mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 21:20:18 +08:00
added dual tvl1 optical flow gpu implementation
This commit is contained in:
parent
1498d2f427
commit
ce2fd7fec9
@ -1982,6 +1982,95 @@ private:
|
||||
};
|
||||
|
||||
|
||||
// Implementation of the Zach, Pock and Bischof Dual TV-L1 Optical Flow method
|
||||
//
|
||||
// see reference:
|
||||
// [1] C. Zach, T. Pock and H. Bischof, "A Duality Based Approach for Realtime TV-L1 Optical Flow".
|
||||
// [2] Javier Sanchez, Enric Meinhardt-Llopis and Gabriele Facciolo. "TV-L1 Optical Flow Estimation".
|
||||
class CV_EXPORTS OpticalFlowDual_TVL1_GPU
|
||||
{
|
||||
public:
|
||||
OpticalFlowDual_TVL1_GPU();
|
||||
|
||||
void operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy);
|
||||
|
||||
void collectGarbage();
|
||||
|
||||
/**
|
||||
* Time step of the numerical scheme.
|
||||
*/
|
||||
double tau;
|
||||
|
||||
/**
|
||||
* Weight parameter for the data term, attachment parameter.
|
||||
* This is the most relevant parameter, which determines the smoothness of the output.
|
||||
* The smaller this parameter is, the smoother the solutions we obtain.
|
||||
* It depends on the range of motions of the images, so its value should be adapted to each image sequence.
|
||||
*/
|
||||
double lambda;
|
||||
|
||||
/**
|
||||
* Weight parameter for (u - v)^2, tightness parameter.
|
||||
* It serves as a link between the attachment and the regularization terms.
|
||||
* In theory, it should have a small value in order to maintain both parts in correspondence.
|
||||
* The method is stable for a large range of values of this parameter.
|
||||
*/
|
||||
double theta;
|
||||
|
||||
/**
|
||||
* Number of scales used to create the pyramid of images.
|
||||
*/
|
||||
int nscales;
|
||||
|
||||
/**
|
||||
* Number of warpings per scale.
|
||||
* Represents the number of times that I1(x+u0) and grad( I1(x+u0) ) are computed per scale.
|
||||
* This is a parameter that assures the stability of the method.
|
||||
* It also affects the running time, so it is a compromise between speed and accuracy.
|
||||
*/
|
||||
int warps;
|
||||
|
||||
/**
|
||||
* Stopping criterion threshold used in the numerical scheme, which is a trade-off between precision and running time.
|
||||
* A small value will yield more accurate solutions at the expense of a slower convergence.
|
||||
*/
|
||||
double epsilon;
|
||||
|
||||
/**
|
||||
* Stopping criterion iterations number used in the numerical scheme.
|
||||
*/
|
||||
int iterations;
|
||||
|
||||
bool useInitialFlow;
|
||||
|
||||
private:
|
||||
void procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2);
|
||||
|
||||
std::vector<GpuMat> I0s;
|
||||
std::vector<GpuMat> I1s;
|
||||
std::vector<GpuMat> u1s;
|
||||
std::vector<GpuMat> u2s;
|
||||
|
||||
GpuMat I1x_buf;
|
||||
GpuMat I1y_buf;
|
||||
|
||||
GpuMat I1w_buf;
|
||||
GpuMat I1wx_buf;
|
||||
GpuMat I1wy_buf;
|
||||
|
||||
GpuMat grad_buf;
|
||||
GpuMat rho_c_buf;
|
||||
|
||||
GpuMat p11_buf;
|
||||
GpuMat p12_buf;
|
||||
GpuMat p21_buf;
|
||||
GpuMat p22_buf;
|
||||
|
||||
GpuMat diff_buf;
|
||||
GpuMat norm_buf;
|
||||
};
|
||||
|
||||
|
||||
//! Interpolate frames (images) using provided optical flow (displacement field).
|
||||
//! frame0 - frame 0 (32-bit floating point images, single channel)
|
||||
//! frame1 - frame 1 (the same type and size)
|
||||
|
@ -394,6 +394,56 @@ PERF_TEST_P(ImagePair, Video_FarnebackOpticalFlow,
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// OpticalFlowDual_TVL1
|
||||
|
||||
PERF_TEST_P(ImagePair, Video_OpticalFlowDual_TVL1,
|
||||
Values<pair_string>(make_pair("gpu/opticalflow/frame0.png", "gpu/opticalflow/frame1.png")))
|
||||
{
|
||||
declare.time(20);
|
||||
|
||||
cv::Mat frame0 = readImage(GetParam().first, cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
cv::Mat frame1 = readImage(GetParam().second, cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
if (PERF_RUN_GPU())
|
||||
{
|
||||
cv::gpu::GpuMat d_frame0(frame0);
|
||||
cv::gpu::GpuMat d_frame1(frame1);
|
||||
cv::gpu::GpuMat d_flowx;
|
||||
cv::gpu::GpuMat d_flowy;
|
||||
|
||||
cv::gpu::OpticalFlowDual_TVL1_GPU d_alg;
|
||||
|
||||
d_alg(d_frame0, d_frame1, d_flowx, d_flowy);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
d_alg(d_frame0, d_frame1, d_flowx, d_flowy);
|
||||
}
|
||||
|
||||
GPU_SANITY_CHECK(d_flowx);
|
||||
GPU_SANITY_CHECK(d_flowy);
|
||||
}
|
||||
else
|
||||
{
|
||||
cv::Mat flow;
|
||||
|
||||
cv::OpticalFlowDual_TVL1 alg;
|
||||
|
||||
alg(frame0, frame1, flow);
|
||||
|
||||
TEST_CYCLE()
|
||||
{
|
||||
alg(frame0, frame1, flow);
|
||||
}
|
||||
|
||||
CPU_SANITY_CHECK(flow);
|
||||
}
|
||||
}
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// FGDStatModel
|
||||
|
||||
|
332
modules/gpu/src/cuda/tvl1flow.cu
Normal file
332
modules/gpu/src/cuda/tvl1flow.cu
Normal file
@ -0,0 +1,332 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or bpied warranties, including, but not limited to, the bpied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#if !defined CUDA_DISABLER
|
||||
|
||||
#include "opencv2/gpu/device/common.hpp"
|
||||
#include "opencv2/gpu/device/border_interpolate.hpp"
|
||||
#include "opencv2/gpu/device/limits.hpp"
|
||||
|
||||
using namespace cv::gpu;
|
||||
using namespace cv::gpu::device;
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// centeredGradient
|
||||
|
||||
namespace tvl1flow
|
||||
{
|
||||
__global__ void centeredGradientKernel(const PtrStepSzf src, PtrStepf dx, PtrStepf dy)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x >= src.cols || y >= src.rows)
|
||||
return;
|
||||
|
||||
dx(y, x) = 0.5f * (src(y, ::min(x + 1, src.cols - 1)) - src(y, ::max(x - 1, 0)));
|
||||
dy(y, x) = 0.5f * (src(::min(y + 1, src.rows - 1), x) - src(::max(y - 1, 0), x));
|
||||
}
|
||||
|
||||
void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy)
|
||||
{
|
||||
const dim3 block(32, 8);
|
||||
const dim3 grid(divUp(src.cols, block.x), divUp(src.rows, block.y));
|
||||
|
||||
centeredGradientKernel<<<grid, block>>>(src, dx, dy);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// warpBackward
|
||||
|
||||
namespace tvl1flow
|
||||
{
|
||||
static __device__ __forceinline__ float bicubicCoeff(float x_)
|
||||
{
|
||||
float x = fabsf(x_);
|
||||
if (x <= 1.0f)
|
||||
{
|
||||
return x * x * (1.5f * x - 2.5f) + 1.0f;
|
||||
}
|
||||
else if (x < 2.0f)
|
||||
{
|
||||
return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f;
|
||||
}
|
||||
else
|
||||
{
|
||||
return 0.0f;
|
||||
}
|
||||
}
|
||||
|
||||
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1 (false, cudaFilterModePoint, cudaAddressModeClamp);
|
||||
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1x(false, cudaFilterModePoint, cudaAddressModeClamp);
|
||||
texture<float, cudaTextureType2D, cudaReadModeElementType> tex_I1y(false, cudaFilterModePoint, cudaAddressModeClamp);
|
||||
|
||||
__global__ void warpBackwardKernel(const PtrStepSzf I0, const PtrStepf u1, const PtrStepf u2, PtrStepf I1w, PtrStepf I1wx, PtrStepf I1wy, PtrStepf grad, PtrStepf rho)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x >= I0.cols || y >= I0.rows)
|
||||
return;
|
||||
|
||||
const float u1Val = u1(y, x);
|
||||
const float u2Val = u2(y, x);
|
||||
|
||||
const float wx = x + u1Val;
|
||||
const float wy = y + u2Val;
|
||||
|
||||
const int xmin = ::ceilf(wx - 2.0f);
|
||||
const int xmax = ::floorf(wx + 2.0f);
|
||||
|
||||
const int ymin = ::ceilf(wy - 2.0f);
|
||||
const int ymax = ::floorf(wy + 2.0f);
|
||||
|
||||
float sum = 0.0f;
|
||||
float sumx = 0.0f;
|
||||
float sumy = 0.0f;
|
||||
float wsum = 0.0f;
|
||||
|
||||
for (int cy = ymin; cy <= ymax; ++cy)
|
||||
{
|
||||
for (int cx = xmin; cx <= xmax; ++cx)
|
||||
{
|
||||
const float w = bicubicCoeff(wx - cx) * bicubicCoeff(wy - cy);
|
||||
|
||||
sum += w * tex2D(tex_I1 , cx, cy);
|
||||
sumx += w * tex2D(tex_I1x, cx, cy);
|
||||
sumy += w * tex2D(tex_I1y, cx, cy);
|
||||
|
||||
wsum += w;
|
||||
}
|
||||
}
|
||||
|
||||
const float coeff = 1.0f / wsum;
|
||||
|
||||
const float I1wVal = sum * coeff;
|
||||
const float I1wxVal = sumx * coeff;
|
||||
const float I1wyVal = sumy * coeff;
|
||||
|
||||
I1w(y, x) = I1wVal;
|
||||
I1wx(y, x) = I1wxVal;
|
||||
I1wy(y, x) = I1wyVal;
|
||||
|
||||
const float Ix2 = I1wxVal * I1wxVal;
|
||||
const float Iy2 = I1wyVal * I1wyVal;
|
||||
|
||||
// store the |Grad(I1)|^2
|
||||
grad(y, x) = Ix2 + Iy2;
|
||||
|
||||
// compute the constant part of the rho function
|
||||
const float I0Val = I0(y, x);
|
||||
rho(y, x) = I1wVal - I1wxVal * u1Val - I1wyVal * u2Val - I0Val;
|
||||
}
|
||||
|
||||
void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y, PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho)
|
||||
{
|
||||
const dim3 block(32, 8);
|
||||
const dim3 grid(divUp(I0.cols, block.x), divUp(I0.rows, block.y));
|
||||
|
||||
bindTexture(&tex_I1 , I1);
|
||||
bindTexture(&tex_I1x, I1x);
|
||||
bindTexture(&tex_I1y, I1y);
|
||||
|
||||
warpBackwardKernel<<<grid, block>>>(I0, u1, u2, I1w, I1wx, I1wy, grad, rho);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// estimateU
|
||||
|
||||
namespace tvl1flow
|
||||
{
|
||||
__device__ float divergence(const PtrStepf& v1, const PtrStepf& v2, int y, int x)
|
||||
{
|
||||
if (x > 0 && y > 0)
|
||||
{
|
||||
const float v1x = v1(y, x) - v1(y, x - 1);
|
||||
const float v2y = v2(y, x) - v2(y - 1, x);
|
||||
return v1x + v2y;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (y > 0)
|
||||
return v1(y, 0) + v2(y, 0) - v2(y - 1, 0);
|
||||
else
|
||||
{
|
||||
if (x > 0)
|
||||
return v1(0, x) - v1(0, x - 1) + v2(0, x);
|
||||
else
|
||||
return v1(0, 0) + v2(0, 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void estimateUKernel(const PtrStepSzf I1wx, const PtrStepf I1wy,
|
||||
const PtrStepf grad, const PtrStepf rho_c,
|
||||
const PtrStepf p11, const PtrStepf p12, const PtrStepf p21, const PtrStepf p22,
|
||||
PtrStepf u1, PtrStepf u2, PtrStepf error,
|
||||
const float l_t, const float theta)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x >= I1wx.cols || y >= I1wx.rows)
|
||||
return;
|
||||
|
||||
const float I1wxVal = I1wx(y, x);
|
||||
const float I1wyVal = I1wy(y, x);
|
||||
const float gradVal = grad(y, x);
|
||||
const float u1OldVal = u1(y, x);
|
||||
const float u2OldVal = u2(y, x);
|
||||
|
||||
const float rho = rho_c(y, x) + (I1wxVal * u1OldVal + I1wyVal * u2OldVal);
|
||||
|
||||
// estimate the values of the variable (v1, v2) (thresholding operator TH)
|
||||
|
||||
float d1 = 0.0f;
|
||||
float d2 = 0.0f;
|
||||
|
||||
if (rho < -l_t * gradVal)
|
||||
{
|
||||
d1 = l_t * I1wxVal;
|
||||
d2 = l_t * I1wyVal;
|
||||
}
|
||||
else if (rho > l_t * gradVal)
|
||||
{
|
||||
d1 = -l_t * I1wxVal;
|
||||
d2 = -l_t * I1wyVal;
|
||||
}
|
||||
else if (gradVal > numeric_limits<float>::epsilon())
|
||||
{
|
||||
const float fi = -rho / gradVal;
|
||||
d1 = fi * I1wxVal;
|
||||
d2 = fi * I1wyVal;
|
||||
}
|
||||
|
||||
const float v1 = u1OldVal + d1;
|
||||
const float v2 = u2OldVal + d2;
|
||||
|
||||
// compute the divergence of the dual variable (p1, p2)
|
||||
|
||||
const float div_p1 = divergence(p11, p12, y, x);
|
||||
const float div_p2 = divergence(p21, p22, y, x);
|
||||
|
||||
// estimate the values of the optical flow (u1, u2)
|
||||
|
||||
const float u1NewVal = v1 + theta * div_p1;
|
||||
const float u2NewVal = v2 + theta * div_p2;
|
||||
|
||||
u1(y, x) = u1NewVal;
|
||||
u2(y, x) = u2NewVal;
|
||||
|
||||
const float n1 = (u1OldVal - u1NewVal) * (u1OldVal - u1NewVal);
|
||||
const float n2 = (u2OldVal - u2NewVal) * (u2OldVal - u2NewVal);
|
||||
error(y, x) = n1 + n2;
|
||||
}
|
||||
|
||||
void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy,
|
||||
PtrStepSzf grad, PtrStepSzf rho_c,
|
||||
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22,
|
||||
PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf error,
|
||||
float l_t, float theta)
|
||||
{
|
||||
const dim3 block(32, 8);
|
||||
const dim3 grid(divUp(I1wx.cols, block.x), divUp(I1wx.rows, block.y));
|
||||
|
||||
estimateUKernel<<<grid, block>>>(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, u1, u2, error, l_t, theta);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}
|
||||
|
||||
////////////////////////////////////////////////////////////
|
||||
// estimateDualVariables
|
||||
|
||||
namespace tvl1flow
|
||||
{
|
||||
__global__ void estimateDualVariablesKernel(const PtrStepSzf u1, const PtrStepf u2, PtrStepf p11, PtrStepf p12, PtrStepf p21, PtrStepf p22, const float taut)
|
||||
{
|
||||
const int x = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
const int y = blockIdx.y * blockDim.y + threadIdx.y;
|
||||
|
||||
if (x >= u1.cols || y >= u1.rows)
|
||||
return;
|
||||
|
||||
const float u1x = u1(y, ::min(x + 1, u1.cols - 1)) - u1(y, x);
|
||||
const float u1y = u1(::min(y + 1, u1.rows - 1), x) - u1(y, x);
|
||||
|
||||
const float u2x = u2(y, ::min(x + 1, u1.cols - 1)) - u2(y, x);
|
||||
const float u2y = u2(::min(y + 1, u1.rows - 1), x) - u2(y, x);
|
||||
|
||||
const float g1 = ::hypotf(u1x, u1y);
|
||||
const float g2 = ::hypotf(u2x, u2y);
|
||||
|
||||
const float ng1 = 1.0f + taut * g1;
|
||||
const float ng2 = 1.0f + taut * g2;
|
||||
|
||||
p11(y, x) = (p11(y, x) + taut * u1x) / ng1;
|
||||
p12(y, x) = (p12(y, x) + taut * u1y) / ng1;
|
||||
p21(y, x) = (p21(y, x) + taut * u2x) / ng2;
|
||||
p22(y, x) = (p22(y, x) + taut * u2y) / ng2;
|
||||
}
|
||||
|
||||
void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, float taut)
|
||||
{
|
||||
const dim3 block(32, 8);
|
||||
const dim3 grid(divUp(u1.cols, block.x), divUp(u1.rows, block.y));
|
||||
|
||||
estimateDualVariablesKernel<<<grid, block>>>(u1, u2, p11, p12, p21, p22, taut);
|
||||
cudaSafeCall( cudaGetLastError() );
|
||||
|
||||
cudaSafeCall( cudaDeviceSynchronize() );
|
||||
}
|
||||
}
|
||||
|
||||
#endif // !defined CUDA_DISABLER
|
256
modules/gpu/src/tvl1flow.cpp
Normal file
256
modules/gpu/src/tvl1flow.cpp
Normal file
@ -0,0 +1,256 @@
|
||||
/*M///////////////////////////////////////////////////////////////////////////////////////
|
||||
//
|
||||
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
|
||||
//
|
||||
// By downloading, copying, installing or using the software you agree to this license.
|
||||
// If you do not agree to this license, do not download, install,
|
||||
// copy or use the software.
|
||||
//
|
||||
//
|
||||
// License Agreement
|
||||
// For Open Source Computer Vision Library
|
||||
//
|
||||
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
|
||||
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
|
||||
// Third party copyrights are property of their respective owners.
|
||||
//
|
||||
// Redistribution and use in source and binary forms, with or without modification,
|
||||
// are permitted provided that the following conditions are met:
|
||||
//
|
||||
// * Redistribution's of source code must retain the above copyright notice,
|
||||
// this list of conditions and the following disclaimer.
|
||||
//
|
||||
// * Redistribution's in binary form must reproduce the above copyright notice,
|
||||
// this list of conditions and the following disclaimer in the documentation
|
||||
// and/or other materials provided with the distribution.
|
||||
//
|
||||
// * The name of the copyright holders may not be used to endorse or promote products
|
||||
// derived from this software without specific prior written permission.
|
||||
//
|
||||
// This software is provided by the copyright holders and contributors "as is" and
|
||||
// any express or implied warranties, including, but not limited to, the implied
|
||||
// warranties of merchantability and fitness for a particular purpose are disclaimed.
|
||||
// In no event shall the Intel Corporation or contributors be liable for any direct,
|
||||
// indirect, incidental, special, exemplary, or consequential damages
|
||||
// (including, but not limited to, procurement of substitute goods or services;
|
||||
// loss of use, data, or profits; or business interruption) however caused
|
||||
// and on any theory of liability, whether in contract, strict liability,
|
||||
// or tort (including negligence or otherwise) arising in any way out of
|
||||
// the use of this software, even if advised of the possibility of such damage.
|
||||
//
|
||||
//M*/
|
||||
|
||||
#include "precomp.hpp"
|
||||
|
||||
#if !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
||||
|
||||
cv::gpu::OpticalFlowDual_TVL1_GPU::OpticalFlowDual_TVL1_GPU() { throw_nogpu(); }
|
||||
void cv::gpu::OpticalFlowDual_TVL1_GPU::operator ()(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
void cv::gpu::OpticalFlowDual_TVL1_GPU::collectGarbage() {}
|
||||
void cv::gpu::OpticalFlowDual_TVL1_GPU::procOneScale(const GpuMat&, const GpuMat&, GpuMat&, GpuMat&) { throw_nogpu(); }
|
||||
|
||||
#else
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
cv::gpu::OpticalFlowDual_TVL1_GPU::OpticalFlowDual_TVL1_GPU()
|
||||
{
|
||||
tau = 0.25;
|
||||
lambda = 0.15;
|
||||
theta = 0.3;
|
||||
nscales = 5;
|
||||
warps = 5;
|
||||
epsilon = 0.01;
|
||||
iterations = 300;
|
||||
useInitialFlow = false;
|
||||
}
|
||||
|
||||
void cv::gpu::OpticalFlowDual_TVL1_GPU::operator ()(const GpuMat& I0, const GpuMat& I1, GpuMat& flowx, GpuMat& flowy)
|
||||
{
|
||||
CV_Assert( I0.type() == CV_8UC1 || I0.type() == CV_32FC1 );
|
||||
CV_Assert( I0.size() == I1.size() );
|
||||
CV_Assert( I0.type() == I1.type() );
|
||||
CV_Assert( !useInitialFlow || (flowx.size() == I0.size() && flowx.type() == CV_32FC1 && flowy.size() == flowx.size() && flowy.type() == flowx.type()) );
|
||||
CV_Assert( nscales > 0 );
|
||||
|
||||
// allocate memory for the pyramid structure
|
||||
I0s.resize(nscales);
|
||||
I1s.resize(nscales);
|
||||
u1s.resize(nscales);
|
||||
u2s.resize(nscales);
|
||||
|
||||
I0.convertTo(I0s[0], CV_32F, I0.depth() == CV_8U ? 1.0 : 255.0);
|
||||
I1.convertTo(I1s[0], CV_32F, I1.depth() == CV_8U ? 1.0 : 255.0);
|
||||
|
||||
if (!useInitialFlow)
|
||||
{
|
||||
flowx.create(I0.size(), CV_32FC1);
|
||||
flowy.create(I0.size(), CV_32FC1);
|
||||
}
|
||||
|
||||
u1s[0] = flowx;
|
||||
u2s[0] = flowy;
|
||||
|
||||
I1x_buf.create(I0.size(), CV_32FC1);
|
||||
I1y_buf.create(I0.size(), CV_32FC1);
|
||||
|
||||
I1w_buf.create(I0.size(), CV_32FC1);
|
||||
I1wx_buf.create(I0.size(), CV_32FC1);
|
||||
I1wy_buf.create(I0.size(), CV_32FC1);
|
||||
|
||||
grad_buf.create(I0.size(), CV_32FC1);
|
||||
rho_c_buf.create(I0.size(), CV_32FC1);
|
||||
|
||||
p11_buf.create(I0.size(), CV_32FC1);
|
||||
p12_buf.create(I0.size(), CV_32FC1);
|
||||
p21_buf.create(I0.size(), CV_32FC1);
|
||||
p22_buf.create(I0.size(), CV_32FC1);
|
||||
|
||||
diff_buf.create(I0.size(), CV_32FC1);
|
||||
|
||||
// create the scales
|
||||
for (int s = 1; s < nscales; ++s)
|
||||
{
|
||||
gpu::pyrDown(I0s[s - 1], I0s[s]);
|
||||
gpu::pyrDown(I1s[s - 1], I1s[s]);
|
||||
|
||||
if (I0s[s].cols < 16 || I0s[s].rows < 16)
|
||||
{
|
||||
nscales = s;
|
||||
break;
|
||||
}
|
||||
|
||||
if (useInitialFlow)
|
||||
{
|
||||
gpu::pyrDown(u1s[s - 1], u1s[s]);
|
||||
gpu::pyrDown(u2s[s - 1], u2s[s]);
|
||||
|
||||
gpu::multiply(u1s[s], Scalar::all(0.5), u1s[s]);
|
||||
gpu::multiply(u2s[s], Scalar::all(0.5), u2s[s]);
|
||||
}
|
||||
}
|
||||
|
||||
// pyramidal structure for computing the optical flow
|
||||
for (int s = nscales - 1; s >= 0; --s)
|
||||
{
|
||||
// compute the optical flow at the current scale
|
||||
procOneScale(I0s[s], I1s[s], u1s[s], u2s[s]);
|
||||
|
||||
// if this was the last scale, finish now
|
||||
if (s == 0)
|
||||
break;
|
||||
|
||||
// otherwise, upsample the optical flow
|
||||
|
||||
// zoom the optical flow for the next finer scale
|
||||
gpu::resize(u1s[s], u1s[s - 1], I0s[s - 1].size());
|
||||
gpu::resize(u2s[s], u2s[s - 1], I0s[s - 1].size());
|
||||
|
||||
// scale the optical flow with the appropriate zoom factor
|
||||
gpu::multiply(u1s[s - 1], Scalar::all(2), u1s[s - 1]);
|
||||
gpu::multiply(u2s[s - 1], Scalar::all(2), u2s[s - 1]);
|
||||
}
|
||||
}
|
||||
|
||||
namespace tvl1flow
|
||||
{
|
||||
void centeredGradient(PtrStepSzf src, PtrStepSzf dx, PtrStepSzf dy);
|
||||
void warpBackward(PtrStepSzf I0, PtrStepSzf I1, PtrStepSzf I1x, PtrStepSzf I1y, PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf I1w, PtrStepSzf I1wx, PtrStepSzf I1wy, PtrStepSzf grad, PtrStepSzf rho);
|
||||
void estimateU(PtrStepSzf I1wx, PtrStepSzf I1wy,
|
||||
PtrStepSzf grad, PtrStepSzf rho_c,
|
||||
PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22,
|
||||
PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf error,
|
||||
float l_t, float theta);
|
||||
void estimateDualVariables(PtrStepSzf u1, PtrStepSzf u2, PtrStepSzf p11, PtrStepSzf p12, PtrStepSzf p21, PtrStepSzf p22, float taut);
|
||||
}
|
||||
|
||||
void cv::gpu::OpticalFlowDual_TVL1_GPU::procOneScale(const GpuMat& I0, const GpuMat& I1, GpuMat& u1, GpuMat& u2)
|
||||
{
|
||||
using namespace tvl1flow;
|
||||
|
||||
const double scaledEpsilon = epsilon * epsilon * I0.size().area();
|
||||
|
||||
CV_DbgAssert( I1.size() == I0.size() );
|
||||
CV_DbgAssert( I1.type() == I0.type() );
|
||||
CV_DbgAssert( u1.empty() || u1.size() == I0.size() );
|
||||
CV_DbgAssert( u2.size() == u1.size() );
|
||||
|
||||
if (u1.empty())
|
||||
{
|
||||
u1.create(I0.size(), CV_32FC1);
|
||||
u1.setTo(Scalar::all(0));
|
||||
|
||||
u2.create(I0.size(), CV_32FC1);
|
||||
u2.setTo(Scalar::all(0));
|
||||
}
|
||||
|
||||
GpuMat I1x = I1x_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
GpuMat I1y = I1y_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
centeredGradient(I1, I1x, I1y);
|
||||
|
||||
GpuMat I1w = I1w_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
GpuMat I1wx = I1wx_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
GpuMat I1wy = I1wy_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
GpuMat grad = grad_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
GpuMat rho_c = rho_c_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
GpuMat p11 = p11_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
GpuMat p12 = p12_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
GpuMat p21 = p21_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
GpuMat p22 = p22_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
p11.setTo(Scalar::all(0));
|
||||
p12.setTo(Scalar::all(0));
|
||||
p21.setTo(Scalar::all(0));
|
||||
p22.setTo(Scalar::all(0));
|
||||
|
||||
GpuMat diff = diff_buf(Rect(0, 0, I0.cols, I0.rows));
|
||||
|
||||
const float l_t = static_cast<float>(lambda * theta);
|
||||
const float taut = static_cast<float>(tau / theta);
|
||||
|
||||
for (int warpings = 0; warpings < warps; ++warpings)
|
||||
{
|
||||
warpBackward(I0, I1, I1x, I1y, u1, u2, I1w, I1wx, I1wy, grad, rho_c);
|
||||
|
||||
double error = numeric_limits<double>::max();
|
||||
for (int n = 0; error > scaledEpsilon && n < iterations; ++n)
|
||||
{
|
||||
estimateU(I1wx, I1wy, grad, rho_c, p11, p12, p21, p22, u1, u2, diff, l_t, static_cast<float>(theta));
|
||||
|
||||
error = gpu::sum(diff, norm_buf)[0];
|
||||
|
||||
estimateDualVariables(u1, u2, p11, p12, p21, p22, taut);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void cv::gpu::OpticalFlowDual_TVL1_GPU::collectGarbage()
|
||||
{
|
||||
I0s.clear();
|
||||
I1s.clear();
|
||||
u1s.clear();
|
||||
u2s.clear();
|
||||
|
||||
I1x_buf.release();
|
||||
I1y_buf.release();
|
||||
|
||||
I1w_buf.release();
|
||||
I1wx_buf.release();
|
||||
I1wy_buf.release();
|
||||
|
||||
grad_buf.release();
|
||||
rho_c_buf.release();
|
||||
|
||||
p11_buf.release();
|
||||
p12_buf.release();
|
||||
p21_buf.release();
|
||||
p22_buf.release();
|
||||
|
||||
diff_buf.release();
|
||||
norm_buf.release();
|
||||
}
|
||||
|
||||
#endif // !defined HAVE_CUDA || defined(CUDA_DISABLER)
|
@ -401,4 +401,48 @@ INSTANTIATE_TEST_CASE_P(GPU_Video, FarnebackOpticalFlow, testing::Combine(
|
||||
testing::Values(FarnebackOptFlowFlags(0), FarnebackOptFlowFlags(cv::OPTFLOW_FARNEBACK_GAUSSIAN)),
|
||||
testing::Values(UseInitFlow(false), UseInitFlow(true))));
|
||||
|
||||
//////////////////////////////////////////////////////
|
||||
// OpticalFlowDual_TVL1
|
||||
|
||||
PARAM_TEST_CASE(OpticalFlowDual_TVL1, cv::gpu::DeviceInfo, UseRoi)
|
||||
{
|
||||
cv::gpu::DeviceInfo devInfo;
|
||||
bool useRoi;
|
||||
|
||||
virtual void SetUp()
|
||||
{
|
||||
devInfo = GET_PARAM(0);
|
||||
useRoi = GET_PARAM(1);
|
||||
|
||||
cv::gpu::setDevice(devInfo.deviceID());
|
||||
}
|
||||
};
|
||||
|
||||
GPU_TEST_P(OpticalFlowDual_TVL1, Accuracy)
|
||||
{
|
||||
cv::Mat frame0 = readImage("opticalflow/rubberwhale1.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame0.empty());
|
||||
|
||||
cv::Mat frame1 = readImage("opticalflow/rubberwhale2.png", cv::IMREAD_GRAYSCALE);
|
||||
ASSERT_FALSE(frame1.empty());
|
||||
|
||||
cv::gpu::OpticalFlowDual_TVL1_GPU d_alg;
|
||||
cv::gpu::GpuMat d_flowx = createMat(frame0.size(), CV_32FC1, useRoi);
|
||||
cv::gpu::GpuMat d_flowy = createMat(frame0.size(), CV_32FC1, useRoi);
|
||||
d_alg(loadMat(frame0, useRoi), loadMat(frame1, useRoi), d_flowx, d_flowy);
|
||||
|
||||
cv::OpticalFlowDual_TVL1 alg;
|
||||
cv::Mat flow;
|
||||
alg(frame0, frame1, flow);
|
||||
cv::Mat gold[2];
|
||||
cv::split(flow, gold);
|
||||
|
||||
EXPECT_MAT_SIMILAR(gold[0], d_flowx, 3e-3);
|
||||
EXPECT_MAT_SIMILAR(gold[1], d_flowy, 3e-3);
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(GPU_Video, OpticalFlowDual_TVL1, testing::Combine(
|
||||
ALL_DEVICES,
|
||||
WHOLE_SUBMAT));
|
||||
|
||||
#endif // HAVE_CUDA
|
||||
|
Loading…
Reference in New Issue
Block a user