mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
refactored FaceDetection GPU sample
This commit is contained in:
parent
58476b64a6
commit
ce474db8eb
@ -8,73 +8,139 @@
|
||||
|
||||
#include <iostream>
|
||||
#include <iomanip>
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::gpu;
|
||||
|
||||
|
||||
void help()
|
||||
{
|
||||
cout << "Usage: ./cascadeclassifier <cascade_file> <image_or_video_or_cameraid>\n"
|
||||
"Using OpenCV version " << CV_VERSION << endl << endl;
|
||||
}
|
||||
|
||||
|
||||
void DetectAndDraw(Mat& img, CascadeClassifier_GPU& cascade);
|
||||
|
||||
|
||||
String cascadeName = "../../data/haarcascades/haarcascade_frontalface_alt.xml";
|
||||
String nestedCascadeName = "../../data/haarcascades/haarcascade_eye_tree_eyeglasses.xml";
|
||||
|
||||
|
||||
|
||||
template<class T> void convertAndReseize(const T& src, T& gray, T& resized, double scale = 2.0)
|
||||
template<class T> void convertAndResize(const T& src, T& gray, T& resized, double scale)
|
||||
{
|
||||
if (src.channels() == 3)
|
||||
{
|
||||
cvtColor( src, gray, CV_BGR2GRAY );
|
||||
}
|
||||
else
|
||||
{
|
||||
gray = src;
|
||||
}
|
||||
|
||||
Size sz(cvRound(gray.cols * scale), cvRound(gray.rows * scale));
|
||||
|
||||
if (scale != 1)
|
||||
{
|
||||
resize(gray, resized, sz);
|
||||
}
|
||||
else
|
||||
{
|
||||
resized = gray;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void matPrint(Mat &img, int lineOffsY, Scalar fontColor, const ostringstream &ss)
|
||||
{
|
||||
int fontFace = FONT_HERSHEY_PLAIN;
|
||||
double fontScale = 1.5;
|
||||
int fontThickness = 2;
|
||||
Size fontSize = cv::getTextSize("T[]", fontFace, fontScale, fontThickness, 0);
|
||||
|
||||
int main( int argc, const char** argv )
|
||||
Point org;
|
||||
org.x = 1;
|
||||
org.y = 3 * fontSize.height * (lineOffsY + 1) / 2;
|
||||
putText(img, ss.str(), org, fontFace, fontScale, fontColor, fontThickness);
|
||||
}
|
||||
|
||||
|
||||
void displayState(Mat &canvas, bool bHelp, bool bGpu, bool bLargestFace, bool bFilter, double fps)
|
||||
{
|
||||
Scalar fontColorRed = CV_RGB(255,0,0);
|
||||
Scalar fontColorNV = CV_RGB(118,185,0);
|
||||
|
||||
ostringstream ss;
|
||||
ss << "[" << canvas.cols << "x" << canvas.rows << "], " <<
|
||||
(bGpu ? "GPU, " : "CPU, ") <<
|
||||
(bLargestFace ? "OneFace, " : "MultiFace, ") <<
|
||||
(bFilter ? "Filter:ON, " : "Filter:OFF, ") <<
|
||||
"FPS = " << setprecision(1) << fixed << fps;
|
||||
|
||||
matPrint(canvas, 0, fontColorRed, ss);
|
||||
|
||||
if (bHelp)
|
||||
{
|
||||
matPrint(canvas, 1, fontColorNV, ostringstream("Space - switch GPU / CPU"));
|
||||
matPrint(canvas, 2, fontColorNV, ostringstream("M - switch OneFace / MultiFace"));
|
||||
matPrint(canvas, 3, fontColorNV, ostringstream("F - toggle rectangles Filter (only in MultiFace)"));
|
||||
matPrint(canvas, 4, fontColorNV, ostringstream("H - toggle hotkeys help"));
|
||||
matPrint(canvas, 5, fontColorNV, ostringstream("1/Q - increase/decrease scale"));
|
||||
}
|
||||
else
|
||||
{
|
||||
matPrint(canvas, 1, fontColorNV, ostringstream("H - toggle hotkeys help"));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, const char *argv[])
|
||||
{
|
||||
if (argc != 3)
|
||||
{
|
||||
return help(), -1;
|
||||
}
|
||||
|
||||
if (cv::gpu::getCudaEnabledDeviceCount() == 0)
|
||||
if (getCudaEnabledDeviceCount() == 0)
|
||||
{
|
||||
return cerr << "No GPU found or the library is compiled without GPU support" << endl, -1;
|
||||
}
|
||||
|
||||
VideoCapture capture;
|
||||
|
||||
string cascadeName = argv[1];
|
||||
string inputName = argv[2];
|
||||
|
||||
cv::gpu::CascadeClassifier_GPU cascade_gpu;
|
||||
if( !cascade_gpu.load( cascadeName ) )
|
||||
CascadeClassifier_GPU cascade_gpu;
|
||||
if (!cascade_gpu.load(cascadeName))
|
||||
{
|
||||
return cerr << "ERROR: Could not load cascade classifier \"" << cascadeName << "\"" << endl, help(), -1;
|
||||
}
|
||||
|
||||
cv::CascadeClassifier cascade_cpu;
|
||||
if( !cascade_cpu.load( cascadeName ) )
|
||||
CascadeClassifier cascade_cpu;
|
||||
if (!cascade_cpu.load(cascadeName))
|
||||
{
|
||||
return cerr << "ERROR: Could not load cascade classifier \"" << cascadeName << "\"" << endl, help(), -1;
|
||||
}
|
||||
|
||||
Mat image = imread( inputName);
|
||||
if( image.empty() )
|
||||
Mat image = imread(inputName);
|
||||
|
||||
if (image.empty())
|
||||
{
|
||||
if (!capture.open(inputName))
|
||||
{
|
||||
int camid = 0;
|
||||
sscanf(inputName.c_str(), "%d", &camid);
|
||||
if(!capture.open(camid))
|
||||
if (!capture.open(camid))
|
||||
{
|
||||
cout << "Can't open source" << endl;
|
||||
return help(), -1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
namedWindow( "result", 1 );
|
||||
namedWindow("result", 1);
|
||||
|
||||
Mat frame, frame_cpu, gray_cpu, resized_cpu, faces_downloaded, frameDisp;
|
||||
vector<Rect> facesBuf_cpu;
|
||||
@ -83,120 +149,119 @@ int main( int argc, const char** argv )
|
||||
|
||||
/* parameters */
|
||||
bool useGPU = true;
|
||||
double scale_factor = 1;
|
||||
double font_scale = 0.8;
|
||||
|
||||
bool visualizeInPlace = false;
|
||||
double scaleFactor = 1.0;
|
||||
bool findLargestObject = false;
|
||||
int minNeighbors = 4;
|
||||
|
||||
printf("\t<space> - toggle GPU/CPU\n");
|
||||
printf("\tL - toggle lagest faces\n");
|
||||
printf("\tV - toggle visualisation in-place (for GPU only)\n");
|
||||
printf("\t1/q - inc/dec scale\n");
|
||||
bool filterRects = true;
|
||||
bool helpScreen = false;
|
||||
|
||||
int detections_num;
|
||||
for(;;)
|
||||
for (;;)
|
||||
{
|
||||
if( capture.isOpened() )
|
||||
if (capture.isOpened())
|
||||
{
|
||||
capture >> frame;
|
||||
if( frame.empty())
|
||||
if (frame.empty())
|
||||
{
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
(image.empty() ? frame : image).copyTo(frame_cpu);
|
||||
frame_gpu.upload( image.empty() ? frame : image);
|
||||
frame_gpu.upload(image.empty() ? frame : image);
|
||||
|
||||
convertAndReseize(frame_gpu, gray_gpu, resized_gpu, scale_factor);
|
||||
convertAndReseize(frame_cpu, gray_cpu, resized_cpu, scale_factor);
|
||||
convertAndResize(frame_gpu, gray_gpu, resized_gpu, scaleFactor);
|
||||
convertAndResize(frame_cpu, gray_cpu, resized_cpu, scaleFactor);
|
||||
|
||||
cv::TickMeter tm;
|
||||
TickMeter tm;
|
||||
tm.start();
|
||||
|
||||
if (useGPU)
|
||||
{
|
||||
cascade_gpu.visualizeInPlace = visualizeInPlace;
|
||||
cascade_gpu.visualizeInPlace = true;
|
||||
cascade_gpu.findLargestObject = findLargestObject;
|
||||
|
||||
detections_num = cascade_gpu.detectMultiScale( resized_gpu, facesBuf_gpu, 1.2, minNeighbors);
|
||||
detections_num = cascade_gpu.detectMultiScale(resized_gpu, facesBuf_gpu, 1.2, filterRects ? 4 : 0);
|
||||
facesBuf_gpu.colRange(0, detections_num).download(faces_downloaded);
|
||||
|
||||
}
|
||||
else /* so use CPU */
|
||||
else
|
||||
{
|
||||
Size minSize = cascade_gpu.getClassifierSize();
|
||||
if (findLargestObject)
|
||||
{
|
||||
float ratio = (float)std::min(frame.cols / minSize.width, frame.rows / minSize.height);
|
||||
ratio = std::max(ratio / 2.5f, 1.f);
|
||||
minSize = Size(cvRound(minSize.width * ratio), cvRound(minSize.height * ratio));
|
||||
}
|
||||
|
||||
cascade_cpu.detectMultiScale(resized_cpu, facesBuf_cpu, 1.2, minNeighbors, (findLargestObject ? CV_HAAR_FIND_BIGGEST_OBJECT : 0) | CV_HAAR_SCALE_IMAGE, minSize);
|
||||
cascade_cpu.detectMultiScale(resized_cpu, facesBuf_cpu, 1.2, filterRects ? 4 : 0, (findLargestObject ? CV_HAAR_FIND_BIGGEST_OBJECT : 0) | CV_HAAR_SCALE_IMAGE, minSize);
|
||||
detections_num = (int)facesBuf_cpu.size();
|
||||
}
|
||||
|
||||
tm.stop();
|
||||
printf( "detection time = %g ms\n", tm.getTimeMilli() );
|
||||
|
||||
if (useGPU)
|
||||
resized_gpu.download(resized_cpu);
|
||||
|
||||
if (!visualizeInPlace || !useGPU)
|
||||
if (!useGPU)
|
||||
{
|
||||
if (detections_num)
|
||||
{
|
||||
Rect* faces = useGPU ? faces_downloaded.ptr<Rect>() : &facesBuf_cpu[0];
|
||||
for(int i = 0; i < detections_num; ++i)
|
||||
cv::rectangle(resized_cpu, faces[i], Scalar(255));
|
||||
for (int i = 0; i < detections_num; ++i)
|
||||
{
|
||||
rectangle(resized_cpu, facesBuf_cpu[i], Scalar(255));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int tickness = font_scale > 0.75 ? 2 : 1;
|
||||
if (useGPU)
|
||||
{
|
||||
resized_gpu.download(resized_cpu);
|
||||
}
|
||||
|
||||
Point text_pos(5, 25);
|
||||
Scalar color = CV_RGB(255, 0, 0);
|
||||
Size fontSz = cv::getTextSize("T[]", FONT_HERSHEY_SIMPLEX, font_scale, tickness, 0);
|
||||
int offs = fontSz.height + 5;
|
||||
tm.stop();
|
||||
double detectionTime = tm.getTimeMilli();
|
||||
double fps = 1000 / detectionTime;
|
||||
|
||||
cv::cvtColor(resized_cpu, frameDisp, CV_GRAY2BGR);
|
||||
//print detections to console
|
||||
cout << setfill(' ') << setprecision(2);
|
||||
cout << setw(6) << fixed << fps << " FPS, " << detections_num << " det";
|
||||
if ((filterRects || findLargestObject) && detections_num > 0)
|
||||
{
|
||||
Rect *faceRects = useGPU ? faces_downloaded.ptr<Rect>() : &facesBuf_cpu[0];
|
||||
for (int i = 0; i < min(detections_num, 2); ++i)
|
||||
{
|
||||
cout << ", [" << setw(4) << faceRects[i].x
|
||||
<< ", " << setw(4) << faceRects[i].y
|
||||
<< ", " << setw(4) << faceRects[i].width
|
||||
<< ", " << setw(4) << faceRects[i].height << "]";
|
||||
}
|
||||
}
|
||||
cout << endl;
|
||||
|
||||
char buf[4096];
|
||||
sprintf(buf, "%s, FPS = %0.3g", useGPU ? "GPU (device) " : "CPU (host)", 1.0/tm.getTimeSec());
|
||||
putText(frameDisp, buf, text_pos, FONT_HERSHEY_SIMPLEX, font_scale, color, tickness);
|
||||
sprintf(buf, "scale = %0.3g, [%d x %d] x scale, Min neighbors = %d", scale_factor, frame.cols, frame.rows, minNeighbors);
|
||||
putText(frameDisp, buf, text_pos+=Point(0,offs), FONT_HERSHEY_SIMPLEX, font_scale, color, tickness);
|
||||
putText(frameDisp, "Hotkeys: space, 1/Q, 2/E, 3/E, L, V, Esc", text_pos+=Point(0,offs), FONT_HERSHEY_SIMPLEX, font_scale, color, tickness);
|
||||
cvtColor(resized_cpu, frameDisp, CV_GRAY2BGR);
|
||||
displayState(frameDisp, helpScreen, useGPU, findLargestObject, filterRects, fps);
|
||||
imshow("result", frameDisp);
|
||||
|
||||
if (findLargestObject)
|
||||
putText(frameDisp, "FindLargestObject", text_pos+=Point(0,offs), FONT_HERSHEY_SIMPLEX, font_scale, color, tickness);
|
||||
|
||||
if (visualizeInPlace && useGPU)
|
||||
putText(frameDisp, "VisualizeInPlace", text_pos+Point(0,offs), FONT_HERSHEY_SIMPLEX, font_scale, color, tickness);
|
||||
|
||||
cv::imshow( "result", frameDisp);
|
||||
|
||||
int key = waitKey( 5 );
|
||||
if( key == 27)
|
||||
int key = waitKey(5);
|
||||
if (key == 27)
|
||||
{
|
||||
break;
|
||||
}
|
||||
|
||||
switch ((char)key)
|
||||
{
|
||||
case ' ': useGPU = !useGPU; printf("Using %s\n", useGPU ? "GPU" : "CPU");break;
|
||||
case 'v': case 'V': visualizeInPlace = !visualizeInPlace; printf("VisualizeInPlace = %d\n", visualizeInPlace); break;
|
||||
case 'l': case 'L': findLargestObject = !findLargestObject; printf("FindLargestObject = %d\n", findLargestObject); break;
|
||||
case '1': scale_factor*=1.05; printf("Scale factor = %g\n", scale_factor); break;
|
||||
case 'q': case 'Q':scale_factor/=1.05; printf("Scale factor = %g\n", scale_factor); break;
|
||||
|
||||
case '3': font_scale*=1.05; printf("Fond scale = %g\n", font_scale); break;
|
||||
case 'e': case 'E':font_scale/=1.05; printf("Fond scale = %g\n", font_scale); break;
|
||||
|
||||
case '2': ++minNeighbors; printf("Min Neighbors = %d\n", minNeighbors); break;
|
||||
case 'w': case 'W':minNeighbors = max(minNeighbors-1, 0); printf("Min Neighbors = %d\n", minNeighbors); break;
|
||||
case ' ':
|
||||
useGPU = !useGPU;
|
||||
break;
|
||||
case 'm':
|
||||
case 'M':
|
||||
findLargestObject = !findLargestObject;
|
||||
break;
|
||||
case 'f':
|
||||
case 'F':
|
||||
filterRects = !filterRects;
|
||||
break;
|
||||
case '1':
|
||||
scaleFactor *= 1.05;
|
||||
break;
|
||||
case 'q':
|
||||
case 'Q':
|
||||
scaleFactor /= 1.05;
|
||||
break;
|
||||
case 'h':
|
||||
case 'H':
|
||||
helpScreen = !helpScreen;
|
||||
break;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user