mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 04:36:36 +08:00
fixed test on em (old interface)
This commit is contained in:
parent
965dbf3620
commit
cdb3f11d5e
@ -45,45 +45,45 @@ using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
static
|
||||
void defaultDistribs( Mat& means, vector<Mat>& covs )
|
||||
void defaultDistribs( Mat& means, vector<Mat>& covs, int type=CV_32FC1 )
|
||||
{
|
||||
float mp0[] = {0.0f, 0.0f}, cp0[] = {0.67f, 0.0f, 0.0f, 0.67f};
|
||||
float mp1[] = {5.0f, 0.0f}, cp1[] = {1.0f, 0.0f, 0.0f, 1.0f};
|
||||
float mp2[] = {1.0f, 5.0f}, cp2[] = {1.0f, 0.0f, 0.0f, 1.0f};
|
||||
means.create(3, 2, CV_32FC1);
|
||||
means.create(3, 2, type);
|
||||
Mat m0( 1, 2, CV_32FC1, mp0 ), c0( 2, 2, CV_32FC1, cp0 );
|
||||
Mat m1( 1, 2, CV_32FC1, mp1 ), c1( 2, 2, CV_32FC1, cp1 );
|
||||
Mat m2( 1, 2, CV_32FC1, mp2 ), c2( 2, 2, CV_32FC1, cp2 );
|
||||
means.resize(3), covs.resize(3);
|
||||
|
||||
Mat mr0 = means.row(0);
|
||||
m0.copyTo(mr0);
|
||||
c0.copyTo(covs[0]);
|
||||
m0.convertTo(mr0, type);
|
||||
c0.convertTo(covs[0], type);
|
||||
|
||||
Mat mr1 = means.row(1);
|
||||
m1.copyTo(mr1);
|
||||
c1.copyTo(covs[1]);
|
||||
m1.convertTo(mr1, type);
|
||||
c1.convertTo(covs[1], type);
|
||||
|
||||
Mat mr2 = means.row(2);
|
||||
m2.copyTo(mr2);
|
||||
c2.copyTo(covs[2]);
|
||||
m2.convertTo(mr2, type);
|
||||
c2.convertTo(covs[2], type);
|
||||
}
|
||||
|
||||
// generate points sets by normal distributions
|
||||
static
|
||||
void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int labelType )
|
||||
void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat& _means, const vector<Mat>& covs, int dataType, int labelType )
|
||||
{
|
||||
vector<int>::const_iterator sit = sizes.begin();
|
||||
int total = 0;
|
||||
for( ; sit != sizes.end(); ++sit )
|
||||
total += *sit;
|
||||
assert( _means.rows == (int)sizes.size() && covs.size() == sizes.size() );
|
||||
assert( !data.empty() && data.rows == total );
|
||||
assert( data.type() == CV_32FC1 );
|
||||
|
||||
CV_Assert( _means.rows == (int)sizes.size() && covs.size() == sizes.size() );
|
||||
CV_Assert( !data.empty() && data.rows == total );
|
||||
CV_Assert( data.type() == dataType );
|
||||
|
||||
labels.create( data.rows, 1, labelType );
|
||||
|
||||
randn( data, Scalar::all(0.0), Scalar::all(1.0) );
|
||||
randn( data, Scalar::all(-1.0), Scalar::all(1.0) );
|
||||
vector<Mat> means(sizes.size());
|
||||
for(int i = 0; i < _means.rows; i++)
|
||||
means[i] = _means.row(i);
|
||||
@ -98,8 +98,8 @@ void generateData( Mat& data, Mat& labels, const vector<int>& sizes, const Mat&
|
||||
assert( cit->rows == data.cols && cit->cols == data.cols );
|
||||
for( int i = bi; i < ei; i++, p++ )
|
||||
{
|
||||
Mat r(1, data.cols, CV_32FC1, data.ptr<float>(i));
|
||||
r = r * (*cit) + *mit;
|
||||
Mat r = data.row(i);
|
||||
r = r * (*cit) + *mit;
|
||||
if( labelType == CV_32FC1 )
|
||||
labels.at<float>(p, 0) = (float)l;
|
||||
else if( labelType == CV_32SC1 )
|
||||
@ -129,7 +129,7 @@ int maxIdx( const vector<int>& count )
|
||||
}
|
||||
|
||||
static
|
||||
bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& labelsMap )
|
||||
bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& labelsMap, bool checkClusterUniq=true )
|
||||
{
|
||||
size_t total = 0, nclusters = sizes.size();
|
||||
for(size_t i = 0; i < sizes.size(); i++)
|
||||
@ -158,21 +158,25 @@ bool getLabelsMap( const Mat& labels, const vector<int>& sizes, vector<int>& lab
|
||||
startIndex += sizes[clusterIndex];
|
||||
|
||||
int cls = maxIdx( count );
|
||||
CV_Assert( !buzy[cls] );
|
||||
CV_Assert( !checkClusterUniq || !buzy[cls] );
|
||||
|
||||
labelsMap[clusterIndex] = cls;
|
||||
|
||||
buzy[cls] = true;
|
||||
}
|
||||
for(size_t i = 0; i < buzy.size(); i++)
|
||||
if(!buzy[i])
|
||||
return false;
|
||||
|
||||
if(checkClusterUniq)
|
||||
{
|
||||
for(size_t i = 0; i < buzy.size(); i++)
|
||||
if(!buzy[i])
|
||||
return false;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static
|
||||
bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, float& err, bool labelsEquivalent = true )
|
||||
bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes, float& err, bool labelsEquivalent, bool checkClusterUniq )
|
||||
{
|
||||
err = 0;
|
||||
CV_Assert( !labels.empty() && !origLabels.empty() );
|
||||
@ -186,7 +190,7 @@ bool calcErr( const Mat& labels, const Mat& origLabels, const vector<int>& sizes
|
||||
bool isFlt = labels.type() == CV_32FC1;
|
||||
if( !labelsEquivalent )
|
||||
{
|
||||
if( !getLabelsMap( labels, sizes, labelsMap ) )
|
||||
if( !getLabelsMap( labels, sizes, labelsMap, checkClusterUniq ) )
|
||||
return false;
|
||||
|
||||
for( int i = 0; i < labels.rows; i++ )
|
||||
@ -234,7 +238,7 @@ int CV_CvEMTest::runCase( int caseIndex, const CvEMParams& params,
|
||||
em.train( trainData, Mat(), params, &labels );
|
||||
|
||||
// check train error
|
||||
if( !calcErr( labels, trainLabels, sizes, err , false ) )
|
||||
if( !calcErr( labels, trainLabels, sizes, err , false, false ) )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Case index %i : Bad output labels.\n", caseIndex );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
@ -252,7 +256,7 @@ int CV_CvEMTest::runCase( int caseIndex, const CvEMParams& params,
|
||||
Mat sample = testData.row(i);
|
||||
labels.at<int>(i,0) = (int)em.predict( sample, 0 );
|
||||
}
|
||||
if( !calcErr( labels, testLabels, sizes, err, false ) )
|
||||
if( !calcErr( labels, testLabels, sizes, err, false, false ) )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "Case index %i : Bad output labels.\n", caseIndex );
|
||||
code = cvtest::TS::FAIL_INVALID_OUTPUT;
|
||||
@ -279,11 +283,11 @@ void CV_CvEMTest::run( int /*start_from*/ )
|
||||
// train data
|
||||
Mat trainData( pointsCount, 2, CV_32FC1 ), trainLabels;
|
||||
vector<int> sizes( sizesArr, sizesArr + sizeof(sizesArr) / sizeof(sizesArr[0]) );
|
||||
generateData( trainData, trainLabels, sizes, means, covs, CV_32SC1 );
|
||||
generateData( trainData, trainLabels, sizes, means, covs, CV_32FC1, CV_32SC1 );
|
||||
|
||||
// test data
|
||||
Mat testData( pointsCount, 2, CV_32FC1 ), testLabels;
|
||||
generateData( testData, testLabels, sizes, means, covs, CV_32SC1 );
|
||||
generateData( testData, testLabels, sizes, means, covs, CV_32FC1, CV_32SC1 );
|
||||
|
||||
CvEMParams params;
|
||||
params.nclusters = 3;
|
||||
|
Loading…
Reference in New Issue
Block a user