mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 12:40:05 +08:00
Merge remote-tracking branch 'upstream/3.4' into merge-3.4
This commit is contained in:
commit
ce8027c6fb
4
3rdparty/libjpeg-turbo/CMakeLists.txt
vendored
4
3rdparty/libjpeg-turbo/CMakeLists.txt
vendored
@ -4,9 +4,9 @@ ocv_warnings_disable(CMAKE_C_FLAGS -Wunused-parameter -Wsign-compare -Wshorten-6
|
||||
|
||||
set(VERSION_MAJOR 2)
|
||||
set(VERSION_MINOR 0)
|
||||
set(VERSION_REVISION 5)
|
||||
set(VERSION_REVISION 6)
|
||||
set(VERSION ${VERSION_MAJOR}.${VERSION_MINOR}.${VERSION_REVISION})
|
||||
set(LIBJPEG_TURBO_VERSION_NUMBER 2000005)
|
||||
set(LIBJPEG_TURBO_VERSION_NUMBER 2000006)
|
||||
|
||||
string(TIMESTAMP BUILD "opencv-${OPENCV_VERSION}-libjpeg-turbo")
|
||||
if(CMAKE_BUILD_TYPE STREQUAL "Debug")
|
||||
|
2
3rdparty/libjpeg-turbo/LICENSE.md
vendored
2
3rdparty/libjpeg-turbo/LICENSE.md
vendored
@ -91,7 +91,7 @@ best of our understanding.
|
||||
The Modified (3-clause) BSD License
|
||||
===================================
|
||||
|
||||
Copyright (C)2009-2019 D. R. Commander. All Rights Reserved.
|
||||
Copyright (C)2009-2020 D. R. Commander. All Rights Reserved.
|
||||
Copyright (C)2015 Viktor Szathmáry. All Rights Reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
|
22
3rdparty/libjpeg-turbo/README.ijg
vendored
22
3rdparty/libjpeg-turbo/README.ijg
vendored
@ -223,12 +223,12 @@ https://www.iso.org/standard/54989.html and http://www.itu.int/rec/T-REC-T.871.
|
||||
A PDF file of the older JFIF 1.02 specification is available at
|
||||
http://www.w3.org/Graphics/JPEG/jfif3.pdf.
|
||||
|
||||
The TIFF 6.0 file format specification can be obtained by FTP from
|
||||
ftp://ftp.sgi.com/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation scheme
|
||||
found in the TIFF 6.0 spec of 3-June-92 has a number of serious problems.
|
||||
IJG does not recommend use of the TIFF 6.0 design (TIFF Compression tag 6).
|
||||
Instead, we recommend the JPEG design proposed by TIFF Technical Note #2
|
||||
(Compression tag 7). Copies of this Note can be obtained from
|
||||
The TIFF 6.0 file format specification can be obtained from
|
||||
http://mirrors.ctan.org/graphics/tiff/TIFF6.ps.gz. The JPEG incorporation
|
||||
scheme found in the TIFF 6.0 spec of 3-June-92 has a number of serious
|
||||
problems. IJG does not recommend use of the TIFF 6.0 design (TIFF Compression
|
||||
tag 6). Instead, we recommend the JPEG design proposed by TIFF Technical Note
|
||||
#2 (Compression tag 7). Copies of this Note can be obtained from
|
||||
http://www.ijg.org/files/. It is expected that the next revision
|
||||
of the TIFF spec will replace the 6.0 JPEG design with the Note's design.
|
||||
Although IJG's own code does not support TIFF/JPEG, the free libtiff library
|
||||
@ -243,14 +243,8 @@ The most recent released version can always be found there in
|
||||
directory "files".
|
||||
|
||||
The JPEG FAQ (Frequently Asked Questions) article is a source of some
|
||||
general information about JPEG.
|
||||
It is available on the World Wide Web at http://www.faqs.org/faqs/jpeg-faq/
|
||||
and other news.answers archive sites, including the official news.answers
|
||||
archive at rtfm.mit.edu: ftp://rtfm.mit.edu/pub/usenet/news.answers/jpeg-faq/.
|
||||
If you don't have Web or FTP access, send e-mail to mail-server@rtfm.mit.edu
|
||||
with body
|
||||
send usenet/news.answers/jpeg-faq/part1
|
||||
send usenet/news.answers/jpeg-faq/part2
|
||||
general information about JPEG. It is available at
|
||||
http://www.faqs.org/faqs/jpeg-faq.
|
||||
|
||||
|
||||
FILE FORMAT COMPATIBILITY
|
||||
|
21
3rdparty/libjpeg-turbo/README.md
vendored
21
3rdparty/libjpeg-turbo/README.md
vendored
@ -2,7 +2,7 @@ Background
|
||||
==========
|
||||
|
||||
libjpeg-turbo is a JPEG image codec that uses SIMD instructions to accelerate
|
||||
baseline JPEG compression and decompression on x86, x86-64, ARM, PowerPC, and
|
||||
baseline JPEG compression and decompression on x86, x86-64, Arm, PowerPC, and
|
||||
MIPS systems, as well as progressive JPEG compression on x86 and x86-64
|
||||
systems. On such systems, libjpeg-turbo is generally 2-6x as fast as libjpeg,
|
||||
all else being equal. On other types of systems, libjpeg-turbo can still
|
||||
@ -179,8 +179,8 @@ supported and which aren't.
|
||||
|
||||
NOTE: As of this writing, extensive research has been conducted into the
|
||||
usefulness of DCT scaling as a means of data reduction and SmartScale as a
|
||||
means of quality improvement. The reader is invited to peruse the research at
|
||||
<http://www.libjpeg-turbo.org/About/SmartScale> and draw his/her own conclusions,
|
||||
means of quality improvement. Readers are invited to peruse the research at
|
||||
<http://www.libjpeg-turbo.org/About/SmartScale> and draw their own conclusions,
|
||||
but it is the general belief of our project that these features have not
|
||||
demonstrated sufficient usefulness to justify inclusion in libjpeg-turbo.
|
||||
|
||||
@ -287,12 +287,13 @@ following reasons:
|
||||
(and slightly faster) floating point IDCT algorithm introduced in libjpeg
|
||||
v8a as opposed to the algorithm used in libjpeg v6b. It should be noted,
|
||||
however, that this algorithm basically brings the accuracy of the floating
|
||||
point IDCT in line with the accuracy of the slow integer IDCT. The floating
|
||||
point DCT/IDCT algorithms are mainly a legacy feature, and they do not
|
||||
produce significantly more accuracy than the slow integer algorithms (to put
|
||||
numbers on this, the typical difference in PNSR between the two algorithms
|
||||
is less than 0.10 dB, whereas changing the quality level by 1 in the upper
|
||||
range of the quality scale is typically more like a 1.0 dB difference.)
|
||||
point IDCT in line with the accuracy of the accurate integer IDCT. The
|
||||
floating point DCT/IDCT algorithms are mainly a legacy feature, and they do
|
||||
not produce significantly more accuracy than the accurate integer algorithms
|
||||
(to put numbers on this, the typical difference in PNSR between the two
|
||||
algorithms is less than 0.10 dB, whereas changing the quality level by 1 in
|
||||
the upper range of the quality scale is typically more like a 1.0 dB
|
||||
difference.)
|
||||
|
||||
- If the floating point algorithms in libjpeg-turbo are not implemented using
|
||||
SIMD instructions on a particular platform, then the accuracy of the
|
||||
@ -340,7 +341,7 @@ The algorithm used by the SIMD-accelerated quantization function cannot produce
|
||||
correct results whenever the fast integer forward DCT is used along with a JPEG
|
||||
quality of 98-100. Thus, libjpeg-turbo must use the non-SIMD quantization
|
||||
function in those cases. This causes performance to drop by as much as 40%.
|
||||
It is therefore strongly advised that you use the slow integer forward DCT
|
||||
It is therefore strongly advised that you use the accurate integer forward DCT
|
||||
whenever encoding images with a JPEG quality of 98 or higher.
|
||||
|
||||
|
||||
|
4
3rdparty/libjpeg-turbo/src/jchuff.c
vendored
4
3rdparty/libjpeg-turbo/src/jchuff.c
vendored
@ -34,10 +34,10 @@
|
||||
* memory footprint by 64k, which is important for some mobile applications
|
||||
* that create many isolated instances of libjpeg-turbo (web browsers, for
|
||||
* instance.) This may improve performance on some mobile platforms as well.
|
||||
* This feature is enabled by default only on ARM processors, because some x86
|
||||
* This feature is enabled by default only on Arm processors, because some x86
|
||||
* chips have a slow implementation of bsr, and the use of clz/bsr cannot be
|
||||
* shown to have a significant performance impact even on the x86 chips that
|
||||
* have a fast implementation of it. When building for ARMv6, you can
|
||||
* have a fast implementation of it. When building for Armv6, you can
|
||||
* explicitly disable the use of clz/bsr by adding -mthumb to the compiler
|
||||
* flags (this defines __thumb__).
|
||||
*/
|
||||
|
5
3rdparty/libjpeg-turbo/src/jcinit.c
vendored
5
3rdparty/libjpeg-turbo/src/jcinit.c
vendored
@ -1,8 +1,10 @@
|
||||
/*
|
||||
* jcinit.c
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* This file is part of the Independent JPEG Group's software.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2020, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
@ -19,6 +21,7 @@
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jpegcomp.h"
|
||||
|
||||
|
||||
/*
|
||||
|
4
3rdparty/libjpeg-turbo/src/jcphuff.c
vendored
4
3rdparty/libjpeg-turbo/src/jcphuff.c
vendored
@ -43,10 +43,10 @@
|
||||
* memory footprint by 64k, which is important for some mobile applications
|
||||
* that create many isolated instances of libjpeg-turbo (web browsers, for
|
||||
* instance.) This may improve performance on some mobile platforms as well.
|
||||
* This feature is enabled by default only on ARM processors, because some x86
|
||||
* This feature is enabled by default only on Arm processors, because some x86
|
||||
* chips have a slow implementation of bsr, and the use of clz/bsr cannot be
|
||||
* shown to have a significant performance impact even on the x86 chips that
|
||||
* have a fast implementation of it. When building for ARMv6, you can
|
||||
* have a fast implementation of it. When building for Armv6, you can
|
||||
* explicitly disable the use of clz/bsr by adding -mthumb to the compiler
|
||||
* flags (this defines __thumb__).
|
||||
*/
|
||||
|
5
3rdparty/libjpeg-turbo/src/jctrans.c
vendored
5
3rdparty/libjpeg-turbo/src/jctrans.c
vendored
@ -4,8 +4,8 @@
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1995-1998, Thomas G. Lane.
|
||||
* Modified 2000-2009 by Guido Vollbeding.
|
||||
* It was modified by The libjpeg-turbo Project to include only code relevant
|
||||
* to libjpeg-turbo.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2020, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
@ -17,6 +17,7 @@
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jpegcomp.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
|
45
3rdparty/libjpeg-turbo/src/jdapistd.c
vendored
45
3rdparty/libjpeg-turbo/src/jdapistd.c
vendored
@ -4,7 +4,7 @@
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2010, 2015-2018, D. R. Commander.
|
||||
* Copyright (C) 2010, 2015-2018, 2020, D. R. Commander.
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
@ -21,6 +21,8 @@
|
||||
#include "jinclude.h"
|
||||
#include "jdmainct.h"
|
||||
#include "jdcoefct.h"
|
||||
#include "jdmaster.h"
|
||||
#include "jdmerge.h"
|
||||
#include "jdsample.h"
|
||||
#include "jmemsys.h"
|
||||
|
||||
@ -316,6 +318,8 @@ LOCAL(void)
|
||||
read_and_discard_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines)
|
||||
{
|
||||
JDIMENSION n;
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
JSAMPARRAY scanlines = NULL;
|
||||
void (*color_convert) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION input_row, JSAMPARRAY output_buf,
|
||||
int num_rows) = NULL;
|
||||
@ -332,8 +336,13 @@ read_and_discard_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines)
|
||||
cinfo->cquantize->color_quantize = noop_quantize;
|
||||
}
|
||||
|
||||
if (master->using_merged_upsample && cinfo->max_v_samp_factor == 2) {
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
scanlines = &upsample->spare_row;
|
||||
}
|
||||
|
||||
for (n = 0; n < num_lines; n++)
|
||||
jpeg_read_scanlines(cinfo, NULL, 1);
|
||||
jpeg_read_scanlines(cinfo, scanlines, 1);
|
||||
|
||||
if (color_convert)
|
||||
cinfo->cconvert->color_convert = color_convert;
|
||||
@ -353,6 +362,12 @@ increment_simple_rowgroup_ctr(j_decompress_ptr cinfo, JDIMENSION rows)
|
||||
{
|
||||
JDIMENSION rows_left;
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
|
||||
if (master->using_merged_upsample && cinfo->max_v_samp_factor == 2) {
|
||||
read_and_discard_scanlines(cinfo, rows);
|
||||
return;
|
||||
}
|
||||
|
||||
/* Increment the counter to the next row group after the skipped rows. */
|
||||
main_ptr->rowgroup_ctr += rows / cinfo->max_v_samp_factor;
|
||||
@ -382,21 +397,27 @@ jpeg_skip_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines)
|
||||
{
|
||||
my_main_ptr main_ptr = (my_main_ptr)cinfo->main;
|
||||
my_coef_ptr coef = (my_coef_ptr)cinfo->coef;
|
||||
my_master_ptr master = (my_master_ptr)cinfo->master;
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
JDIMENSION i, x;
|
||||
int y;
|
||||
JDIMENSION lines_per_iMCU_row, lines_left_in_iMCU_row, lines_after_iMCU_row;
|
||||
JDIMENSION lines_to_skip, lines_to_read;
|
||||
|
||||
/* Two-pass color quantization is not supported. */
|
||||
if (cinfo->quantize_colors && cinfo->two_pass_quantize)
|
||||
ERREXIT(cinfo, JERR_NOTIMPL);
|
||||
|
||||
if (cinfo->global_state != DSTATE_SCANNING)
|
||||
ERREXIT1(cinfo, JERR_BAD_STATE, cinfo->global_state);
|
||||
|
||||
/* Do not skip past the bottom of the image. */
|
||||
if (cinfo->output_scanline + num_lines >= cinfo->output_height) {
|
||||
num_lines = cinfo->output_height - cinfo->output_scanline;
|
||||
cinfo->output_scanline = cinfo->output_height;
|
||||
(*cinfo->inputctl->finish_input_pass) (cinfo);
|
||||
cinfo->inputctl->eoi_reached = TRUE;
|
||||
return cinfo->output_height - cinfo->output_scanline;
|
||||
return num_lines;
|
||||
}
|
||||
|
||||
if (num_lines == 0)
|
||||
@ -445,8 +466,10 @@ jpeg_skip_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines)
|
||||
main_ptr->buffer_full = FALSE;
|
||||
main_ptr->rowgroup_ctr = 0;
|
||||
main_ptr->context_state = CTX_PREPARE_FOR_IMCU;
|
||||
upsample->next_row_out = cinfo->max_v_samp_factor;
|
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
|
||||
if (!master->using_merged_upsample) {
|
||||
upsample->next_row_out = cinfo->max_v_samp_factor;
|
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
|
||||
}
|
||||
}
|
||||
|
||||
/* Skipping is much simpler when context rows are not required. */
|
||||
@ -458,8 +481,10 @@ jpeg_skip_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines)
|
||||
cinfo->output_scanline += lines_left_in_iMCU_row;
|
||||
main_ptr->buffer_full = FALSE;
|
||||
main_ptr->rowgroup_ctr = 0;
|
||||
upsample->next_row_out = cinfo->max_v_samp_factor;
|
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
|
||||
if (!master->using_merged_upsample) {
|
||||
upsample->next_row_out = cinfo->max_v_samp_factor;
|
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
@ -494,7 +519,8 @@ jpeg_skip_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines)
|
||||
cinfo->output_iMCU_row += lines_to_skip / lines_per_iMCU_row;
|
||||
increment_simple_rowgroup_ctr(cinfo, lines_to_read);
|
||||
}
|
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
|
||||
if (!master->using_merged_upsample)
|
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
|
||||
return num_lines;
|
||||
}
|
||||
|
||||
@ -535,7 +561,8 @@ jpeg_skip_scanlines(j_decompress_ptr cinfo, JDIMENSION num_lines)
|
||||
* bit odd, since "rows_to_go" seems to be redundantly keeping track of
|
||||
* output_scanline.
|
||||
*/
|
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
|
||||
if (!master->using_merged_upsample)
|
||||
upsample->rows_to_go = cinfo->output_height - cinfo->output_scanline;
|
||||
|
||||
/* Always skip the requested number of lines. */
|
||||
return num_lines;
|
||||
|
8
3rdparty/libjpeg-turbo/src/jdcoefct.c
vendored
8
3rdparty/libjpeg-turbo/src/jdcoefct.c
vendored
@ -6,7 +6,7 @@
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
* Copyright (C) 2010, 2015-2016, D. R. Commander.
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* Copyright (C) 2015, 2020, Google, Inc.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
@ -495,11 +495,13 @@ decompress_smooth_data(j_decompress_ptr cinfo, JSAMPIMAGE output_buf)
|
||||
if (first_row && block_row == 0)
|
||||
prev_block_row = buffer_ptr;
|
||||
else
|
||||
prev_block_row = buffer[block_row - 1];
|
||||
prev_block_row = buffer[block_row - 1] +
|
||||
cinfo->master->first_MCU_col[ci];
|
||||
if (last_row && block_row == block_rows - 1)
|
||||
next_block_row = buffer_ptr;
|
||||
else
|
||||
next_block_row = buffer[block_row + 1];
|
||||
next_block_row = buffer[block_row + 1] +
|
||||
cinfo->master->first_MCU_col[ci];
|
||||
/* We fetch the surrounding DC values using a sliding-register approach.
|
||||
* Initialize all nine here so as to do the right thing on narrow pics.
|
||||
*/
|
||||
|
9
3rdparty/libjpeg-turbo/src/jdcolor.c
vendored
9
3rdparty/libjpeg-turbo/src/jdcolor.c
vendored
@ -571,11 +571,10 @@ ycck_cmyk_convert(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
* RGB565 conversion
|
||||
*/
|
||||
|
||||
#define PACK_SHORT_565_LE(r, g, b) ((((r) << 8) & 0xF800) | \
|
||||
(((g) << 3) & 0x7E0) | ((b) >> 3))
|
||||
#define PACK_SHORT_565_BE(r, g, b) (((r) & 0xF8) | ((g) >> 5) | \
|
||||
(((g) << 11) & 0xE000) | \
|
||||
(((b) << 5) & 0x1F00))
|
||||
#define PACK_SHORT_565_LE(r, g, b) \
|
||||
((((r) << 8) & 0xF800) | (((g) << 3) & 0x7E0) | ((b) >> 3))
|
||||
#define PACK_SHORT_565_BE(r, g, b) \
|
||||
(((r) & 0xF8) | ((g) >> 5) | (((g) << 11) & 0xE000) | (((b) << 5) & 0x1F00))
|
||||
|
||||
#define PACK_TWO_PIXELS_LE(l, r) ((r << 16) | l)
|
||||
#define PACK_TWO_PIXELS_BE(l, r) ((l << 16) | r)
|
||||
|
55
3rdparty/libjpeg-turbo/src/jdmerge.c
vendored
55
3rdparty/libjpeg-turbo/src/jdmerge.c
vendored
@ -5,7 +5,7 @@
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
||||
* Copyright (C) 2009, 2011, 2014-2015, D. R. Commander.
|
||||
* Copyright (C) 2009, 2011, 2014-2015, 2020, D. R. Commander.
|
||||
* Copyright (C) 2013, Linaro Limited.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
@ -40,41 +40,13 @@
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jdmerge.h"
|
||||
#include "jsimd.h"
|
||||
#include "jconfigint.h"
|
||||
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_upsampler pub; /* public fields */
|
||||
|
||||
/* Pointer to routine to do actual upsampling/conversion of one row group */
|
||||
void (*upmethod) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf);
|
||||
|
||||
/* Private state for YCC->RGB conversion */
|
||||
int *Cr_r_tab; /* => table for Cr to R conversion */
|
||||
int *Cb_b_tab; /* => table for Cb to B conversion */
|
||||
JLONG *Cr_g_tab; /* => table for Cr to G conversion */
|
||||
JLONG *Cb_g_tab; /* => table for Cb to G conversion */
|
||||
|
||||
/* For 2:1 vertical sampling, we produce two output rows at a time.
|
||||
* We need a "spare" row buffer to hold the second output row if the
|
||||
* application provides just a one-row buffer; we also use the spare
|
||||
* to discard the dummy last row if the image height is odd.
|
||||
*/
|
||||
JSAMPROW spare_row;
|
||||
boolean spare_full; /* T if spare buffer is occupied */
|
||||
|
||||
JDIMENSION out_row_width; /* samples per output row */
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||
} my_upsampler;
|
||||
|
||||
typedef my_upsampler *my_upsample_ptr;
|
||||
|
||||
#define SCALEBITS 16 /* speediest right-shift on some machines */
|
||||
#define ONE_HALF ((JLONG)1 << (SCALEBITS - 1))
|
||||
#define FIX(x) ((JLONG)((x) * (1L << SCALEBITS) + 0.5))
|
||||
@ -189,7 +161,7 @@ typedef my_upsampler *my_upsample_ptr;
|
||||
LOCAL(void)
|
||||
build_ycc_rgb_table(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
int i;
|
||||
JLONG x;
|
||||
SHIFT_TEMPS
|
||||
@ -232,7 +204,7 @@ build_ycc_rgb_table(j_decompress_ptr cinfo)
|
||||
METHODDEF(void)
|
||||
start_pass_merged_upsample(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
|
||||
/* Mark the spare buffer empty */
|
||||
upsample->spare_full = FALSE;
|
||||
@ -254,7 +226,7 @@ merged_2v_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||
/* 2:1 vertical sampling case: may need a spare row. */
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
JSAMPROW work_ptrs[2];
|
||||
JDIMENSION num_rows; /* number of rows returned to caller */
|
||||
|
||||
@ -305,7 +277,7 @@ merged_1v_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION *out_row_ctr, JDIMENSION out_rows_avail)
|
||||
/* 1:1 vertical sampling case: much easier, never need a spare row. */
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
|
||||
/* Just do the upsampling. */
|
||||
(*upsample->upmethod) (cinfo, input_buf, *in_row_group_ctr,
|
||||
@ -420,11 +392,10 @@ h2v2_merged_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
* RGB565 conversion
|
||||
*/
|
||||
|
||||
#define PACK_SHORT_565_LE(r, g, b) ((((r) << 8) & 0xF800) | \
|
||||
(((g) << 3) & 0x7E0) | ((b) >> 3))
|
||||
#define PACK_SHORT_565_BE(r, g, b) (((r) & 0xF8) | ((g) >> 5) | \
|
||||
(((g) << 11) & 0xE000) | \
|
||||
(((b) << 5) & 0x1F00))
|
||||
#define PACK_SHORT_565_LE(r, g, b) \
|
||||
((((r) << 8) & 0xF800) | (((g) << 3) & 0x7E0) | ((b) >> 3))
|
||||
#define PACK_SHORT_565_BE(r, g, b) \
|
||||
(((r) & 0xF8) | ((g) >> 5) | (((g) << 11) & 0xE000) | (((b) << 5) & 0x1F00))
|
||||
|
||||
#define PACK_TWO_PIXELS_LE(l, r) ((r << 16) | l)
|
||||
#define PACK_TWO_PIXELS_BE(l, r) ((l << 16) | r)
|
||||
@ -566,11 +537,11 @@ h2v2_merged_upsample_565D(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
GLOBAL(void)
|
||||
jinit_merged_upsampler(j_decompress_ptr cinfo)
|
||||
{
|
||||
my_upsample_ptr upsample;
|
||||
my_merged_upsample_ptr upsample;
|
||||
|
||||
upsample = (my_upsample_ptr)
|
||||
upsample = (my_merged_upsample_ptr)
|
||||
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
||||
sizeof(my_upsampler));
|
||||
sizeof(my_merged_upsampler));
|
||||
cinfo->upsample = (struct jpeg_upsampler *)upsample;
|
||||
upsample->pub.start_pass = start_pass_merged_upsample;
|
||||
upsample->pub.need_context_rows = FALSE;
|
||||
|
47
3rdparty/libjpeg-turbo/src/jdmerge.h
vendored
Normal file
47
3rdparty/libjpeg-turbo/src/jdmerge.h
vendored
Normal file
@ -0,0 +1,47 @@
|
||||
/*
|
||||
* jdmerge.h
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2020, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*/
|
||||
|
||||
#define JPEG_INTERNALS
|
||||
#include "jpeglib.h"
|
||||
|
||||
#ifdef UPSAMPLE_MERGING_SUPPORTED
|
||||
|
||||
|
||||
/* Private subobject */
|
||||
|
||||
typedef struct {
|
||||
struct jpeg_upsampler pub; /* public fields */
|
||||
|
||||
/* Pointer to routine to do actual upsampling/conversion of one row group */
|
||||
void (*upmethod) (j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr, JSAMPARRAY output_buf);
|
||||
|
||||
/* Private state for YCC->RGB conversion */
|
||||
int *Cr_r_tab; /* => table for Cr to R conversion */
|
||||
int *Cb_b_tab; /* => table for Cb to B conversion */
|
||||
JLONG *Cr_g_tab; /* => table for Cr to G conversion */
|
||||
JLONG *Cb_g_tab; /* => table for Cb to G conversion */
|
||||
|
||||
/* For 2:1 vertical sampling, we produce two output rows at a time.
|
||||
* We need a "spare" row buffer to hold the second output row if the
|
||||
* application provides just a one-row buffer; we also use the spare
|
||||
* to discard the dummy last row if the image height is odd.
|
||||
*/
|
||||
JSAMPROW spare_row;
|
||||
boolean spare_full; /* T if spare buffer is occupied */
|
||||
|
||||
JDIMENSION out_row_width; /* samples per output row */
|
||||
JDIMENSION rows_to_go; /* counts rows remaining in image */
|
||||
} my_merged_upsampler;
|
||||
|
||||
typedef my_merged_upsampler *my_merged_upsample_ptr;
|
||||
|
||||
#endif /* UPSAMPLE_MERGING_SUPPORTED */
|
10
3rdparty/libjpeg-turbo/src/jdmrg565.c
vendored
10
3rdparty/libjpeg-turbo/src/jdmrg565.c
vendored
@ -5,7 +5,7 @@
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2013, Linaro Limited.
|
||||
* Copyright (C) 2014-2015, 2018, D. R. Commander.
|
||||
* Copyright (C) 2014-2015, 2018, 2020, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
@ -19,7 +19,7 @@ h2v1_merged_upsample_565_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
@ -90,7 +90,7 @@ h2v1_merged_upsample_565D_internal(j_decompress_ptr cinfo,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
@ -163,7 +163,7 @@ h2v2_merged_upsample_565_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr0, outptr1;
|
||||
@ -259,7 +259,7 @@ h2v2_merged_upsample_565D_internal(j_decompress_ptr cinfo,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr0, outptr1;
|
||||
|
6
3rdparty/libjpeg-turbo/src/jdmrgext.c
vendored
6
3rdparty/libjpeg-turbo/src/jdmrgext.c
vendored
@ -4,7 +4,7 @@
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1994-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2011, 2015, D. R. Commander.
|
||||
* Copyright (C) 2011, 2015, 2020, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
@ -25,7 +25,7 @@ h2v1_merged_upsample_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr;
|
||||
@ -97,7 +97,7 @@ h2v2_merged_upsample_internal(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
||||
JDIMENSION in_row_group_ctr,
|
||||
JSAMPARRAY output_buf)
|
||||
{
|
||||
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
||||
my_merged_upsample_ptr upsample = (my_merged_upsample_ptr)cinfo->upsample;
|
||||
register int y, cred, cgreen, cblue;
|
||||
int cb, cr;
|
||||
register JSAMPROW outptr0, outptr1;
|
||||
|
5
3rdparty/libjpeg-turbo/src/jdtrans.c
vendored
5
3rdparty/libjpeg-turbo/src/jdtrans.c
vendored
@ -3,8 +3,8 @@
|
||||
*
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1995-1997, Thomas G. Lane.
|
||||
* It was modified by The libjpeg-turbo Project to include only code relevant
|
||||
* to libjpeg-turbo.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2020, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
@ -16,6 +16,7 @@
|
||||
#define JPEG_INTERNALS
|
||||
#include "jinclude.h"
|
||||
#include "jpeglib.h"
|
||||
#include "jpegcomp.h"
|
||||
|
||||
|
||||
/* Forward declarations */
|
||||
|
4
3rdparty/libjpeg-turbo/src/jfdctint.c
vendored
4
3rdparty/libjpeg-turbo/src/jfdctint.c
vendored
@ -4,11 +4,11 @@
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2015, D. R. Commander.
|
||||
* Copyright (C) 2015, 2020, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains a slow-but-accurate integer implementation of the
|
||||
* This file contains a slower but more accurate integer implementation of the
|
||||
* forward DCT (Discrete Cosine Transform).
|
||||
*
|
||||
* A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT
|
||||
|
4
3rdparty/libjpeg-turbo/src/jidctint.c
vendored
4
3rdparty/libjpeg-turbo/src/jidctint.c
vendored
@ -5,11 +5,11 @@
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* Modification developed 2002-2009 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2015, D. R. Commander.
|
||||
* Copyright (C) 2015, 2020, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
* This file contains a slow-but-accurate integer implementation of the
|
||||
* This file contains a slower but more accurate integer implementation of the
|
||||
* inverse DCT (Discrete Cosine Transform). In the IJG code, this routine
|
||||
* must also perform dequantization of the input coefficients.
|
||||
*
|
||||
|
8
3rdparty/libjpeg-turbo/src/jmorecfg.h
vendored
8
3rdparty/libjpeg-turbo/src/jmorecfg.h
vendored
@ -5,7 +5,7 @@
|
||||
* Copyright (C) 1991-1997, Thomas G. Lane.
|
||||
* Modified 1997-2009 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2009, 2011, 2014-2015, 2018, D. R. Commander.
|
||||
* Copyright (C) 2009, 2011, 2014-2015, 2018, 2020, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
@ -273,9 +273,9 @@ typedef int boolean;
|
||||
|
||||
/* Capability options common to encoder and decoder: */
|
||||
|
||||
#define DCT_ISLOW_SUPPORTED /* slow but accurate integer algorithm */
|
||||
#define DCT_IFAST_SUPPORTED /* faster, less accurate integer method */
|
||||
#define DCT_FLOAT_SUPPORTED /* floating-point: accurate, fast on fast HW */
|
||||
#define DCT_ISLOW_SUPPORTED /* accurate integer method */
|
||||
#define DCT_IFAST_SUPPORTED /* less accurate int method [legacy feature] */
|
||||
#define DCT_FLOAT_SUPPORTED /* floating-point method [legacy feature] */
|
||||
|
||||
/* Encoder capability options: */
|
||||
|
||||
|
3
3rdparty/libjpeg-turbo/src/jpegcomp.h
vendored
3
3rdparty/libjpeg-turbo/src/jpegcomp.h
vendored
@ -1,7 +1,7 @@
|
||||
/*
|
||||
* jpegcomp.h
|
||||
*
|
||||
* Copyright (C) 2010, D. R. Commander.
|
||||
* Copyright (C) 2010, 2020, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
@ -19,6 +19,7 @@
|
||||
#define _min_DCT_v_scaled_size min_DCT_v_scaled_size
|
||||
#define _jpeg_width jpeg_width
|
||||
#define _jpeg_height jpeg_height
|
||||
#define JERR_ARITH_NOTIMPL JERR_NOT_COMPILED
|
||||
#else
|
||||
#define _DCT_scaled_size DCT_scaled_size
|
||||
#define _DCT_h_scaled_size DCT_scaled_size
|
||||
|
8
3rdparty/libjpeg-turbo/src/jpeglib.h
vendored
8
3rdparty/libjpeg-turbo/src/jpeglib.h
vendored
@ -5,7 +5,7 @@
|
||||
* Copyright (C) 1991-1998, Thomas G. Lane.
|
||||
* Modified 2002-2009 by Guido Vollbeding.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2009-2011, 2013-2014, 2016-2017, D. R. Commander.
|
||||
* Copyright (C) 2009-2011, 2013-2014, 2016-2017, 2020, D. R. Commander.
|
||||
* Copyright (C) 2015, Google, Inc.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
@ -244,9 +244,9 @@ typedef enum {
|
||||
/* DCT/IDCT algorithm options. */
|
||||
|
||||
typedef enum {
|
||||
JDCT_ISLOW, /* slow but accurate integer algorithm */
|
||||
JDCT_IFAST, /* faster, less accurate integer method */
|
||||
JDCT_FLOAT /* floating-point: accurate, fast on fast HW */
|
||||
JDCT_ISLOW, /* accurate integer method */
|
||||
JDCT_IFAST, /* less accurate integer method [legacy feature] */
|
||||
JDCT_FLOAT /* floating-point method [legacy feature] */
|
||||
} J_DCT_METHOD;
|
||||
|
||||
#ifndef JDCT_DEFAULT /* may be overridden in jconfig.h */
|
||||
|
6
3rdparty/libjpeg-turbo/src/jquant2.c
vendored
6
3rdparty/libjpeg-turbo/src/jquant2.c
vendored
@ -4,7 +4,7 @@
|
||||
* This file was part of the Independent JPEG Group's software:
|
||||
* Copyright (C) 1991-1996, Thomas G. Lane.
|
||||
* libjpeg-turbo Modifications:
|
||||
* Copyright (C) 2009, 2014-2015, D. R. Commander.
|
||||
* Copyright (C) 2009, 2014-2015, 2020, D. R. Commander.
|
||||
* For conditions of distribution and use, see the accompanying README.ijg
|
||||
* file.
|
||||
*
|
||||
@ -1145,7 +1145,7 @@ start_pass_2_quant(j_decompress_ptr cinfo, boolean is_pre_scan)
|
||||
int i;
|
||||
|
||||
/* Only F-S dithering or no dithering is supported. */
|
||||
/* If user asks for ordered dither, give him F-S. */
|
||||
/* If user asks for ordered dither, give them F-S. */
|
||||
if (cinfo->dither_mode != JDITHER_NONE)
|
||||
cinfo->dither_mode = JDITHER_FS;
|
||||
|
||||
@ -1263,7 +1263,7 @@ jinit_2pass_quantizer(j_decompress_ptr cinfo)
|
||||
cquantize->sv_colormap = NULL;
|
||||
|
||||
/* Only F-S dithering or no dithering is supported. */
|
||||
/* If user asks for ordered dither, give him F-S. */
|
||||
/* If user asks for ordered dither, give them F-S. */
|
||||
if (cinfo->dither_mode != JDITHER_NONE)
|
||||
cinfo->dither_mode = JDITHER_FS;
|
||||
|
||||
|
14
3rdparty/libjpeg-turbo/src/jversion.h
vendored
14
3rdparty/libjpeg-turbo/src/jversion.h
vendored
@ -30,23 +30,25 @@
|
||||
* NOTE: It is our convention to place the authors in the following order:
|
||||
* - libjpeg-turbo authors (2009-) in descending order of the date of their
|
||||
* most recent contribution to the project, then in ascending order of the
|
||||
* date of their first contribution to the project
|
||||
* date of their first contribution to the project, then in alphabetical
|
||||
* order
|
||||
* - Upstream authors in descending order of the date of the first inclusion of
|
||||
* their code
|
||||
*/
|
||||
|
||||
#define JCOPYRIGHT \
|
||||
"Copyright (C) 2009-2020 D. R. Commander\n" \
|
||||
"Copyright (C) 2011-2016 Siarhei Siamashka\n" \
|
||||
"Copyright (C) 2015, 2020 Google, Inc.\n" \
|
||||
"Copyright (C) 2019 Arm Limited\n" \
|
||||
"Copyright (C) 2015-2016, 2018 Matthieu Darbois\n" \
|
||||
"Copyright (C) 2011-2016 Siarhei Siamashka\n" \
|
||||
"Copyright (C) 2015 Intel Corporation\n" \
|
||||
"Copyright (C) 2015 Google, Inc.\n" \
|
||||
"Copyright (C) 2013-2014 Linaro Limited\n" \
|
||||
"Copyright (C) 2013-2014 MIPS Technologies, Inc.\n" \
|
||||
"Copyright (C) 2013 Linaro Limited\n" \
|
||||
"Copyright (C) 2009, 2012 Pierre Ossman for Cendio AB\n" \
|
||||
"Copyright (C) 2009-2011 Nokia Corporation and/or its subsidiary(-ies)\n" \
|
||||
"Copyright (C) 2009 Pierre Ossman for Cendio AB\n" \
|
||||
"Copyright (C) 1999-2006 MIYASAKA Masaru\n" \
|
||||
"Copyright (C) 1991-2016 Thomas G. Lane, Guido Vollbeding"
|
||||
"Copyright (C) 1991-2017 Thomas G. Lane, Guido Vollbeding"
|
||||
|
||||
#define JCOPYRIGHT_SHORT \
|
||||
"Copyright (C) 1991-2020 The libjpeg-turbo Project and many others"
|
||||
|
@ -32,7 +32,7 @@ bool calib::parametersController::loadFromFile(const std::string &inputFileName)
|
||||
|
||||
if(!reader.isOpened()) {
|
||||
std::cerr << "Warning: Unable to open " << inputFileName <<
|
||||
" Applicatioin stated with default advanced parameters" << std::endl;
|
||||
" Application started with default advanced parameters" << std::endl;
|
||||
return true;
|
||||
}
|
||||
|
||||
|
@ -131,7 +131,7 @@ For properties you can read and change look into the documentation of the @ref c
|
||||
We want to check just how imperceptible our video converting operation went, therefore we need a
|
||||
system to check frame by frame the similarity or differences. The most common algorithm used for
|
||||
this is the PSNR (aka **Peak signal-to-noise ratio**). The simplest definition of this starts out
|
||||
from the *mean squad error*. Let there be two images: I1 and I2; with a two dimensional size i and
|
||||
from the *mean squared error*. Let there be two images: I1 and I2; with a two dimensional size i and
|
||||
j, composed of c number of channels.
|
||||
|
||||
\f[MSE = \frac{1}{c*i*j} \sum{(I_1-I_2)^2}\f]
|
||||
|
@ -220,6 +220,11 @@ struct VZeroUpperGuard {
|
||||
# define CV_VSX 1
|
||||
#endif
|
||||
|
||||
#ifdef __F16C__
|
||||
# include <immintrin.h>
|
||||
# define CV_FP16 1
|
||||
#endif
|
||||
|
||||
#endif // !__OPENCV_BUILD && !__CUDACC (Compatibility code)
|
||||
|
||||
|
||||
|
@ -844,7 +844,7 @@ protected:
|
||||
float16_t() : w(0) {}
|
||||
explicit float16_t(float x)
|
||||
{
|
||||
#if CV_AVX2
|
||||
#if CV_FP16
|
||||
__m128 v = _mm_load_ss(&x);
|
||||
w = (ushort)_mm_cvtsi128_si32(_mm_cvtps_ph(v, 0));
|
||||
#else
|
||||
@ -875,7 +875,7 @@ protected:
|
||||
|
||||
operator float() const
|
||||
{
|
||||
#if CV_AVX2
|
||||
#if CV_FP16
|
||||
float f;
|
||||
_mm_store_ss(&f, _mm_cvtph_ps(_mm_cvtsi32_si128(w)));
|
||||
return f;
|
||||
|
@ -3121,18 +3121,39 @@ OPENCV_HAL_IMPL_AVX_LOADSTORE_INTERLEAVE(v_float32x8, float, f32, v_uint32x8, un
|
||||
OPENCV_HAL_IMPL_AVX_LOADSTORE_INTERLEAVE(v_int64x4, int64, s64, v_uint64x4, uint64, u64)
|
||||
OPENCV_HAL_IMPL_AVX_LOADSTORE_INTERLEAVE(v_float64x4, double, f64, v_uint64x4, uint64, u64)
|
||||
|
||||
//
|
||||
// FP16
|
||||
//
|
||||
|
||||
inline v_float32x8 v256_load_expand(const float16_t* ptr)
|
||||
{
|
||||
#if CV_FP16
|
||||
return v_float32x8(_mm256_cvtph_ps(_mm_loadu_si128((const __m128i*)ptr)));
|
||||
#else
|
||||
float CV_DECL_ALIGNED(32) buf[8];
|
||||
for (int i = 0; i < 8; i++)
|
||||
buf[i] = (float)ptr[i];
|
||||
return v256_load_aligned(buf);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline void v_pack_store(float16_t* ptr, const v_float32x8& a)
|
||||
{
|
||||
#if CV_FP16
|
||||
__m128i ah = _mm256_cvtps_ph(a.val, 0);
|
||||
_mm_storeu_si128((__m128i*)ptr, ah);
|
||||
#else
|
||||
float CV_DECL_ALIGNED(32) buf[8];
|
||||
v_store_aligned(buf, a);
|
||||
for (int i = 0; i < 8; i++)
|
||||
ptr[i] = float16_t(buf[i]);
|
||||
#endif
|
||||
}
|
||||
|
||||
//
|
||||
// end of FP16
|
||||
//
|
||||
|
||||
inline void v256_cleanup() { _mm256_zeroall(); }
|
||||
|
||||
CV_CPU_OPTIMIZATION_HAL_NAMESPACE_END
|
||||
|
@ -5,6 +5,11 @@
|
||||
#include "precomp.hpp"
|
||||
#include "convert.hpp"
|
||||
|
||||
#if !defined(OPENCV_SUPRESS_WARNING_AVX2_WITHOUT_FP16C) && \
|
||||
(defined(__GNUC__) && defined(__AVX2__) && !defined(__F16C__))
|
||||
#warning "Non-optimal compiler flags: AVX2 without FP16. Generated code is very slow. Consider adding '-mf16c' compiler option."
|
||||
#endif
|
||||
|
||||
namespace cv {
|
||||
namespace hal {
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
|
@ -126,9 +126,11 @@ DEFINE_SIMD_TESTS(256, AVX512_SKX)
|
||||
|
||||
TEST(hal_intrin256, float16x16_FP16)
|
||||
{
|
||||
#if CV_TRY_FP16
|
||||
//CV_CPU_CALL_FP16_(test_hal_intrin_float16, ());
|
||||
CV_CPU_CALL_AVX2_(test_hal_intrin_float16, ());
|
||||
throw SkipTestException("Unsupported hardware: FP16 is not available");
|
||||
#endif
|
||||
throw SkipTestException("Unsupported: FP16 is not available");
|
||||
}
|
||||
|
||||
|
||||
@ -142,8 +144,10 @@ namespace intrin512 {
|
||||
|
||||
TEST(hal_intrin512, float16x32_FP16)
|
||||
{
|
||||
#if CV_TRY_FP16
|
||||
CV_CPU_CALL_AVX512_SKX_(test_hal_intrin_float16, ());
|
||||
throw SkipTestException("Unsupported hardware: FP16 is not available");
|
||||
#endif
|
||||
throw SkipTestException("Unsupported: FP16 is not available");
|
||||
}
|
||||
|
||||
|
||||
|
@ -1902,21 +1902,21 @@ void test_hal_intrin_float64()
|
||||
#endif
|
||||
}
|
||||
|
||||
#if CV_FP16
|
||||
void test_hal_intrin_float16()
|
||||
{
|
||||
DUMP_ENTRY(v_float16);
|
||||
#if CV_FP16
|
||||
TheTest<v_float32>()
|
||||
.test_loadstore_fp16_f32()
|
||||
#endif
|
||||
#if CV_SIMD_FP16
|
||||
.test_loadstore_fp16()
|
||||
.test_float_cvt_fp16()
|
||||
#endif
|
||||
;
|
||||
}
|
||||
#else
|
||||
std::cout << "SKIP: CV_FP16 is not available" << std::endl;
|
||||
#endif
|
||||
}
|
||||
|
||||
/*#if defined(CV_CPU_DISPATCH_MODE_FP16) && CV_CPU_DISPATCH_MODE == FP16
|
||||
void test_hal_intrin_float16()
|
||||
|
@ -365,9 +365,12 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
const int requiredOutputs,
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const;
|
||||
|
||||
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
||||
const std::vector<MatShape> &outputs) const {CV_UNUSED(inputs); CV_UNUSED(outputs); return 0;}
|
||||
|
||||
virtual bool updateMemoryShapes(const std::vector<MatShape> &inputs);
|
||||
|
||||
CV_PROP String name; //!< Name of the layer instance, can be used for logging or other internal purposes.
|
||||
CV_PROP String type; //!< Type name which was used for creating layer by layer factory.
|
||||
CV_PROP int preferableTarget; //!< prefer target for layer forwarding
|
||||
|
@ -1182,6 +1182,7 @@ struct Net::Impl : public detail::NetImplBase
|
||||
preferableBackend = DNN_BACKEND_DEFAULT;
|
||||
preferableTarget = DNN_TARGET_CPU;
|
||||
skipInfEngineInit = false;
|
||||
hasDynamicShapes = false;
|
||||
}
|
||||
|
||||
Ptr<DataLayer> netInputLayer;
|
||||
@ -1193,6 +1194,7 @@ struct Net::Impl : public detail::NetImplBase
|
||||
int preferableTarget;
|
||||
String halideConfigFile;
|
||||
bool skipInfEngineInit;
|
||||
bool hasDynamicShapes;
|
||||
// Map host data to backend specific wrapper.
|
||||
std::map<void*, Ptr<BackendWrapper> > backendWrappers;
|
||||
|
||||
@ -3539,6 +3541,46 @@ struct Net::Impl : public detail::NetImplBase
|
||||
shapes = inOutShapes[layerId];
|
||||
}
|
||||
|
||||
void updateLayersShapes()
|
||||
{
|
||||
CV_Assert(!layers[0].outputBlobs.empty());
|
||||
ShapesVec inputShapes;
|
||||
for(int i = 0; i < layers[0].outputBlobs.size(); i++)
|
||||
{
|
||||
Mat& inp = layers[0].outputBlobs[i];
|
||||
CV_Assert(inp.total());
|
||||
if (preferableBackend == DNN_BACKEND_OPENCV &&
|
||||
preferableTarget == DNN_TARGET_OPENCL_FP16)
|
||||
{
|
||||
layers[0].outputBlobs[i].create(inp.dims, inp.size, CV_16S);
|
||||
}
|
||||
inputShapes.push_back(shape(inp));
|
||||
}
|
||||
LayersShapesMap layersShapes;
|
||||
layersShapes[0].in = inputShapes;
|
||||
for (MapIdToLayerData::iterator it = layers.begin();
|
||||
it != layers.end(); it++)
|
||||
{
|
||||
int layerId = it->first;
|
||||
std::vector<LayerPin>& inputLayerIds = it->second.inputBlobsId;
|
||||
if (layersShapes[layerId].in.empty())
|
||||
{
|
||||
for(int i = 0; i < inputLayerIds.size(); i++)
|
||||
{
|
||||
int inputLayerId = inputLayerIds[i].lid;
|
||||
LayersShapesMap::iterator inputIt = layersShapes.find(inputLayerId);
|
||||
if(inputIt == layersShapes.end() || inputIt->second.out.empty())
|
||||
{
|
||||
getLayerShapesRecursively(inputLayerId, layersShapes);
|
||||
}
|
||||
const MatShape& shape = layersShapes[inputLayerId].out[inputLayerIds[i].oid];
|
||||
layersShapes[layerId].in.push_back(shape);
|
||||
}
|
||||
it->second.layerInstance->updateMemoryShapes(layersShapes[layerId].in);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
LayerPin getLatestLayerPin(const std::vector<LayerPin>& pins)
|
||||
{
|
||||
return *std::max_element(pins.begin(), pins.end());
|
||||
@ -3952,6 +3994,8 @@ int Net::addLayer(const String &name, const String &type, LayerParams ¶ms)
|
||||
int id = ++impl->lastLayerId;
|
||||
impl->layerNameToId.insert(std::make_pair(name, id));
|
||||
impl->layers.insert(std::make_pair(id, LayerData(id, name, type, params)));
|
||||
if (params.get<bool>("has_dynamic_shapes", false))
|
||||
impl->hasDynamicShapes = true;
|
||||
|
||||
return id;
|
||||
}
|
||||
@ -4283,8 +4327,13 @@ void Net::setInput(InputArray blob, const String& name, double scalefactor, cons
|
||||
bool oldShape = prevShape == blobShape;
|
||||
|
||||
blob_.copyTo(impl->netInputLayer->inputsData[pin.oid]);
|
||||
if (!oldShape)
|
||||
if (!oldShape) {
|
||||
ld.outputBlobs[pin.oid] = impl->netInputLayer->inputsData[pin.oid];
|
||||
if (impl->hasDynamicShapes)
|
||||
{
|
||||
impl->updateLayersShapes();
|
||||
}
|
||||
}
|
||||
|
||||
if (!ld.outputBlobsWrappers[pin.oid].empty())
|
||||
{
|
||||
@ -5234,6 +5283,10 @@ bool Layer::getMemoryShapes(const std::vector<MatShape> &inputs,
|
||||
return false;
|
||||
}
|
||||
|
||||
bool Layer::updateMemoryShapes(const std::vector<MatShape> &inputs)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
//////////////////////////////////////////////////////////////////////////
|
||||
|
||||
static Mutex& getLayerFactoryMutex()
|
||||
|
@ -98,6 +98,9 @@ public:
|
||||
stride = Size(1, 1);
|
||||
pad_t = pad_l = pad_b = pad_r = 0;
|
||||
|
||||
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false);
|
||||
shapesInitialized = !hasDynamicShapes;
|
||||
|
||||
if (params.has("pool") || params.has("kernel_size") ||
|
||||
params.has("kernel_w") || params.has("kernel_h"))
|
||||
{
|
||||
@ -1191,25 +1194,33 @@ public:
|
||||
outShape.push_back(pooledSize.height);
|
||||
outShape.push_back(pooledSize.width);
|
||||
}
|
||||
else if (padMode.empty())
|
||||
{
|
||||
for (int i = 0; i < local_kernel.size(); i++) {
|
||||
float dst = (float)(inpShape[i] + pads_begin[i] + pads_end[i] - local_kernel[i]) / strides[i];
|
||||
outShape.push_back(1 + (ceilMode ? ceil(dst) : floor(dst)));
|
||||
}
|
||||
|
||||
// If we have padding, ensure that the last pooling starts strictly
|
||||
// inside the image (instead of at the padding); otherwise clip the last.
|
||||
for (int i = 0; i < pads_end.size(); i++) {
|
||||
if (pads_end[i] && (outShape[2 + i] - 1) * strides[i] >= inpShape[i] + pads_end[i]) {
|
||||
--outShape[2 + i];
|
||||
CV_Assert((outShape[2 + i] - 1) * strides[i] < inpShape[i] + pads_end[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
getConvPoolOutParams(inpShape, local_kernel, strides, padMode, std::vector<size_t>(local_kernel.size(), 1), outShape);
|
||||
if (hasDynamicShapes && !shapesInitialized)
|
||||
{
|
||||
//Just copy input shapes for width and height to prevent errors on loading stage
|
||||
for (int i = 0; i < inpShape.size(); i++)
|
||||
outShape.push_back(inpShape[i]);
|
||||
}
|
||||
else if (padMode.empty())
|
||||
{
|
||||
for (int i = 0; i < local_kernel.size(); i++) {
|
||||
float dst = (float) (inpShape[i] + pads_begin[i] + pads_end[i] - local_kernel[i]) / strides[i];
|
||||
outShape.push_back(1 + (ceilMode ? ceil(dst) : floor(dst)));
|
||||
}
|
||||
|
||||
// If we have padding, ensure that the last pooling starts strictly
|
||||
// inside the image (instead of at the padding); otherwise clip the last.
|
||||
for (int i = 0; i < pads_end.size(); i++) {
|
||||
if (pads_end[i] && (outShape[2 + i] - 1) * strides[i] >= inpShape[i] + pads_end[i]) {
|
||||
--outShape[2 + i];
|
||||
CV_Assert((outShape[2 + i] - 1) * strides[i] < inpShape[i] + pads_end[i]);
|
||||
}
|
||||
}
|
||||
} else {
|
||||
getConvPoolOutParams(inpShape, local_kernel, strides, padMode,
|
||||
std::vector<size_t>(local_kernel.size(), 1), outShape);
|
||||
}
|
||||
}
|
||||
if (type == ROI)
|
||||
{
|
||||
@ -1231,6 +1242,14 @@ public:
|
||||
return false;
|
||||
}
|
||||
|
||||
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE
|
||||
{
|
||||
int dims = inputs[0].size();
|
||||
CV_Assert(inputs[0][dims - 1] > 0 && inputs[0][dims - 2] > 0);
|
||||
shapesInitialized = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
virtual int64 getFLOPS(const std::vector<MatShape> &inputs,
|
||||
const std::vector<MatShape> &outputs) const CV_OVERRIDE
|
||||
{
|
||||
@ -1262,6 +1281,8 @@ private:
|
||||
ROI, // RoI pooling, https://arxiv.org/pdf/1504.08083.pdf
|
||||
PSROI // Position-sensitive RoI pooling, https://arxiv.org/pdf/1605.06409.pdf
|
||||
};
|
||||
bool hasDynamicShapes;
|
||||
bool shapesInitialized;
|
||||
};
|
||||
|
||||
Ptr<PoolingLayer> PoolingLayer::create(const LayerParams& params)
|
||||
|
@ -170,6 +170,9 @@ public:
|
||||
setParamsFrom(params);
|
||||
int axis = params.get<int>("axis", 0);
|
||||
int numAxes = params.get<int>("num_axes", -1);
|
||||
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false);
|
||||
shapesInitialized = !hasDynamicShapes;
|
||||
|
||||
CV_Assert(numAxes >= -1);
|
||||
newShapeRange = (numAxes == -1) ? Range(axis, INT_MAX) : Range(axis, axis + numAxes);
|
||||
|
||||
@ -182,6 +185,25 @@ public:
|
||||
for (i = 0; i < dims; i++)
|
||||
newShapeDesc[i] = paramShape.get<int>(i);
|
||||
}
|
||||
if (hasDynamicShapes)
|
||||
{
|
||||
dynamicShapes.clear();
|
||||
inputIndices.clear();
|
||||
if (params.has("dynamic_axes")) {
|
||||
CV_Assert(params.has("input_indices"));
|
||||
const DictValue &dynamicAxes = params.get("dynamic_axes");
|
||||
const DictValue &dynamicInputShapes = params.get("input_indices");
|
||||
int i, dims = dynamicAxes.size();
|
||||
CV_Assert(dims == dynamicInputShapes.size());
|
||||
CV_Assert(dims > 0);
|
||||
dynamicShapes.resize(dims);
|
||||
inputIndices.resize(dims);
|
||||
for (i = 0; i < dims; i++) {
|
||||
dynamicShapes[i] = dynamicAxes.get<int>(i);
|
||||
inputIndices[i] = dynamicInputShapes.get<int>(i);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
@ -196,13 +218,21 @@ public:
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
|
||||
if (inputs.size() == 1 || inputs.size() == requiredOutputs)
|
||||
{
|
||||
outputs.clear();
|
||||
for (size_t i = 0; i < inputs.size(); i++)
|
||||
{
|
||||
outputs.push_back(MatShape());
|
||||
computeShapeByReshapeMask(inputs[i], newShapeDesc, newShapeRange, outputs.back());
|
||||
if (hasDynamicShapes && !shapesInitialized)
|
||||
{
|
||||
outputs.push_back(newShapeDesc);
|
||||
}
|
||||
else
|
||||
{
|
||||
outputs.push_back(MatShape());
|
||||
computeShapeByReshapeMask(inputs[i], newShapeDesc, newShapeRange, outputs.back());
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -213,6 +243,19 @@ public:
|
||||
return true;
|
||||
}
|
||||
|
||||
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE
|
||||
{
|
||||
if (hasDynamicShapes)
|
||||
{
|
||||
for (int i = 0; i < dynamicShapes.size(); ++i)
|
||||
{
|
||||
newShapeDesc[dynamicShapes[i]] = inputs[0][inputIndices[i]];
|
||||
}
|
||||
}
|
||||
shapesInitialized = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
void finalize(InputArrayOfArrays, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
||||
{
|
||||
std::vector<Mat> outputs;
|
||||
@ -310,6 +353,10 @@ public:
|
||||
|
||||
private:
|
||||
std::vector<MatShape> outShapes;
|
||||
std::vector<int> dynamicShapes; // Which axes shapes are dynamic and require reinitialization with new input
|
||||
std::vector<int> inputIndices; // Which axes from input are needed to compute correct output shape
|
||||
bool hasDynamicShapes;
|
||||
bool shapesInitialized;
|
||||
};
|
||||
|
||||
Ptr<ReshapeLayer> ReshapeLayer::create(const LayerParams& params)
|
||||
|
@ -72,6 +72,8 @@ public:
|
||||
setParamsFrom(params);
|
||||
axis = params.get<int>("axis", 1);
|
||||
num_split = params.get<int>("num_split", 0);
|
||||
hasDynamicShapes = params.get<bool>("has_dynamic_shapes", false);
|
||||
shapesInitialized = !hasDynamicShapes;
|
||||
if (params.has("slice_point"))
|
||||
{
|
||||
CV_Assert(!params.has("begin") && !params.has("size") && !params.has("end"));
|
||||
@ -150,7 +152,8 @@ public:
|
||||
CV_Assert(sliceRanges[i].size() <= inpShape.size());
|
||||
for (int j = 0; j < sliceRanges[i].size(); ++j)
|
||||
{
|
||||
outputs[i][j] = clamp(sliceRanges[i][j], inpShape[j]).size();
|
||||
if (shapesInitialized || inpShape[j] > 0)
|
||||
outputs[i][j] = clamp(sliceRanges[i][j], inpShape[j]).size();
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -165,6 +168,12 @@ public:
|
||||
return false;
|
||||
}
|
||||
|
||||
bool updateMemoryShapes(const std::vector<MatShape> &inputs) CV_OVERRIDE
|
||||
{
|
||||
shapesInitialized = true;
|
||||
return true;
|
||||
}
|
||||
|
||||
void finalize(InputArrayOfArrays inputs_arr, OutputArrayOfArrays outputs_arr) CV_OVERRIDE
|
||||
{
|
||||
#ifdef HAVE_OPENCL
|
||||
@ -597,6 +606,8 @@ public:
|
||||
protected:
|
||||
// The actual non-negative values determined from @p sliceRanges depends on input size.
|
||||
std::vector<std::vector<Range> > finalSliceRanges;
|
||||
bool hasDynamicShapes;
|
||||
bool shapesInitialized;
|
||||
};
|
||||
|
||||
class CropLayerImpl CV_FINAL : public SliceLayerImpl
|
||||
|
@ -260,6 +260,40 @@ public:
|
||||
addNodeToMatch("Cast", gather);
|
||||
setFusedNode("Gather", input, index);
|
||||
}
|
||||
|
||||
virtual bool match(const Ptr<ImportGraphWrapper>& net, int nodeId,
|
||||
std::vector<int>& matchedNodesIds,
|
||||
std::vector<int>& targetNodesIds) CV_OVERRIDE
|
||||
{
|
||||
bool retVal = Subgraph::match(net, nodeId, matchedNodesIds, targetNodesIds);
|
||||
size_t matchedNodesNum = matchedNodesIds.size();
|
||||
// Now we check if merging can be made for these Gather and Cast nodes
|
||||
if (!retVal || matchedNodesNum < 2)
|
||||
return retVal;
|
||||
else {
|
||||
int nodeToMatch = matchedNodesIds[matchedNodesNum - 1];
|
||||
const Ptr<ImportNodeWrapper> node = net->getNode(nodeToMatch);
|
||||
if (node->getType() == "Cast") {
|
||||
int inpNodeId = matchedNodesIds[matchedNodesNum - 2];
|
||||
const Ptr<ImportNodeWrapper> inpNode = net->getNode(inpNodeId);
|
||||
if (inpNode->getType() == "Gather") {
|
||||
int numNodes = net->getNumNodes();
|
||||
std::string inpNodeName = node->getInputName(0);
|
||||
for (int i = 0; i < numNodes; ++i) {
|
||||
const Ptr<ImportNodeWrapper> node_to_check = net->getNode(i);
|
||||
int numInp = node_to_check->getNumInputs();
|
||||
for (int inp = 0; inp < numInp; ++inp) {
|
||||
if (i != nodeToMatch && inpNodeName == node_to_check->getInputName(0)) {
|
||||
// Another node has the same input node, so it cannot be merged.
|
||||
return false;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return retVal;
|
||||
}
|
||||
};
|
||||
|
||||
class ExpandSubgraph : public Subgraph
|
||||
@ -513,6 +547,19 @@ Mat getMatFromTensor(opencv_onnx::TensorProto& tensor_proto)
|
||||
CV_Assert(!field.empty());
|
||||
Mat(sizes, CV_64FC1, (void*)field.data()).convertTo(blob, CV_32FC1);
|
||||
}
|
||||
else if (datatype == opencv_onnx::TensorProto_DataType_INT32)
|
||||
{
|
||||
if (!tensor_proto.int32_data().empty())
|
||||
{
|
||||
const ::google::protobuf::RepeatedField<int32_t> field = tensor_proto.int32_data();
|
||||
Mat(sizes, CV_32SC1, (void*)field.data()).copyTo(blob);
|
||||
}
|
||||
else
|
||||
{
|
||||
char* val = const_cast<char*>(tensor_proto.raw_data().c_str());
|
||||
Mat(sizes, CV_32SC1, val).copyTo(blob);
|
||||
}
|
||||
}
|
||||
else if (datatype == opencv_onnx::TensorProto_DataType_INT64)
|
||||
{
|
||||
blob.create(sizes, CV_32SC1);
|
||||
|
@ -64,6 +64,7 @@ public:
|
||||
ONNXImporter(Net& net, const char *onnxFile)
|
||||
: dstNet(net)
|
||||
{
|
||||
hasDynamicShapes = false;
|
||||
CV_Assert(onnxFile);
|
||||
CV_LOG_DEBUG(NULL, "DNN/ONNX: processing ONNX model from file: " << onnxFile);
|
||||
|
||||
@ -84,6 +85,7 @@ public:
|
||||
ONNXImporter(Net& net, const char* buffer, size_t sizeBuffer)
|
||||
: dstNet(net)
|
||||
{
|
||||
hasDynamicShapes = false;
|
||||
CV_LOG_DEBUG(NULL, "DNN/ONNX: processing in-memory ONNX model (" << sizeBuffer << " bytes)");
|
||||
|
||||
struct _Buf : public std::streambuf
|
||||
@ -115,6 +117,7 @@ protected:
|
||||
std::map<std::string, Mat> constBlobs;
|
||||
|
||||
std::map<std::string, MatShape> outShapes; // List of internal blobs shapes.
|
||||
bool hasDynamicShapes; // Whether the model has inputs with dynamic shapes
|
||||
typedef std::map<std::string, MatShape>::iterator IterShape_t;
|
||||
|
||||
std::map<std::string, LayerInfo> layer_id;
|
||||
@ -413,8 +416,10 @@ void ONNXImporter::populateNet()
|
||||
for (int j = 0; j < inpShape.size(); ++j)
|
||||
{
|
||||
inpShape[j] = tensorShape.dim(j).dim_value();
|
||||
if (!tensorShape.dim(j).dim_param().empty())
|
||||
hasDynamicShapes = true;
|
||||
}
|
||||
if (!inpShape.empty())
|
||||
if (!inpShape.empty() && !hasDynamicShapes)
|
||||
{
|
||||
inpShape[0] = std::max(inpShape[0], 1); // It's OK to have undetermined batch size
|
||||
}
|
||||
@ -461,6 +466,7 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
|
||||
layerParams.name = name;
|
||||
layerParams.type = layer_type;
|
||||
layerParams.set("has_dynamic_shapes", hasDynamicShapes);
|
||||
|
||||
if (layer_type == "MaxPool")
|
||||
{
|
||||
@ -551,11 +557,36 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
|
||||
CV_Assert(axes.size() <= inpShape.size() - 2);
|
||||
std::vector<int> kernel_size(inpShape.size() - 2, 1);
|
||||
for (int i = 0; i < axes.size(); i++) {
|
||||
int axis = clamp(axes.get<int>(i), inpShape.size());
|
||||
CV_Assert_N(axis >= 2 + i, axis < inpShape.size());
|
||||
kernel_size[axis - 2] = inpShape[axis];
|
||||
if (axes.size() == 1 && (clamp(axes.get<int>(0), inpShape.size()) <= 1))
|
||||
{
|
||||
int axis = clamp(axes.get<int>(0), inpShape.size());
|
||||
MatShape newShape = inpShape;
|
||||
newShape[axis + 1] = total(newShape, axis + 1);
|
||||
newShape.resize(axis + 2);
|
||||
newShape.insert(newShape.begin(), 2 - axis, 1);
|
||||
|
||||
LayerParams reshapeLp;
|
||||
reshapeLp.type = "Reshape";
|
||||
reshapeLp.name = layerParams.name + "/reshape";
|
||||
CV_Assert(layer_id.find(reshapeLp.name) == layer_id.end());
|
||||
reshapeLp.set("dim", DictValue::arrayInt(&newShape[0], newShape.size()));
|
||||
|
||||
node_proto.set_output(0, reshapeLp.name);
|
||||
addLayer(reshapeLp, node_proto);
|
||||
|
||||
kernel_size.resize(2);
|
||||
kernel_size[0] = inpShape[axis];
|
||||
node_proto.set_input(0, node_proto.output(0));
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 0; i < axes.size(); i++) {
|
||||
int axis = clamp(axes.get<int>(i), inpShape.size());
|
||||
CV_Assert_N(axis >= 2 + i, axis < inpShape.size());
|
||||
kernel_size[axis - 2] = inpShape[axis];
|
||||
}
|
||||
}
|
||||
|
||||
LayerParams poolLp = layerParams;
|
||||
poolLp.name = layerParams.name + "/avg";
|
||||
CV_Assert(layer_id.find(poolLp.name) == layer_id.end());
|
||||
@ -1276,6 +1307,20 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
{
|
||||
layerParams.type = "Reshape";
|
||||
layerParams.set("dim", DictValue::arrayInt(&outShape[0], outShape.size()));
|
||||
if (hasDynamicShapes)
|
||||
{
|
||||
std::vector<int> dynamicAxes;
|
||||
std::vector<int> inputIndices;
|
||||
for (int index = 0; index < inpShape.size(); ++index)
|
||||
{
|
||||
if (!maskedAxes[index])
|
||||
inputIndices.push_back(index);
|
||||
}
|
||||
for (int index = 0; index < outShape.size(); ++index)
|
||||
dynamicAxes.push_back(index);
|
||||
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size()));
|
||||
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size()));
|
||||
}
|
||||
}
|
||||
else
|
||||
layerParams.type = "Identity";
|
||||
@ -1338,6 +1383,19 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
outShape.insert(outShape.begin() + axis, 1);
|
||||
layerParams.type = "Reshape";
|
||||
layerParams.set("dim", DictValue::arrayInt(&outShape[0], outShape.size()));
|
||||
if (hasDynamicShapes)
|
||||
{
|
||||
std::vector<int> dynamicAxes;
|
||||
std::vector<int> inputIndices;
|
||||
for (int index = 0; index < outShape.size(); ++index) {
|
||||
if (index != axis)
|
||||
dynamicAxes.push_back(index);
|
||||
}
|
||||
for (int index = 0; index < inpShape.size(); ++index)
|
||||
inputIndices.push_back(index);
|
||||
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size()));
|
||||
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size()));
|
||||
}
|
||||
}
|
||||
else if (layer_type == "Expand")
|
||||
{
|
||||
@ -1625,6 +1683,7 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
cv::dnn::DictValue paramEnd = cv::dnn::DictValue::arrayInt(end.data(), end.size());
|
||||
sliceLp.set("begin", paramBegin);
|
||||
sliceLp.set("end", paramEnd);
|
||||
sliceLp.set("has_dynamic_shapes", hasDynamicShapes);
|
||||
|
||||
if (inpShape.size() > 1)
|
||||
{
|
||||
@ -1637,6 +1696,17 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
layerParams.type = "Reshape";
|
||||
layerParams.set("axis", 0);
|
||||
layerParams.set("dim", DictValue::arrayInt(&inpShape[0], inpShape.size()));
|
||||
if (hasDynamicShapes)
|
||||
{
|
||||
std::vector<int> dynamicAxes;
|
||||
std::vector<int> inputIndices;
|
||||
for (int index = 0; index < inpShape.size(); ++index)
|
||||
dynamicAxes.push_back(index);
|
||||
for (int index = 0; index < inpShape.size(); ++index)
|
||||
inputIndices.push_back(index);
|
||||
layerParams.set("dynamic_axes", DictValue::arrayInt(dynamicAxes.data(), dynamicAxes.size()));
|
||||
layerParams.set("input_indices", DictValue::arrayInt(inputIndices.data(), inputIndices.size()));
|
||||
}
|
||||
node_proto.set_input(0, sliceLp.name);
|
||||
}
|
||||
else
|
||||
@ -1676,7 +1746,11 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
for (int i = 1; i < node_proto.input_size(); i++)
|
||||
CV_Assert(layer_id.find(node_proto.input(i)) == layer_id.end());
|
||||
|
||||
String interp_mode = layerParams.get<String>("coordinate_transformation_mode");
|
||||
String interp_mode;
|
||||
if (layerParams.has("coordinate_transformation_mode"))
|
||||
interp_mode = layerParams.get<String>("coordinate_transformation_mode");
|
||||
else
|
||||
interp_mode = layerParams.get<String>("mode");
|
||||
CV_Assert_N(interp_mode != "tf_crop_and_resize", interp_mode != "tf_half_pixel_for_nn");
|
||||
|
||||
layerParams.set("align_corners", interp_mode == "align_corners");
|
||||
@ -1688,16 +1762,23 @@ void ONNXImporter::handleNode(const opencv_onnx::NodeProto& node_proto_)
|
||||
shapes.convertTo(shapes, CV_32S);
|
||||
int height = shapes.at<int>(2);
|
||||
int width = shapes.at<int>(3);
|
||||
if (node_proto.input_size() == 3)
|
||||
if (hasDynamicShapes)
|
||||
{
|
||||
IterShape_t shapeIt = outShapes.find(node_proto.input(0));
|
||||
CV_Assert(shapeIt != outShapes.end());
|
||||
MatShape scales = shapeIt->second;
|
||||
height *= scales[2];
|
||||
width *= scales[3];
|
||||
layerParams.set("zoom_factor_x", width);
|
||||
layerParams.set("zoom_factor_y", height);
|
||||
}
|
||||
else
|
||||
{
|
||||
if (node_proto.input_size() == 3) {
|
||||
IterShape_t shapeIt = outShapes.find(node_proto.input(0));
|
||||
CV_Assert(shapeIt != outShapes.end());
|
||||
MatShape scales = shapeIt->second;
|
||||
height *= scales[2];
|
||||
width *= scales[3];
|
||||
}
|
||||
layerParams.set("width", width);
|
||||
layerParams.set("height", height);
|
||||
}
|
||||
layerParams.set("width", width);
|
||||
layerParams.set("height", height);
|
||||
|
||||
if (layerParams.get<String>("mode") == "linear") {
|
||||
layerParams.set("mode", interp_mode == "pytorch_half_pixel" ?
|
||||
|
@ -280,9 +280,11 @@ TEST_P(Test_ONNX_layers, ReduceSum)
|
||||
testONNXModels("reduce_sum");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, ReduceMaxGlobal)
|
||||
TEST_P(Test_ONNX_layers, ReduceMax)
|
||||
{
|
||||
testONNXModels("reduce_max");
|
||||
testONNXModels("reduce_max_axis_0");
|
||||
testONNXModels("reduce_max_axis_1");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Scale)
|
||||
@ -718,6 +720,10 @@ TEST_P(Test_ONNX_layers, Conv1d_variable_weight)
|
||||
|
||||
TEST_P(Test_ONNX_layers, Conv1d_variable_weight_bias)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
{
|
||||
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
||||
}
|
||||
String basename = "conv1d_variable_wb";
|
||||
Net net = readNetFromONNX(_tf("models/" + basename + ".onnx"));
|
||||
ASSERT_FALSE(net.empty());
|
||||
@ -738,6 +744,37 @@ TEST_P(Test_ONNX_layers, Conv1d_variable_weight_bias)
|
||||
normAssert(ref, out, "", default_l1, default_lInf);
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, GatherMultiOutput)
|
||||
{
|
||||
#if defined(INF_ENGINE_RELEASE)
|
||||
if (target == DNN_TARGET_MYRIAD)
|
||||
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE);
|
||||
#endif
|
||||
|
||||
testONNXModels("gather_multi_output");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, DynamicAxes)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
|
||||
{
|
||||
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
|
||||
}
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
|
||||
{
|
||||
if (target == DNN_TARGET_MYRIAD) applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_MYRIAD, CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
|
||||
}
|
||||
testONNXModels("squeeze_and_conv_dynamic_axes");
|
||||
testONNXModels("unsqueeze_and_conv_dynamic_axes");
|
||||
testONNXModels("gather_dynamic_axes");
|
||||
testONNXModels("gather_scalar_dynamic_axes");
|
||||
testONNXModels("slice_dynamic_axes");
|
||||
testONNXModels("slice_opset_11_dynamic_axes");
|
||||
testONNXModels("resize_opset11_torch1.6_dynamic_axes");
|
||||
testONNXModels("average_pooling_dynamic_axes");
|
||||
testONNXModels("maxpooling_sigmoid_dynamic_axes");
|
||||
}
|
||||
|
||||
INSTANTIATE_TEST_CASE_P(/*nothing*/, Test_ONNX_layers, dnnBackendsAndTargets());
|
||||
|
||||
class Test_ONNX_nets : public Test_ONNX_layers
|
||||
|
Loading…
Reference in New Issue
Block a user