtered[i][2],
|
||||
found_filtered[i][1] + found_filtered[i][3])
|
||||
|
||||
if intersectionRate(found_rect, testPeople[j][0]) > eps or intersectionRate(found_rect, testPeople[j][1]) > eps:
|
||||
matches += 1
|
||||
|
||||
self.assertGreater(matches, 0)
|
96
modules/python/test/test_squares.py
Normal file
96
modules/python/test/test_squares.py
Normal file
@ -0,0 +1,96 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Simple "Square Detector" program.
|
||||
|
||||
Loads several images sequentially and tries to find squares in each image.
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
import sys
|
||||
PY3 = sys.version_info[0] == 3
|
||||
|
||||
if PY3:
|
||||
xrange = range
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
|
||||
def angle_cos(p0, p1, p2):
|
||||
d1, d2 = (p0-p1).astype('float'), (p2-p1).astype('float')
|
||||
return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) )
|
||||
|
||||
def find_squares(img):
|
||||
img = cv2.GaussianBlur(img, (5, 5), 0)
|
||||
squares = []
|
||||
for gray in cv2.split(img):
|
||||
for thrs in xrange(0, 255, 26):
|
||||
if thrs == 0:
|
||||
bin = cv2.Canny(gray, 0, 50, apertureSize=5)
|
||||
bin = cv2.dilate(bin, None)
|
||||
else:
|
||||
retval, bin = cv2.threshold(gray, thrs, 255, cv2.THRESH_BINARY)
|
||||
bin, contours, hierarchy = cv2.findContours(bin, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
|
||||
for cnt in contours:
|
||||
cnt_len = cv2.arcLength(cnt, True)
|
||||
cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True)
|
||||
if len(cnt) == 4 and cv2.contourArea(cnt) > 1000 and cv2.isContourConvex(cnt):
|
||||
cnt = cnt.reshape(-1, 2)
|
||||
max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in xrange(4)])
|
||||
if max_cos < 0.1 and filterSquares(squares, cnt):
|
||||
squares.append(cnt)
|
||||
|
||||
return squares
|
||||
|
||||
def intersectionRate(s1, s2):
|
||||
area, intersection = cv2.intersectConvexConvex(np.array(s1), np.array(s2))
|
||||
return 2 * area / (cv2.contourArea(np.array(s1)) + cv2.contourArea(np.array(s2)))
|
||||
|
||||
def filterSquares(squares, square):
|
||||
|
||||
for i in range(len(squares)):
|
||||
if intersectionRate(squares[i], square) > 0.95:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class squares_test(NewOpenCVTests):
|
||||
|
||||
def test_squares(self):
|
||||
|
||||
img = self.get_sample('samples/data/pic1.png')
|
||||
squares = find_squares(img)
|
||||
|
||||
testSquares = [
|
||||
[[43, 25],
|
||||
[43, 129],
|
||||
[232, 129],
|
||||
[232, 25]],
|
||||
|
||||
[[252, 87],
|
||||
[324, 40],
|
||||
[387, 137],
|
||||
[315, 184]],
|
||||
|
||||
[[154, 178],
|
||||
[196, 180],
|
||||
[198, 278],
|
||||
[154, 278]],
|
||||
|
||||
[[0, 0],
|
||||
[400, 0],
|
||||
[400, 300],
|
||||
[0, 300]]
|
||||
]
|
||||
|
||||
matches_counter = 0
|
||||
for i in range(len(squares)):
|
||||
for j in range(len(testSquares)):
|
||||
if intersectionRate(squares[i], testSquares[j]) > 0.9:
|
||||
matches_counter += 1
|
||||
|
||||
self.assertGreater(matches_counter / len(testSquares), 0.9)
|
||||
self.assertLess( (len(squares) - matches_counter) / len(squares), 0.2)
|
51
modules/python/test/test_texture_flow.py
Normal file
51
modules/python/test/test_texture_flow.py
Normal file
@ -0,0 +1,51 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Texture flow direction estimation.
|
||||
|
||||
Sample shows how cv2.cornerEigenValsAndVecs function can be used
|
||||
to estimate image texture flow direction.
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
import sys
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
|
||||
class texture_flow_test(NewOpenCVTests):
|
||||
|
||||
def test_texture_flow(self):
|
||||
|
||||
img = self.get_sample('samples/data/pic6.png')
|
||||
|
||||
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
|
||||
h, w = img.shape[:2]
|
||||
|
||||
eigen = cv2.cornerEigenValsAndVecs(gray, 15, 3)
|
||||
eigen = eigen.reshape(h, w, 3, 2) # [[e1, e2], v1, v2]
|
||||
flow = eigen[:,:,2]
|
||||
|
||||
vis = img.copy()
|
||||
vis[:] = (192 + np.uint32(vis)) / 2
|
||||
d = 80
|
||||
points = np.dstack( np.mgrid[d/2:w:d, d/2:h:d] ).reshape(-1, 2)
|
||||
|
||||
textureVectors = []
|
||||
|
||||
for x, y in np.int32(points):
|
||||
textureVectors.append(np.int32(flow[y, x]*d))
|
||||
|
||||
eps = 0.05
|
||||
|
||||
testTextureVectors = [[0, 0], [0, 0], [0, 0], [0, 0], [0, 0],
|
||||
[-38, 70], [-79, 3], [0, 0], [0, 0], [-39, 69], [-79, -1],
|
||||
[0, 0], [0, 0], [0, -79], [17, -78], [-48, -63], [65, -46],
|
||||
[-69, -39], [-48, -63], [-45, 66]]
|
||||
|
||||
for i in range(len(textureVectors)):
|
||||
self.assertLessEqual(cv2.norm(textureVectors[i] - testTextureVectors[i], cv2.NORM_L2), eps)
|
33
modules/python/test/test_watershed.py
Normal file
33
modules/python/test/test_watershed.py
Normal file
@ -0,0 +1,33 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
'''
|
||||
Watershed segmentation test
|
||||
'''
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class watershed_test(NewOpenCVTests):
|
||||
def test_watershed(self):
|
||||
|
||||
img = self.get_sample('cv/inpaint/orig.png')
|
||||
markers = self.get_sample('cv/watershed/wshed_exp.png', 0)
|
||||
refSegments = self.get_sample('cv/watershed/wshed_segments.png')
|
||||
|
||||
if img is None or markers is None:
|
||||
self.assertEqual(0, 1, 'Missing test data')
|
||||
|
||||
colors = np.int32( list(np.ndindex(3, 3, 3)) ) * 122
|
||||
cv2.watershed(img, np.int32(markers))
|
||||
segments = colors[np.maximum(markers, 0)]
|
||||
|
||||
if refSegments is None:
|
||||
refSegments = segments.copy()
|
||||
cv2.imwrite(self.extraTestDataPath + '/cv/watershed/wshed_segments.png', refSegments)
|
||||
|
||||
self.assertLess(cv2.norm(segments - refSegments, cv2.NORM_L1) / 255.0, 50)
|
79
modules/python/test/tests_common.py
Normal file
79
modules/python/test/tests_common.py
Normal file
@ -0,0 +1,79 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import unittest
|
||||
import sys
|
||||
import hashlib
|
||||
import os
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
# Python 3 moved urlopen to urllib.requests
|
||||
try:
|
||||
from urllib.request import urlopen
|
||||
except ImportError:
|
||||
from urllib import urlopen
|
||||
|
||||
class NewOpenCVTests(unittest.TestCase):
|
||||
|
||||
# path to local repository folder containing 'samples' folder
|
||||
repoPath = None
|
||||
extraTestDataPath = None
|
||||
# github repository url
|
||||
repoUrl = 'https://raw.github.com/Itseez/opencv/master'
|
||||
|
||||
def get_sample(self, filename, iscolor = cv2.IMREAD_COLOR):
|
||||
if not filename in self.image_cache:
|
||||
filedata = None
|
||||
if NewOpenCVTests.repoPath is not None:
|
||||
candidate = NewOpenCVTests.repoPath + '/' + filename
|
||||
if os.path.isfile(candidate):
|
||||
with open(candidate, 'rb') as f:
|
||||
filedata = f.read()
|
||||
if NewOpenCVTests.extraTestDataPath is not None:
|
||||
candidate = NewOpenCVTests.extraTestDataPath + '/' + filename
|
||||
if os.path.isfile(candidate):
|
||||
with open(candidate, 'rb') as f:
|
||||
filedata = f.read()
|
||||
if filedata is None:
|
||||
return None#filedata = urlopen(NewOpenCVTests.repoUrl + '/' + filename).read()
|
||||
self.image_cache[filename] = cv2.imdecode(np.fromstring(filedata, dtype=np.uint8), iscolor)
|
||||
return self.image_cache[filename]
|
||||
|
||||
def setUp(self):
|
||||
self.image_cache = {}
|
||||
|
||||
def hashimg(self, im):
|
||||
""" Compute a hash for an image, useful for image comparisons """
|
||||
return hashlib.md5(im.tostring()).hexdigest()
|
||||
|
||||
if sys.version_info[:2] == (2, 6):
|
||||
def assertLess(self, a, b, msg=None):
|
||||
if not a < b:
|
||||
self.fail('%s not less than %s' % (repr(a), repr(b)))
|
||||
|
||||
def assertLessEqual(self, a, b, msg=None):
|
||||
if not a <= b:
|
||||
self.fail('%s not less than or equal to %s' % (repr(a), repr(b)))
|
||||
|
||||
def assertGreater(self, a, b, msg=None):
|
||||
if not a > b:
|
||||
self.fail('%s not greater than %s' % (repr(a), repr(b)))
|
||||
|
||||
def intersectionRate(s1, s2):
|
||||
|
||||
x1, y1, x2, y2 = s1
|
||||
s1 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]])
|
||||
|
||||
x1, y1, x2, y2 = s2
|
||||
s2 = np.array([[x1, y1], [x2,y1], [x2, y2], [x1, y2]])
|
||||
|
||||
area, intersection = cv2.intersectConvexConvex(s1, s2)
|
||||
return 2 * area / (cv2.contourArea(s1) + cv2.contourArea(s2))
|
||||
|
||||
def isPointInRect(p, rect):
|
||||
if rect[0] <= p[0] and rect[1] <=p[1] and p[0] <= rect[2] and p[1] <= rect[3]:
|
||||
return True
|
||||
else:
|
||||
return False
|
119
modules/python/test/tst_scene_render.py
Normal file
119
modules/python/test/tst_scene_render.py
Normal file
@ -0,0 +1,119 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
|
||||
# Python 2/3 compatibility
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
from numpy import pi, sin, cos
|
||||
|
||||
import cv2
|
||||
|
||||
defaultSize = 512
|
||||
|
||||
class TestSceneRender():
|
||||
|
||||
def __init__(self, bgImg = None, fgImg = None, deformation = False, noise = 0.0, speed = 0.25, **params):
|
||||
self.time = 0.0
|
||||
self.timeStep = 1.0 / 30.0
|
||||
self.foreground = fgImg
|
||||
self.deformation = deformation
|
||||
self.noise = noise
|
||||
self.speed = speed
|
||||
|
||||
if bgImg is not None:
|
||||
self.sceneBg = bgImg.copy()
|
||||
else:
|
||||
self.sceneBg = np.zeros(defaultSize, defaultSize, np.uint8)
|
||||
|
||||
self.w = self.sceneBg.shape[0]
|
||||
self.h = self.sceneBg.shape[1]
|
||||
|
||||
if fgImg is not None:
|
||||
self.foreground = fgImg.copy()
|
||||
self.center = self.currentCenter = (int(self.w/2 - fgImg.shape[0]/2), int(self.h/2 - fgImg.shape[1]/2))
|
||||
|
||||
self.xAmpl = self.sceneBg.shape[0] - (self.center[0] + fgImg.shape[0])
|
||||
self.yAmpl = self.sceneBg.shape[1] - (self.center[1] + fgImg.shape[1])
|
||||
|
||||
self.initialRect = np.array([ (self.h/2, self.w/2), (self.h/2, self.w/2 + self.w/10),
|
||||
(self.h/2 + self.h/10, self.w/2 + self.w/10), (self.h/2 + self.h/10, self.w/2)]).astype(int)
|
||||
self.currentRect = self.initialRect
|
||||
np.random.seed(10)
|
||||
|
||||
def getXOffset(self, time):
|
||||
return int(self.xAmpl*cos(time*self.speed))
|
||||
|
||||
|
||||
def getYOffset(self, time):
|
||||
return int(self.yAmpl*sin(time*self.speed))
|
||||
|
||||
def setInitialRect(self, rect):
|
||||
self.initialRect = rect
|
||||
|
||||
def getRectInTime(self, time):
|
||||
|
||||
if self.foreground is not None:
|
||||
tmp = np.array(self.center) + np.array((self.getXOffset(time), self.getYOffset(time)))
|
||||
x0, y0 = tmp
|
||||
x1, y1 = tmp + self.foreground.shape[0:2]
|
||||
return np.array([y0, x0, y1, x1])
|
||||
else:
|
||||
x0, y0 = self.initialRect[0] + np.array((self.getXOffset(time), self.getYOffset(time)))
|
||||
x1, y1 = self.initialRect[2] + np.array((self.getXOffset(time), self.getYOffset(time)))
|
||||
return np.array([y0, x0, y1, x1])
|
||||
|
||||
def getCurrentRect(self):
|
||||
|
||||
if self.foreground is not None:
|
||||
|
||||
x0 = self.currentCenter[0]
|
||||
y0 = self.currentCenter[1]
|
||||
x1 = self.currentCenter[0] + self.foreground.shape[0]
|
||||
y1 = self.currentCenter[1] + self.foreground.shape[1]
|
||||
return np.array([y0, x0, y1, x1])
|
||||
else:
|
||||
x0, y0 = self.currentRect[0]
|
||||
x1, y1 = self.currentRect[2]
|
||||
return np.array([x0, y0, x1, y1])
|
||||
|
||||
def getNextFrame(self):
|
||||
img = self.sceneBg.copy()
|
||||
|
||||
if self.foreground is not None:
|
||||
self.currentCenter = (self.center[0] + self.getXOffset(self.time), self.center[1] + self.getYOffset(self.time))
|
||||
img[self.currentCenter[0]:self.currentCenter[0]+self.foreground.shape[0],
|
||||
self.currentCenter[1]:self.currentCenter[1]+self.foreground.shape[1]] = self.foreground
|
||||
else:
|
||||
self.currentRect = self.initialRect + np.int( 30*cos(self.time) + 50*sin(self.time/3))
|
||||
if self.deformation:
|
||||
self.currentRect[1:3] += int(self.h/20*cos(self.time))
|
||||
cv2.fillConvexPoly(img, self.currentRect, (0, 0, 255))
|
||||
|
||||
self.time += self.timeStep
|
||||
|
||||
if self.noise:
|
||||
noise = np.zeros(self.sceneBg.shape, np.int8)
|
||||
cv2.randn(noise, np.zeros(3), np.ones(3)*255*self.noise)
|
||||
img = cv2.add(img, noise, dtype=cv2.CV_8UC3)
|
||||
return img
|
||||
|
||||
def resetTime(self):
|
||||
self.time = 0.0
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
backGr = cv2.imread('../../../samples/data/lena.jpg')
|
||||
|
||||
render = TestSceneRender(backGr, noise = 0.5)
|
||||
|
||||
while True:
|
||||
|
||||
img = render.getNextFrame()
|
||||
cv2.imshow('img', img)
|
||||
|
||||
ch = 0xFF & cv2.waitKey(3)
|
||||
if ch == 27:
|
||||
break
|
||||
cv2.destroyAllWindows()
|
@ -112,7 +112,7 @@ if __name__ == '__main__':
|
||||
import sys, getopt
|
||||
opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
|
||||
opts = dict(opts)
|
||||
feature_name = opts.get('--feature', 'sift-flann')
|
||||
feature_name = opts.get('--feature', 'brisk-flann')
|
||||
try:
|
||||
fn1, fn2 = args
|
||||
except:
|
||||
|
@ -173,6 +173,7 @@ class RectSelector:
|
||||
x, y = np.int16([x, y]) # BUG
|
||||
if event == cv2.EVENT_LBUTTONDOWN:
|
||||
self.drag_start = (x, y)
|
||||
return
|
||||
if self.drag_start:
|
||||
if flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
xo, yo = self.drag_start
|
||||
|
@ -87,8 +87,11 @@ class App:
|
||||
for fn in glob('*.py'):
|
||||
name = splitfn(fn)[1]
|
||||
if fn[0] != '_' and name not in exclude_list:
|
||||
demos_lb.insert(tk.END, name)
|
||||
self.samples[name] = fn
|
||||
|
||||
for name in sorted(self.samples):
|
||||
demos_lb.insert(tk.END, name)
|
||||
|
||||
demos_lb.bind('<<ListboxSelect>>', self.on_demo_select)
|
||||
|
||||
self.cmd_entry = cmd_entry = tk.Entry(right)
|
||||
|
@ -27,9 +27,12 @@ def main():
|
||||
if not os.path.exists(classifier_fn):
|
||||
print('"%s" not found, run digits.py first' % classifier_fn)
|
||||
return
|
||||
model = SVM()
|
||||
model.load(classifier_fn)
|
||||
|
||||
if True:
|
||||
model = cv2.ml.SVM_load(classifier_fn)
|
||||
else:
|
||||
model = cv2.ml.SVM_create()
|
||||
model.load_(classifier_fn) #Known bug: https://github.com/Itseez/opencv/issues/4969
|
||||
|
||||
while True:
|
||||
ret, frame = cap.read()
|
||||
|
@ -68,7 +68,7 @@ def filter_matches(kp1, kp2, matches, ratio = 0.75):
|
||||
p1 = np.float32([kp.pt for kp in mkp1])
|
||||
p2 = np.float32([kp.pt for kp in mkp2])
|
||||
kp_pairs = zip(mkp1, mkp2)
|
||||
return p1, p2, kp_pairs
|
||||
return p1, p2, list(kp_pairs)
|
||||
|
||||
def explore_match(win, img1, img2, kp_pairs, status = None, H = None):
|
||||
h1, w1 = img1.shape[:2]
|
||||
@ -119,7 +119,7 @@ def explore_match(win, img1, img2, kp_pairs, status = None, H = None):
|
||||
if flags & cv2.EVENT_FLAG_LBUTTON:
|
||||
cur_vis = vis0.copy()
|
||||
r = 8
|
||||
m = (anorm(p1 - (x, y)) < r) | (anorm(p2 - (x, y)) < r)
|
||||
m = (anorm(np.array(p1) - (x, y)) < r) | (anorm(np.array(p2) - (x, y)) < r)
|
||||
idxs = np.where(m)[0]
|
||||
kp1s, kp2s = [], []
|
||||
for i in idxs:
|
||||
@ -143,7 +143,7 @@ if __name__ == '__main__':
|
||||
import sys, getopt
|
||||
opts, args = getopt.getopt(sys.argv[1:], '', ['feature='])
|
||||
opts = dict(opts)
|
||||
feature_name = opts.get('--feature', 'sift')
|
||||
feature_name = opts.get('--feature', 'brisk')
|
||||
try:
|
||||
fn1, fn2 = args
|
||||
except:
|
||||
|
@ -65,13 +65,12 @@ class RTrees(LetterStatModel):
|
||||
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL], np.uint8)
|
||||
#CvRTParams(10,10,0,false,15,0,true,4,100,0.01f,CV_TERMCRIT_ITER));
|
||||
params = dict(max_depth=10 )
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses, varType = var_types, params = params)
|
||||
self.model.setMaxDepth(20)
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
||||
|
||||
def predict(self, samples):
|
||||
return [self.model.predict(s) for s in samples]
|
||||
ret, resp = self.model.predict(samples)
|
||||
return resp.ravel()
|
||||
|
||||
|
||||
class KNearest(LetterStatModel):
|
||||
@ -79,10 +78,10 @@ class KNearest(LetterStatModel):
|
||||
self.model = cv2.ml.KNearest_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
self.model.train(samples, responses)
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses)
|
||||
|
||||
def predict(self, samples):
|
||||
retval, results, neigh_resp, dists = self.model.find_nearest(samples, k = 10)
|
||||
retval, results, neigh_resp, dists = self.model.findNearest(samples, k = 10)
|
||||
return results.ravel()
|
||||
|
||||
|
||||
@ -95,15 +94,16 @@ class Boost(LetterStatModel):
|
||||
new_samples = self.unroll_samples(samples)
|
||||
new_responses = self.unroll_responses(responses)
|
||||
var_types = np.array([cv2.ml.VAR_NUMERICAL] * var_n + [cv2.ml.VAR_CATEGORICAL, cv2.ml.VAR_CATEGORICAL], np.uint8)
|
||||
#CvBoostParams(CvBoost::REAL, 100, 0.95, 5, false, 0 )
|
||||
params = dict(max_depth=5) #, use_surrogates=False)
|
||||
self.model.train(new_samples, cv2.ml.ROW_SAMPLE, new_responses, varType = var_types, params=params)
|
||||
|
||||
self.model.setWeakCount(15)
|
||||
self.model.setMaxDepth(10)
|
||||
self.model.train(cv2.ml.TrainData_create(new_samples, cv2.ml.ROW_SAMPLE, new_responses.astype(int), varType = var_types))
|
||||
|
||||
def predict(self, samples):
|
||||
new_samples = self.unroll_samples(samples)
|
||||
pred = np.array( [self.model.predict(s, returnSum = True) for s in new_samples] )
|
||||
pred = pred.reshape(-1, self.class_n).argmax(1)
|
||||
return pred
|
||||
ret, resp = self.model.predict(new_samples)
|
||||
|
||||
return resp.ravel().reshape(-1, self.class_n).argmax(1)
|
||||
|
||||
|
||||
class SVM(LetterStatModel):
|
||||
@ -111,13 +111,15 @@ class SVM(LetterStatModel):
|
||||
self.model = cv2.ml.SVM_create()
|
||||
|
||||
def train(self, samples, responses):
|
||||
params = dict( kernel_type = cv2.ml.SVM_LINEAR,
|
||||
svm_type = cv2.ml.SVM_C_SVC,
|
||||
C = 1 )
|
||||
self.model.train(samples, responses, params = params)
|
||||
self.model.setType(cv2.ml.SVM_C_SVC)
|
||||
self.model.setC(1)
|
||||
self.model.setKernel(cv2.ml.SVM_RBF)
|
||||
self.model.setGamma(.1)
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, responses.astype(int))
|
||||
|
||||
def predict(self, samples):
|
||||
return self.model.predict_all(samples).ravel()
|
||||
ret, resp = self.model.predict(samples)
|
||||
return resp.ravel()
|
||||
|
||||
|
||||
class MLP(LetterStatModel):
|
||||
@ -127,22 +129,23 @@ class MLP(LetterStatModel):
|
||||
def train(self, samples, responses):
|
||||
sample_n, var_n = samples.shape
|
||||
new_responses = self.unroll_responses(responses).reshape(-1, self.class_n)
|
||||
|
||||
layer_sizes = np.int32([var_n, 100, 100, self.class_n])
|
||||
self.model.create(layer_sizes)
|
||||
|
||||
# CvANN_MLP_TrainParams::BACKPROP,0.001
|
||||
params = dict( term_crit = (cv2.TERM_CRITERIA_COUNT, 300, 0.01),
|
||||
train_method = cv2.ml.ANN_MLP_TRAIN_PARAMS_BACKPROP,
|
||||
bp_dw_scale = 0.001,
|
||||
bp_moment_scale = 0.0 )
|
||||
self.model.train(samples, np.float32(new_responses), None, params = params)
|
||||
self.model.setLayerSizes(layer_sizes)
|
||||
self.model.setTrainMethod(cv2.ml.ANN_MLP_BACKPROP)
|
||||
self.model.setBackpropMomentumScale(0.0)
|
||||
self.model.setBackpropWeightScale(0.001)
|
||||
self.model.setTermCriteria((cv2.TERM_CRITERIA_COUNT, 20, 0.01))
|
||||
self.model.setActivationFunction(cv2.ml.ANN_MLP_SIGMOID_SYM, 2, 1)
|
||||
|
||||
self.model.train(samples, cv2.ml.ROW_SAMPLE, np.float32(new_responses))
|
||||
|
||||
def predict(self, samples):
|
||||
ret, resp = self.model.predict(samples)
|
||||
return resp.argmax(-1)
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import getopt
|
||||
import sys
|
||||
@ -155,7 +158,7 @@ if __name__ == '__main__':
|
||||
|
||||
args, dummy = getopt.getopt(sys.argv[1:], '', ['model=', 'data=', 'load=', 'save='])
|
||||
args = dict(args)
|
||||
args.setdefault('--model', 'rtrees')
|
||||
args.setdefault('--model', 'svm')
|
||||
args.setdefault('--data', '../data/letter-recognition.data')
|
||||
|
||||
print('loading data %s ...' % args['--data'])
|
||||
@ -173,8 +176,8 @@ if __name__ == '__main__':
|
||||
model.train(samples[:train_n], responses[:train_n])
|
||||
|
||||
print('testing...')
|
||||
train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n])
|
||||
test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:])
|
||||
train_rate = np.mean(model.predict(samples[:train_n]) == responses[:train_n].astype(int))
|
||||
test_rate = np.mean(model.predict(samples[train_n:]) == responses[train_n:].astype(int))
|
||||
|
||||
print('train rate: %f test rate: %f' % (train_rate*100, test_rate*100))
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user