mirror of
https://github.com/opencv/opencv.git
synced 2025-08-05 22:19:14 +08:00
MobileNet SSD sample
This commit is contained in:
parent
6ba22dea46
commit
ce1cc352d9
@ -234,7 +234,7 @@ public:
|
||||
|
||||
if (numKept == 0)
|
||||
{
|
||||
CV_ErrorNoReturn(Error::StsError, "Couldn't find any detections");
|
||||
return;
|
||||
}
|
||||
int outputShape[] = {1, 1, (int)numKept, 7};
|
||||
outputs[0].create(4, outputShape, CV_32F);
|
||||
|
3102
samples/data/dnn/MobileNetSSD_300x300.prototxt
Normal file
3102
samples/data/dnn/MobileNetSSD_300x300.prototxt
Normal file
File diff suppressed because it is too large
Load Diff
87
samples/dnn/mobilenet_ssd_python.py
Normal file
87
samples/dnn/mobilenet_ssd_python.py
Normal file
@ -0,0 +1,87 @@
|
||||
import numpy as np
|
||||
import argparse
|
||||
|
||||
try:
|
||||
import cv2 as cv
|
||||
except ImportError:
|
||||
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
|
||||
'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
|
||||
|
||||
inWidth = 300
|
||||
inHeight = 300
|
||||
WHRatio = inWidth / float(inHeight)
|
||||
inScaleFactor = 0.007843
|
||||
meanVal = 127.5
|
||||
|
||||
classNames = ('background',
|
||||
'aeroplane', 'bicycle', 'bird', 'boat',
|
||||
'bottle', 'bus', 'car', 'cat', 'chair',
|
||||
'cow', 'diningtable', 'dog', 'horse',
|
||||
'motorbike', 'person', 'pottedplant',
|
||||
'sheep', 'sofa', 'train', 'tvmonitor')
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--video", help="path to video file. If empty, camera's stream will be used")
|
||||
parser.add_argument("--prototxt", default="MobileNetSSD_300x300.prototxt",
|
||||
help="path to caffe prototxt")
|
||||
parser.add_argument("-c", "--caffemodel", help="path to caffemodel file, download it here: "
|
||||
"https://github.com/chuanqi305/MobileNet-SSD/blob/master/MobileNetSSD_train.caffemodel")
|
||||
parser.add_argument("--thr", default=0.2, help="confidence threshold to filter out weak detections")
|
||||
args = parser.parse_args()
|
||||
|
||||
net = dnn.readNetFromCaffe(args.prototxt, args.caffemodel)
|
||||
|
||||
if len(args.video):
|
||||
cap = cv2.VideoCapture(args.video)
|
||||
else:
|
||||
cap = cv2.VideoCapture(0)
|
||||
|
||||
while True:
|
||||
# Capture frame-by-frame
|
||||
ret, frame = cap.read()
|
||||
blob = dnn.blobFromImage(frame, inScaleFactor, (inWidth, inHeight), meanVal)
|
||||
net.setInput(blob)
|
||||
detections = net.forward()
|
||||
|
||||
cols = frame.shape[1]
|
||||
rows = frame.shape[0]
|
||||
|
||||
if cols / float(rows) > WHRatio:
|
||||
cropSize = (int(rows * WHRatio), rows)
|
||||
else:
|
||||
cropSize = (cols, int(cols / WHRatio))
|
||||
|
||||
y1 = (rows - cropSize[1]) / 2
|
||||
y2 = y1 + cropSize[1]
|
||||
x1 = (cols - cropSize[0]) / 2
|
||||
x2 = x1 + cropSize[0]
|
||||
frame = frame[y1:y2, x1:x2]
|
||||
|
||||
cols = frame.shape[1]
|
||||
rows = frame.shape[0]
|
||||
|
||||
for i in range(detections.shape[2]):
|
||||
confidence = detections[0, 0, i, 2]
|
||||
if confidence > args.thr:
|
||||
class_id = int(detections[0, 0, i, 1])
|
||||
|
||||
xLeftBottom = int(detections[0, 0, i, 3] * cols)
|
||||
yLeftBottom = int(detections[0, 0, i, 4] * rows)
|
||||
xRightTop = int(detections[0, 0, i, 5] * cols)
|
||||
yRightTop = int(detections[0, 0, i, 6] * rows)
|
||||
|
||||
cv2.rectangle(frame, (xLeftBottom, yLeftBottom), (xRightTop, yRightTop),
|
||||
(0, 255, 0))
|
||||
label = classNames[class_id] + ": " + str(confidence)
|
||||
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||||
|
||||
cv2.rectangle(frame, (xLeftBottom, yLeftBottom - labelSize[1]),
|
||||
(xLeftBottom + labelSize[0], yLeftBottom + baseLine),
|
||||
(255, 255, 255), cv2.FILLED)
|
||||
cv2.putText(frame, label, (xLeftBottom, yLeftBottom),
|
||||
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0))
|
||||
|
||||
cv2.imshow("detections", frame)
|
||||
if cv2.waitKey(1) >= 0:
|
||||
break
|
161
samples/dnn/ssd_mobilenet_object_detection.cpp
Normal file
161
samples/dnn/ssd_mobilenet_object_detection.cpp
Normal file
@ -0,0 +1,161 @@
|
||||
#include <opencv2/dnn.hpp>
|
||||
#include <opencv2/dnn/shape_utils.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
using namespace cv;
|
||||
using namespace cv::dnn;
|
||||
|
||||
#include <fstream>
|
||||
#include <iostream>
|
||||
#include <cstdlib>
|
||||
using namespace std;
|
||||
|
||||
const size_t inWidth = 300;
|
||||
const size_t inHeight = 300;
|
||||
const float WHRatio = inWidth / (float)inHeight;
|
||||
const float inScaleFactor = 0.007843f;
|
||||
const float meanVal = 127.5;
|
||||
const char* classNames[] = {"background",
|
||||
"aeroplane", "bicycle", "bird", "boat",
|
||||
"bottle", "bus", "car", "cat", "chair",
|
||||
"cow", "diningtable", "dog", "horse",
|
||||
"motorbike", "person", "pottedplant",
|
||||
"sheep", "sofa", "train", "tvmonitor"};
|
||||
|
||||
const char* about = "This sample uses Single-Shot Detector "
|
||||
"(https://arxiv.org/abs/1512.02325)"
|
||||
"to detect objects on image.\n"
|
||||
".caffemodel model's file is avaliable here: "
|
||||
"https://github.com/chuanqi305/MobileNet-SSD/blob/master/MobileNetSSD_train.caffemodel\n";
|
||||
|
||||
const char* params
|
||||
= "{ help | false | print usage }"
|
||||
"{ proto | MobileNetSSD_300x300.prototxt | model configuration }"
|
||||
"{ model | | model weights }"
|
||||
"{ video | | video for detection }"
|
||||
"{ out | | path to output video file}"
|
||||
"{ min_confidence | 0.2 | min confidence }";
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
cv::CommandLineParser parser(argc, argv, params);
|
||||
|
||||
if (parser.get<bool>("help"))
|
||||
{
|
||||
cout << about << endl;
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
|
||||
String modelConfiguration = parser.get<string>("proto");
|
||||
String modelBinary = parser.get<string>("model");
|
||||
|
||||
//! [Initialize network]
|
||||
dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary);
|
||||
//! [Initialize network]
|
||||
|
||||
VideoCapture cap(parser.get<String>("video"));
|
||||
if(!cap.isOpened()) // check if we succeeded
|
||||
{
|
||||
cap = VideoCapture(0);
|
||||
if(!cap.isOpened())
|
||||
{
|
||||
cout << "Couldn't find camera" << endl;
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
|
||||
Size inVideoSize = Size((int) cap.get(CV_CAP_PROP_FRAME_WIDTH), //Acquire input size
|
||||
(int) cap.get(CV_CAP_PROP_FRAME_HEIGHT));
|
||||
|
||||
Size cropSize;
|
||||
if (inVideoSize.width / (float)inVideoSize.height > WHRatio)
|
||||
{
|
||||
cropSize = Size(static_cast<int>(inVideoSize.height * WHRatio),
|
||||
inVideoSize.height);
|
||||
}
|
||||
else
|
||||
{
|
||||
cropSize = Size(inVideoSize.width,
|
||||
static_cast<int>(inVideoSize.width / WHRatio));
|
||||
}
|
||||
|
||||
Rect crop(Point((inVideoSize.width - cropSize.width) / 2,
|
||||
(inVideoSize.height - cropSize.height) / 2),
|
||||
cropSize);
|
||||
|
||||
VideoWriter outputVideo;
|
||||
outputVideo.open(parser.get<String>("out") ,
|
||||
static_cast<int>(cap.get(CV_CAP_PROP_FOURCC)),
|
||||
cap.get(CV_CAP_PROP_FPS), cropSize, true);
|
||||
|
||||
for(;;)
|
||||
{
|
||||
Mat frame;
|
||||
cap >> frame; // get a new frame from camera
|
||||
//! [Prepare blob]
|
||||
|
||||
Mat inputBlob = blobFromImage(frame, inScaleFactor,
|
||||
Size(inWidth, inHeight), meanVal); //Convert Mat to batch of images
|
||||
//! [Prepare blob]
|
||||
|
||||
//! [Set input blob]
|
||||
net.setInput(inputBlob, "data"); //set the network input
|
||||
//! [Set input blob]
|
||||
|
||||
TickMeter tm;
|
||||
tm.start();
|
||||
//! [Make forward pass]
|
||||
Mat detection = net.forward("detection_out"); //compute output
|
||||
tm.stop();
|
||||
cout << "Inference time, ms: " << tm.getTimeMilli() << endl;
|
||||
//! [Make forward pass]
|
||||
|
||||
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
|
||||
|
||||
frame = frame(crop);
|
||||
|
||||
float confidenceThreshold = parser.get<float>("min_confidence");
|
||||
for(int i = 0; i < detectionMat.rows; i++)
|
||||
{
|
||||
float confidence = detectionMat.at<float>(i, 2);
|
||||
|
||||
if(confidence > confidenceThreshold)
|
||||
{
|
||||
size_t objectClass = (size_t)(detectionMat.at<float>(i, 1));
|
||||
|
||||
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols);
|
||||
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows);
|
||||
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols);
|
||||
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows);
|
||||
|
||||
ostringstream ss;
|
||||
ss << confidence;
|
||||
String conf(ss.str());
|
||||
|
||||
Rect object((int)xLeftBottom, (int)yLeftBottom,
|
||||
(int)(xRightTop - xLeftBottom),
|
||||
(int)(yRightTop - yLeftBottom));
|
||||
|
||||
rectangle(frame, object, Scalar(0, 255, 0));
|
||||
String label = String(classNames[objectClass]) + ": " + conf;
|
||||
int baseLine = 0;
|
||||
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
|
||||
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height),
|
||||
Size(labelSize.width, labelSize.height + baseLine)),
|
||||
Scalar(255, 255, 255), CV_FILLED);
|
||||
putText(frame, label, Point(xLeftBottom, yLeftBottom),
|
||||
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0));
|
||||
}
|
||||
}
|
||||
|
||||
if (outputVideo.isOpened())
|
||||
outputVideo << frame;
|
||||
|
||||
imshow("detections", frame);
|
||||
if (waitKey(1) >= 0) break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
} // main
|
Loading…
Reference in New Issue
Block a user