From ceb6e8bd940cd4f28f3cf167c41acd676a1223e4 Mon Sep 17 00:00:00 2001 From: Maksim Shabunin Date: Thu, 20 Nov 2014 16:42:06 +0300 Subject: [PATCH] Doxygen documentation: cuda --- doc/CMakeLists.txt | 8 +- doc/Doxyfile.in | 2 +- modules/core/include/opencv2/core/cuda.hpp | 199 ++++- .../opencv2/core/cuda_stream_accessor.hpp | 5 + .../core/include/opencv2/core/cuda_types.hpp | 11 + modules/cuda/doc/introduction.markdown | 85 ++ modules/cuda/include/opencv2/cuda.hpp | 183 +++- .../cudaarithm/include/opencv2/cudaarithm.hpp | 793 +++++++++++++++--- .../cudabgsegm/include/opencv2/cudabgsegm.hpp | 114 ++- .../cudacodec/include/opencv2/cudacodec.hpp | 200 ++++- .../include/opencv2/cudafeatures2d.hpp | 260 ++++-- .../include/opencv2/cudafilters.hpp | 208 ++++- .../include/opencv2/cudaimgproc.hpp | 486 ++++++++++- .../cudalegacy/include/opencv2/cudalegacy.hpp | 7 + .../include/opencv2/cudalegacy/NCV.hpp | 4 +- .../opencv2/cudalegacy/NCVBroxOpticalFlow.hpp | 6 + .../cudalegacy/NCVHaarObjectDetection.hpp | 4 +- .../include/opencv2/cudalegacy/NCVPyramid.hpp | 4 + .../opencv2/cudalegacy/NPP_staging.hpp | 15 +- .../include/opencv2/cudalegacy/private.hpp | 4 + .../include/opencv2/cudaoptflow.hpp | 101 ++- .../cudastereo/include/opencv2/cudastereo.hpp | 171 +++- .../include/opencv2/cudawarping.hpp | 158 +++- modules/cudev/include/opencv2/cudev.hpp | 7 + .../include/opencv2/cudev/block/block.hpp | 6 + .../opencv2/cudev/block/dynamic_smem.hpp | 5 + .../include/opencv2/cudev/block/reduce.hpp | 5 + .../include/opencv2/cudev/block/scan.hpp | 5 + .../opencv2/cudev/block/vec_distance.hpp | 5 + .../cudev/include/opencv2/cudev/common.hpp | 5 + .../opencv2/cudev/expr/binary_func.hpp | 5 + .../include/opencv2/cudev/expr/binary_op.hpp | 5 + .../include/opencv2/cudev/expr/color.hpp | 5 + .../include/opencv2/cudev/expr/deriv.hpp | 5 + .../cudev/include/opencv2/cudev/expr/expr.hpp | 5 + .../opencv2/cudev/expr/per_element_func.hpp | 5 + .../include/opencv2/cudev/expr/reduction.hpp | 5 + .../include/opencv2/cudev/expr/unary_func.hpp | 5 + .../include/opencv2/cudev/expr/unary_op.hpp | 5 + .../include/opencv2/cudev/expr/warping.hpp | 5 + .../opencv2/cudev/functional/color_cvt.hpp | 5 + .../opencv2/cudev/functional/functional.hpp | 5 + .../cudev/functional/tuple_adapter.hpp | 5 + .../cudev/include/opencv2/cudev/grid/copy.hpp | 5 + .../include/opencv2/cudev/grid/histogram.hpp | 5 + .../include/opencv2/cudev/grid/integral.hpp | 5 + .../include/opencv2/cudev/grid/pyramids.hpp | 5 + .../include/opencv2/cudev/grid/reduce.hpp | 5 + .../opencv2/cudev/grid/reduce_to_vec.hpp | 5 + .../opencv2/cudev/grid/split_merge.hpp | 5 + .../include/opencv2/cudev/grid/transform.hpp | 5 + .../include/opencv2/cudev/grid/transpose.hpp | 5 + .../include/opencv2/cudev/ptr2d/constant.hpp | 5 + .../include/opencv2/cudev/ptr2d/deriv.hpp | 5 + .../opencv2/cudev/ptr2d/extrapolation.hpp | 5 + .../include/opencv2/cudev/ptr2d/glob.hpp | 5 + .../include/opencv2/cudev/ptr2d/gpumat.hpp | 5 + .../opencv2/cudev/ptr2d/interpolation.hpp | 5 + .../cudev/include/opencv2/cudev/ptr2d/lut.hpp | 5 + .../include/opencv2/cudev/ptr2d/mask.hpp | 5 + .../include/opencv2/cudev/ptr2d/remap.hpp | 5 + .../include/opencv2/cudev/ptr2d/resize.hpp | 5 + .../include/opencv2/cudev/ptr2d/texture.hpp | 5 + .../include/opencv2/cudev/ptr2d/traits.hpp | 5 + .../include/opencv2/cudev/ptr2d/transform.hpp | 5 + .../include/opencv2/cudev/ptr2d/warping.hpp | 5 + .../cudev/include/opencv2/cudev/ptr2d/zip.hpp | 5 + .../include/opencv2/cudev/util/atomic.hpp | 5 + .../include/opencv2/cudev/util/limits.hpp | 5 + .../opencv2/cudev/util/saturate_cast.hpp | 5 + .../opencv2/cudev/util/simd_functions.hpp | 5 + .../include/opencv2/cudev/util/tuple.hpp | 5 + .../opencv2/cudev/util/type_traits.hpp | 5 + .../include/opencv2/cudev/util/vec_math.hpp | 5 + .../include/opencv2/cudev/util/vec_traits.hpp | 5 + .../include/opencv2/cudev/warp/reduce.hpp | 5 + .../cudev/include/opencv2/cudev/warp/scan.hpp | 5 + .../include/opencv2/cudev/warp/shuffle.hpp | 5 + .../cudev/include/opencv2/cudev/warp/warp.hpp | 5 + modules/viz/include/opencv2/viz/types.hpp | 4 + 80 files changed, 2917 insertions(+), 398 deletions(-) create mode 100644 modules/cuda/doc/introduction.markdown diff --git a/doc/CMakeLists.txt b/doc/CMakeLists.txt index 81e18973f7..2ef7b5fc40 100644 --- a/doc/CMakeLists.txt +++ b/doc/CMakeLists.txt @@ -159,12 +159,18 @@ if(BUILD_DOCS AND HAVE_DOXYGEN) set(reflist) # modules reference foreach(m ${candidates}) set(reflist "${reflist} \n- @subpage ${m}") - set(all_headers ${all_headers} "${OPENCV_MODULE_opencv_${m}_HEADERS}") + + set(header_dir "${OPENCV_MODULE_opencv_${m}_LOCATION}/include") + if(EXISTS ${header_dir}) + set(all_headers ${all_headers} ${header_dir}) + endif() + set(docs_dir "${OPENCV_MODULE_opencv_${m}_LOCATION}/doc") if(EXISTS ${docs_dir}) set(all_images ${all_images} ${docs_dir}) set(all_headers ${all_headers} ${docs_dir}) endif() + endforeach() # additional config diff --git a/doc/Doxyfile.in b/doc/Doxyfile.in index 508b6512a9..b27593764f 100644 --- a/doc/Doxyfile.in +++ b/doc/Doxyfile.in @@ -99,7 +99,7 @@ FILE_PATTERNS = RECURSIVE = YES EXCLUDE = EXCLUDE_SYMLINKS = NO -EXCLUDE_PATTERNS = +EXCLUDE_PATTERNS = *.inl.hpp *.impl.hpp *_detail.hpp */cudev/**/detail/*.hpp EXCLUDE_SYMBOLS = cv::DataType<*> int EXAMPLE_PATH = @CMAKE_DOXYGEN_EXAMPLE_PATH@ EXAMPLE_PATTERNS = * diff --git a/modules/core/include/opencv2/core/cuda.hpp b/modules/core/include/opencv2/core/cuda.hpp index 612b5dbd1d..218ebd86f9 100644 --- a/modules/core/include/opencv2/core/cuda.hpp +++ b/modules/core/include/opencv2/core/cuda.hpp @@ -52,10 +52,12 @@ #include "opencv2/core/cuda_types.hpp" /** -@defgroup cuda CUDA-accelerated Computer Vision -@{ - @defgroup cuda_struct Data structures -@} + @addtogroup cuda + @{ + @defgroup cuda_init Initalization and Information + @defgroup cuda_struct Data Structures + @defgroup cuda_calib3d Camera Calibration and 3D Reconstruction + @} */ namespace cv { namespace cuda { @@ -65,8 +67,28 @@ namespace cv { namespace cuda { //////////////////////////////// GpuMat /////////////////////////////// -//! Smart pointer for GPU memory with reference counting. -//! Its interface is mostly similar with cv::Mat. +/** @brief Base storage class for GPU memory with reference counting. + +Its interface matches the Mat interface with the following limitations: + +- no arbitrary dimensions support (only 2D) +- no functions that return references to their data (because references on GPU are not valid for + CPU) +- no expression templates technique support + +Beware that the latter limitation may lead to overloaded matrix operators that cause memory +allocations. The GpuMat class is convertible to cuda::PtrStepSz and cuda::PtrStep so it can be +passed directly to the kernel. + +@note In contrast with Mat, in most cases GpuMat::isContinuous() == false . This means that rows are +aligned to a size depending on the hardware. Single-row GpuMat is always a continuous matrix. + +@note You are not recommended to leave static or global GpuMat variables allocated, that is, to rely +on its destructor. The destruction order of such variables and CUDA context is undefined. GPU memory +release function returns error if the CUDA context has been destroyed before. + +@sa Mat + */ class CV_EXPORTS GpuMat { public: @@ -277,11 +299,28 @@ public: Allocator* allocator; }; -//! creates continuous matrix +/** @brief Creates a continuous matrix. + +@param rows Row count. +@param cols Column count. +@param type Type of the matrix. +@param arr Destination matrix. This parameter changes only if it has a proper type and area ( +\f$\texttt{rows} \times \texttt{cols}\f$ ). + +Matrix is called continuous if its elements are stored continuously, that is, without gaps at the +end of each row. + */ CV_EXPORTS void createContinuous(int rows, int cols, int type, OutputArray arr); -//! ensures that size of the given matrix is not less than (rows, cols) size -//! and matrix type is match specified one too +/** @brief Ensures that the size of a matrix is big enough and the matrix has a proper type. + +@param rows Minimum desired number of rows. +@param cols Minimum desired number of columns. +@param type Desired matrix type. +@param arr Destination matrix. + +The function does not reallocate memory if the matrix has proper attributes already. + */ CV_EXPORTS void ensureSizeIsEnough(int rows, int cols, int type, OutputArray arr); CV_EXPORTS GpuMat allocMatFromBuf(int rows, int cols, int type, GpuMat& mat); @@ -292,10 +331,21 @@ CV_EXPORTS void setBufferPoolConfig(int deviceId, size_t stackSize, int stackCou //////////////////////////////// CudaMem //////////////////////////////// -//! CudaMem is limited cv::Mat with page locked memory allocation. -//! Page locked memory is only needed for async and faster coping to GPU. -//! It is convertable to cv::Mat header without reference counting -//! so you can use it with other opencv functions. +/** @brief Class with reference counting wrapping special memory type allocation functions from CUDA. + +Its interface is also Mat-like but with additional memory type parameters. + +- **PAGE\_LOCKED** sets a page locked memory type used commonly for fast and asynchronous + uploading/downloading data from/to GPU. +- **SHARED** specifies a zero copy memory allocation that enables mapping the host memory to GPU + address space, if supported. +- **WRITE\_COMBINED** sets the write combined buffer that is not cached by CPU. Such buffers are + used to supply GPU with data when GPU only reads it. The advantage is a better CPU cache + utilization. + +@note Allocation size of such memory types is usually limited. For more details, see *CUDA 2.2 +Pinned Memory APIs* document or *CUDA C Programming Guide*. + */ class CV_EXPORTS CudaMem { public: @@ -335,7 +385,13 @@ public: //! returns matrix header with disabled reference counting for CudaMem data. Mat createMatHeader() const; - //! maps host memory into device address space and returns GpuMat header for it. Throws exception if not supported by hardware. + /** @brief Maps CPU memory to GPU address space and creates the cuda::GpuMat header without reference counting + for it. + + This can be done only if memory was allocated with the SHARED flag and if it is supported by the + hardware. Laptops often share video and CPU memory, so address spaces can be mapped, which + eliminates an extra copy. + */ GpuMat createGpuMatHeader() const; // Please see cv::Mat for descriptions @@ -363,17 +419,28 @@ public: AllocType alloc_type; }; -//! page-locks the matrix m memory and maps it for the device(s) +/** @brief Page-locks the memory of matrix and maps it for the device(s). + +@param m Input matrix. + */ CV_EXPORTS void registerPageLocked(Mat& m); -//! unmaps the memory of matrix m, and makes it pageable again +/** @brief Unmaps the memory of matrix and makes it pageable again. + +@param m Input matrix. + */ CV_EXPORTS void unregisterPageLocked(Mat& m); ///////////////////////////////// Stream ////////////////////////////////// -//! Encapculates Cuda Stream. Provides interface for async coping. -//! Passed to each function that supports async kernel execution. -//! Reference counting is enabled. +/** @brief This class encapsulates a queue of asynchronous calls. + +@note Currently, you may face problems if an operation is enqueued twice with different data. Some +functions use the constant GPU memory, and next call may update the memory before the previous one +has been finished. But calling different operations asynchronously is safe because each operation +has its own constant buffer. Memory copy/upload/download/set operations to the buffers you hold are +also safe. : + */ class CV_EXPORTS Stream { typedef void (Stream::*bool_type)() const; @@ -385,16 +452,26 @@ public: //! creates a new asynchronous stream Stream(); - //! queries an asynchronous stream for completion status + /** @brief Returns true if the current stream queue is finished. Otherwise, it returns false. + */ bool queryIfComplete() const; - //! waits for stream tasks to complete + /** @brief Blocks the current CPU thread until all operations in the stream are complete. + */ void waitForCompletion(); - //! makes a compute stream wait on an event + /** @brief Makes a compute stream wait on an event. + */ void waitEvent(const Event& event); - //! adds a callback to be called on the host after all currently enqueued items in the stream have completed + /** @brief Adds a callback to be called on the host after all currently enqueued items in the stream have + completed. + + @note Callbacks must not make any CUDA API calls. Callbacks must not perform any synchronization + that may depend on outstanding device work or other callbacks that are not mandated to run earlier. + Callbacks without a mandated order (in independent streams) execute in undefined order and may be + serialized. + */ void enqueueHostCallback(StreamCallback callback, void* userData); //! return Stream object for default CUDA stream @@ -446,21 +523,41 @@ private: friend struct EventAccessor; }; +//! @} cuda_struct + //////////////////////////////// Initialization & Info //////////////////////// -//! this is the only function that do not throw exceptions if the library is compiled without CUDA +//! @addtogroup cuda_init +//! @{ + +/** @brief Returns the number of installed CUDA-enabled devices. + +Use this function before any other CUDA functions calls. If OpenCV is compiled without CUDA support, +this function returns 0. + */ CV_EXPORTS int getCudaEnabledDeviceCount(); -//! set device to be used for GPU executions for the calling host thread +/** @brief Sets a device and initializes it for the current thread. + +@param device System index of a CUDA device starting with 0. + +If the call of this function is omitted, a default device is initialized at the fist CUDA usage. + */ CV_EXPORTS void setDevice(int device); -//! returns which device is currently being used for the calling host thread +/** @brief Returns the current device index set by cuda::setDevice or initialized by default. + */ CV_EXPORTS int getDevice(); -//! explicitly destroys and cleans up all resources associated with the current device in the current process -//! any subsequent API call to this device will reinitialize the device +/** @brief Explicitly destroys and cleans up all resources associated with the current device in the current +process. + +Any subsequent API call to this device will reinitialize the device. + */ CV_EXPORTS void resetDevice(); +/** @brief Enumeration providing CUDA computing features. + */ enum FeatureSet { FEATURE_SET_COMPUTE_10 = 10, @@ -482,12 +579,27 @@ enum FeatureSet //! checks whether current device supports the given feature CV_EXPORTS bool deviceSupports(FeatureSet feature_set); -//! information about what GPU archs this OpenCV CUDA module was compiled for +/** @brief Class providing a set of static methods to check what NVIDIA\* card architecture the CUDA module was +built for. + +According to the CUDA C Programming Guide Version 3.2: "PTX code produced for some specific compute +capability can always be compiled to binary code of greater or equal compute capability". + */ class CV_EXPORTS TargetArchs { public: + /** @brief The following method checks whether the module was built with the support of the given feature: + + @param feature\_set Features to be checked. See :ocvcuda::FeatureSet. + */ static bool builtWith(FeatureSet feature_set); + /** @brief There is a set of methods to check whether the module contains intermediate (PTX) or binary CUDA + code for the given architecture(s): + + @param major Major compute capability version. + @param minor Minor compute capability version. + */ static bool has(int major, int minor); static bool hasPtx(int major, int minor); static bool hasBin(int major, int minor); @@ -498,17 +610,25 @@ public: static bool hasEqualOrGreaterBin(int major, int minor); }; -//! information about the given GPU. +/** @brief Class providing functionality for querying the specified GPU properties. + */ class CV_EXPORTS DeviceInfo { public: //! creates DeviceInfo object for the current GPU DeviceInfo(); - //! creates DeviceInfo object for the given GPU + /** @brief The constructors. + + @param device\_id System index of the CUDA device starting with 0. + + Constructs the DeviceInfo object for the specified device. If device\_id parameter is missed, it + constructs an object for the current device. + */ DeviceInfo(int device_id); - //! device number. + /** @brief Returns system index of the CUDA device starting with 0. + */ int deviceID() const; //! ASCII string identifying device @@ -680,10 +800,19 @@ public: size_t freeMemory() const; size_t totalMemory() const; - //! checks whether device supports the given feature + /** @brief Provides information on CUDA feature support. + + @param feature\_set Features to be checked. See cuda::FeatureSet. + + This function returns true if the device has the specified CUDA feature. Otherwise, it returns false + */ bool supports(FeatureSet feature_set) const; - //! checks whether the CUDA module can be run on the given device + /** @brief Checks the CUDA module and device compatibility. + + This function returns true if the CUDA module can be run on the specified device. Otherwise, it + returns false . + */ bool isCompatible() const; private: @@ -693,7 +822,7 @@ private: CV_EXPORTS void printCudaDeviceInfo(int device); CV_EXPORTS void printShortCudaDeviceInfo(int device); -//! @} +//! @} cuda_init }} // namespace cv { namespace cuda { diff --git a/modules/core/include/opencv2/core/cuda_stream_accessor.hpp b/modules/core/include/opencv2/core/cuda_stream_accessor.hpp index 4eb4ba61ad..38275d2fa8 100644 --- a/modules/core/include/opencv2/core/cuda_stream_accessor.hpp +++ b/modules/core/include/opencv2/core/cuda_stream_accessor.hpp @@ -66,6 +66,11 @@ namespace cv class Stream; class Event; + /** @brief Class that enables getting cudaStream\_t from cuda::Stream + + because it is the only public header that depends on the CUDA Runtime API. Including it + brings a dependency to your code. + */ struct StreamAccessor { CV_EXPORTS static cudaStream_t getStream(const Stream& stream); diff --git a/modules/core/include/opencv2/core/cuda_types.hpp b/modules/core/include/opencv2/core/cuda_types.hpp index ec67ae08ba..490086fb0a 100644 --- a/modules/core/include/opencv2/core/cuda_types.hpp +++ b/modules/core/include/opencv2/core/cuda_types.hpp @@ -89,6 +89,11 @@ namespace cv size_t size; }; + /** @brief Structure similar to cuda::PtrStepSz but containing only a pointer and row step. + + Width and height fields are excluded due to performance reasons. The structure is intended + for internal use or for users who write device code. + */ template struct PtrStep : public DevPtr { __CV_CUDA_HOST_DEVICE__ PtrStep() : step(0) {} @@ -104,6 +109,12 @@ namespace cv __CV_CUDA_HOST_DEVICE__ const T& operator ()(int y, int x) const { return ptr(y)[x]; } }; + /** @brief Lightweight class encapsulating pitched memory on a GPU and passed to nvcc-compiled code (CUDA + kernels). + + Typically, it is used internally by OpenCV and by users who write device code. You can call + its members from both host and device code. + */ template struct PtrStepSz : public PtrStep { __CV_CUDA_HOST_DEVICE__ PtrStepSz() : cols(0), rows(0) {} diff --git a/modules/cuda/doc/introduction.markdown b/modules/cuda/doc/introduction.markdown new file mode 100644 index 0000000000..ebe8c21af3 --- /dev/null +++ b/modules/cuda/doc/introduction.markdown @@ -0,0 +1,85 @@ +CUDA Module Introduction {#cuda_intro} +======================== + +General Information +------------------- + +The OpenCV CUDA module is a set of classes and functions to utilize CUDA computational capabilities. +It is implemented using NVIDIA\* CUDA\* Runtime API and supports only NVIDIA GPUs. The OpenCV CUDA +module includes utility functions, low-level vision primitives, and high-level algorithms. The +utility functions and low-level primitives provide a powerful infrastructure for developing fast +vision algorithms taking advantage of CUDA whereas the high-level functionality includes some +state-of-the-art algorithms (such as stereo correspondence, face and people detectors, and others) +ready to be used by the application developers. + +The CUDA module is designed as a host-level API. This means that if you have pre-compiled OpenCV +CUDA binaries, you are not required to have the CUDA Toolkit installed or write any extra code to +make use of the CUDA. + +The OpenCV CUDA module is designed for ease of use and does not require any knowledge of CUDA. +Though, such a knowledge will certainly be useful to handle non-trivial cases or achieve the highest +performance. It is helpful to understand the cost of various operations, what the GPU does, what the +preferred data formats are, and so on. The CUDA module is an effective instrument for quick +implementation of CUDA-accelerated computer vision algorithms. However, if your algorithm involves +many simple operations, then, for the best possible performance, you may still need to write your +own kernels to avoid extra write and read operations on the intermediate results. + +To enable CUDA support, configure OpenCV using CMake with WITH\_CUDA=ON . When the flag is set and +if CUDA is installed, the full-featured OpenCV CUDA module is built. Otherwise, the module is still +built but at runtime all functions from the module throw Exception with CV\_GpuNotSupported error +code, except for cuda::getCudaEnabledDeviceCount(). The latter function returns zero GPU count in +this case. Building OpenCV without CUDA support does not perform device code compilation, so it does +not require the CUDA Toolkit installed. Therefore, using the cuda::getCudaEnabledDeviceCount() +function, you can implement a high-level algorithm that will detect GPU presence at runtime and +choose an appropriate implementation (CPU or GPU) accordingly. + +Compilation for Different NVIDIA\* Platforms +-------------------------------------------- + +NVIDIA\* compiler enables generating binary code (cubin and fatbin) and intermediate code (PTX). +Binary code often implies a specific GPU architecture and generation, so the compatibility with +other GPUs is not guaranteed. PTX is targeted for a virtual platform that is defined entirely by the +set of capabilities or features. Depending on the selected virtual platform, some of the +instructions are emulated or disabled, even if the real hardware supports all the features. + +At the first call, the PTX code is compiled to binary code for the particular GPU using a JIT +compiler. When the target GPU has a compute capability (CC) lower than the PTX code, JIT fails. By +default, the OpenCV CUDA module includes: + +\* + Binaries for compute capabilities 1.3 and 2.0 (controlled by CUDA\_ARCH\_BIN in CMake) + +\* + PTX code for compute capabilities 1.1 and 1.3 (controlled by CUDA\_ARCH\_PTX in CMake) + +This means that for devices with CC 1.3 and 2.0 binary images are ready to run. For all newer +platforms, the PTX code for 1.3 is JIT'ed to a binary image. For devices with CC 1.1 and 1.2, the +PTX for 1.1 is JIT'ed. For devices with CC 1.0, no code is available and the functions throw +Exception. For platforms where JIT compilation is performed first, the run is slow. + +On a GPU with CC 1.0, you can still compile the CUDA module and most of the functions will run +flawlessly. To achieve this, add "1.0" to the list of binaries, for example, +CUDA\_ARCH\_BIN="1.0 1.3 2.0" . The functions that cannot be run on CC 1.0 GPUs throw an exception. + +You can always determine at runtime whether the OpenCV GPU-built binaries (or PTX code) are +compatible with your GPU. The function cuda::DeviceInfo::isCompatible returns the compatibility +status (true/false). + +Utilizing Multiple GPUs +----------------------- + +In the current version, each of the OpenCV CUDA algorithms can use only a single GPU. So, to utilize +multiple GPUs, you have to manually distribute the work between GPUs. Switching active devie can be +done using cuda::setDevice() function. For more details please read Cuda C Programming Guide. + +While developing algorithms for multiple GPUs, note a data passing overhead. For primitive functions +and small images, it can be significant, which may eliminate all the advantages of having multiple +GPUs. But for high-level algorithms, consider using multi-GPU acceleration. For example, the Stereo +Block Matching algorithm has been successfully parallelized using the following algorithm: + +1. Split each image of the stereo pair into two horizontal overlapping stripes. +2. Process each pair of stripes (from the left and right images) on a separate Fermi\* GPU. +3. Merge the results into a single disparity map. + +With this algorithm, a dual GPU gave a 180% performance increase comparing to the single Fermi GPU. +For a source code example, see . diff --git a/modules/cuda/include/opencv2/cuda.hpp b/modules/cuda/include/opencv2/cuda.hpp index a42bfb7d83..1937987db5 100644 --- a/modules/cuda/include/opencv2/cuda.hpp +++ b/modules/cuda/include/opencv2/cuda.hpp @@ -49,10 +49,22 @@ #include "opencv2/core/cuda.hpp" +/** +@defgroup cuda CUDA-accelerated Computer Vision + @ref cuda_intro "Introduction page" + @{ + @defgroup cuda_objdetect Object Detection + @} + + */ + namespace cv { namespace cuda { //////////////// HOG (Histogram-of-Oriented-Gradients) Descriptor and Object Detector ////////////// +//! @addtogroup cuda_objdetect +//! @{ + struct CV_EXPORTS HOGConfidence { double scale; @@ -61,31 +73,92 @@ struct CV_EXPORTS HOGConfidence std::vector part_scores[4]; }; +/** @brief The class implements Histogram of Oriented Gradients (@cite Dalal2005) object detector. + +Interfaces of all methods are kept similar to the CPU HOG descriptor and detector analogues as much +as possible. + +@note + - An example applying the HOG descriptor for people detection can be found at + opencv\_source\_code/samples/cpp/peopledetect.cpp + - A CUDA example applying the HOG descriptor for people detection can be found at + opencv\_source\_code/samples/gpu/hog.cpp + - (Python) An example applying the HOG descriptor for people detection can be found at + opencv\_source\_code/samples/python2/peopledetect.py + */ struct CV_EXPORTS HOGDescriptor { enum { DEFAULT_WIN_SIGMA = -1 }; enum { DEFAULT_NLEVELS = 64 }; enum { DESCR_FORMAT_ROW_BY_ROW, DESCR_FORMAT_COL_BY_COL }; + /** @brief Creates the HOG descriptor and detector. + + @param win\_size Detection window size. Align to block size and block stride. + @param block\_size Block size in pixels. Align to cell size. Only (16,16) is supported for now. + @param block\_stride Block stride. It must be a multiple of cell size. + @param cell\_size Cell size. Only (8, 8) is supported for now. + @param nbins Number of bins. Only 9 bins per cell are supported for now. + @param win\_sigma Gaussian smoothing window parameter. + @param threshold\_L2hys L2-Hys normalization method shrinkage. + @param gamma\_correction Flag to specify whether the gamma correction preprocessing is required or + not. + @param nlevels Maximum number of detection window increases. + */ HOGDescriptor(Size win_size=Size(64, 128), Size block_size=Size(16, 16), Size block_stride=Size(8, 8), Size cell_size=Size(8, 8), int nbins=9, double win_sigma=DEFAULT_WIN_SIGMA, double threshold_L2hys=0.2, bool gamma_correction=true, int nlevels=DEFAULT_NLEVELS); + /** @brief Returns the number of coefficients required for the classification. + */ size_t getDescriptorSize() const; + /** @brief Returns the block histogram size. + */ size_t getBlockHistogramSize() const; + /** @brief Sets coefficients for the linear SVM classifier. + */ void setSVMDetector(const std::vector& detector); + /** @brief Returns coefficients of the classifier trained for people detection (for default window size). + */ static std::vector getDefaultPeopleDetector(); + /** @brief Returns coefficients of the classifier trained for people detection (for 48x96 windows). + */ static std::vector getPeopleDetector48x96(); + /** @brief Returns coefficients of the classifier trained for people detection (for 64x128 windows). + */ static std::vector getPeopleDetector64x128(); + /** @brief Performs object detection without a multi-scale window. + + @param img Source image. CV\_8UC1 and CV\_8UC4 types are supported for now. + @param found\_locations Left-top corner points of detected objects boundaries. + @param hit\_threshold Threshold for the distance between features and SVM classifying plane. + Usually it is 0 and should be specfied in the detector coefficients (as the last free + coefficient). But if the free coefficient is omitted (which is allowed), you can specify it + manually here. + @param win\_stride Window stride. It must be a multiple of block stride. + @param padding Mock parameter to keep the CPU interface compatibility. It must be (0,0). + */ void detect(const GpuMat& img, std::vector& found_locations, double hit_threshold=0, Size win_stride=Size(), Size padding=Size()); + /** @brief Performs object detection with a multi-scale window. + + @param img Source image. See cuda::HOGDescriptor::detect for type limitations. + @param found\_locations Detected objects boundaries. + @param hit\_threshold Threshold for the distance between features and SVM classifying plane. See + cuda::HOGDescriptor::detect for details. + @param win\_stride Window stride. It must be a multiple of block stride. + @param padding Mock parameter to keep the CPU interface compatibility. It must be (0,0). + @param scale0 Coefficient of the detection window increase. + @param group\_threshold Coefficient to regulate the similarity threshold. When detected, some + objects can be covered by many rectangles. 0 means not to perform grouping. See groupRectangles . + */ void detectMultiScale(const GpuMat& img, std::vector& found_locations, double hit_threshold=0, Size win_stride=Size(), Size padding=Size(), double scale0=1.05, @@ -98,6 +171,17 @@ struct CV_EXPORTS HOGDescriptor double hit_threshold, Size win_stride, Size padding, std::vector &conf_out, int group_threshold); + /** @brief Returns block descriptors computed for the whole image. + + @param img Source image. See cuda::HOGDescriptor::detect for type limitations. + @param win\_stride Window stride. It must be a multiple of block stride. + @param descriptors 2D array of descriptors. + @param descr\_format Descriptor storage format: + - **DESCR\_FORMAT\_ROW\_BY\_ROW** - Row-major order. + - **DESCR\_FORMAT\_COL\_BY\_COL** - Column-major order. + + The function is mainly used to learn the classifier. + */ void getDescriptors(const GpuMat& img, Size win_stride, GpuMat& descriptors, int descr_format=DESCR_FORMAT_COL_BY_COL); @@ -145,20 +229,82 @@ protected: //////////////////////////// CascadeClassifier //////////////////////////// -// The cascade classifier class for object detection: supports old haar and new lbp xlm formats and nvbin for haar cascades olny. +/** @brief Cascade classifier class used for object detection. Supports HAAR and LBP cascades. : + +@note + - A cascade classifier example can be found at + opencv\_source\_code/samples/gpu/cascadeclassifier.cpp + - A Nvidea API specific cascade classifier example can be found at + opencv\_source\_code/samples/gpu/cascadeclassifier\_nvidia\_api.cpp + */ class CV_EXPORTS CascadeClassifier_CUDA { public: CascadeClassifier_CUDA(); + /** @brief Loads the classifier from a file. Cascade type is detected automatically by constructor parameter. + + @param filename Name of the file from which the classifier is loaded. Only the old haar classifier + (trained by the haar training application) and NVIDIA's nvbin are supported for HAAR and only new + type of OpenCV XML cascade supported for LBP. + */ CascadeClassifier_CUDA(const String& filename); ~CascadeClassifier_CUDA(); + /** @brief Checks whether the classifier is loaded or not. + */ bool empty() const; + /** @brief Loads the classifier from a file. The previous content is destroyed. + + @param filename Name of the file from which the classifier is loaded. Only the old haar classifier + (trained by the haar training application) and NVIDIA's nvbin are supported for HAAR and only new + type of OpenCV XML cascade supported for LBP. + */ bool load(const String& filename); + /** @brief Destroys the loaded classifier. + */ void release(); - /* returns number of detected objects */ + /** @overload */ int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, double scaleFactor = 1.2, int minNeighbors = 4, Size minSize = Size()); + /** @brief Detects objects of different sizes in the input image. + + @param image Matrix of type CV\_8U containing an image where objects should be detected. + @param objectsBuf Buffer to store detected objects (rectangles). If it is empty, it is allocated + with the default size. If not empty, the function searches not more than N objects, where + N = sizeof(objectsBufer's data)/sizeof(cv::Rect). + @param maxObjectSize Maximum possible object size. Objects larger than that are ignored. Used for + second signature and supported only for LBP cascades. + @param scaleFactor Parameter specifying how much the image size is reduced at each image scale. + @param minNeighbors Parameter specifying how many neighbors each candidate rectangle should have + to retain it. + @param minSize Minimum possible object size. Objects smaller than that are ignored. + + The detected objects are returned as a list of rectangles. + + The function returns the number of detected objects, so you can retrieve them as in the following + example: + @code + cuda::CascadeClassifier_CUDA cascade_gpu(...); + + Mat image_cpu = imread(...) + GpuMat image_gpu(image_cpu); + + GpuMat objbuf; + int detections_number = cascade_gpu.detectMultiScale( image_gpu, + objbuf, 1.2, minNeighbors); + + Mat obj_host; + // download only detected number of rectangles + objbuf.colRange(0, detections_number).download(obj_host); + + Rect* faces = obj_host.ptr(); + for(int i = 0; i < detections_num; ++i) + cv::rectangle(image_cpu, faces[i], Scalar(255)); + + imshow("Faces", image_cpu); + @endcode + @sa CascadeClassifier::detectMultiScale + */ int detectMultiScale(const GpuMat& image, GpuMat& objectsBuf, Size maxObjectSize, Size minSize = Size(), double scaleFactor = 1.1, int minNeighbors = 4); bool findLargestObject; @@ -174,8 +320,13 @@ private: friend class CascadeClassifier_CUDA_LBP; }; +//! @} cuda_objdetect + //////////////////////////// Labeling //////////////////////////// +//! @addtogroup cuda +//! @{ + //!performs labeling via graph cuts of a 2D regular 4-connected graph. CV_EXPORTS void graphcut(GpuMat& terminals, GpuMat& leftTransp, GpuMat& rightTransp, GpuMat& top, GpuMat& bottom, GpuMat& labels, GpuMat& buf, Stream& stream = Stream::Null()); @@ -192,8 +343,13 @@ CV_EXPORTS void connectivityMask(const GpuMat& image, GpuMat& mask, const cv::Sc //! performs connected componnents labeling. CV_EXPORTS void labelComponents(const GpuMat& mask, GpuMat& components, int flags = 0, Stream& stream = Stream::Null()); +//! @} + //////////////////////////// Calib3d //////////////////////////// +//! @addtogroup cuda_calib3d +//! @{ + CV_EXPORTS void transformPoints(const GpuMat& src, const Mat& rvec, const Mat& tvec, GpuMat& dst, Stream& stream = Stream::Null()); @@ -201,13 +357,34 @@ CV_EXPORTS void projectPoints(const GpuMat& src, const Mat& rvec, const Mat& tve const Mat& camera_mat, const Mat& dist_coef, GpuMat& dst, Stream& stream = Stream::Null()); +/** @brief Finds the object pose from 3D-2D point correspondences. + +@param object Single-row matrix of object points. +@param image Single-row matrix of image points. +@param camera\_mat 3x3 matrix of intrinsic camera parameters. +@param dist\_coef Distortion coefficients. See undistortPoints for details. +@param rvec Output 3D rotation vector. +@param tvec Output 3D translation vector. +@param use\_extrinsic\_guess Flag to indicate that the function must use rvec and tvec as an +initial transformation guess. It is not supported for now. +@param num\_iters Maximum number of RANSAC iterations. +@param max\_dist Euclidean distance threshold to detect whether point is inlier or not. +@param min\_inlier\_count Flag to indicate that the function must stop if greater or equal number +of inliers is achieved. It is not supported for now. +@param inliers Output vector of inlier indices. + */ CV_EXPORTS void solvePnPRansac(const Mat& object, const Mat& image, const Mat& camera_mat, const Mat& dist_coef, Mat& rvec, Mat& tvec, bool use_extrinsic_guess=false, int num_iters=100, float max_dist=8.0, int min_inlier_count=100, std::vector* inliers=NULL); +//! @} + //////////////////////////// VStab //////////////////////////// +//! @addtogroup cuda +//! @{ + //! removes points (CV_32FC2, single row matrix) with zero mask value CV_EXPORTS void compactPoints(GpuMat &points0, GpuMat &points1, const GpuMat &mask); @@ -215,6 +392,8 @@ CV_EXPORTS void calcWobbleSuppressionMaps( int left, int idx, int right, Size size, const Mat &ml, const Mat &mr, GpuMat &mapx, GpuMat &mapy); +//! @} + }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDA_HPP__ */ diff --git a/modules/cudaarithm/include/opencv2/cudaarithm.hpp b/modules/cudaarithm/include/opencv2/cudaarithm.hpp index e493fd759c..1ed1b3fe79 100644 --- a/modules/cudaarithm/include/opencv2/cudaarithm.hpp +++ b/modules/cudaarithm/include/opencv2/cudaarithm.hpp @@ -49,18 +49,85 @@ #include "opencv2/core/cuda.hpp" +/** + @addtogroup cuda + @{ + @defgroup cudaarithm Operations on Matrices + @{ + @defgroup cudaarithm_core Core Operations on Matrices + @defgroup cudaarithm_elem Per-element Operations + @defgroup cudaarithm_reduce Matrix Reductions + @defgroup cudaarithm_arithm Arithm Operations on Matrices + @} + @} + */ + namespace cv { namespace cuda { -//! adds one matrix to another (dst = src1 + src2) +//! @addtogroup cudaarithm +//! @{ + +//! @addtogroup cudaarithm_elem +//! @{ + +/** @brief Computes a matrix-matrix or matrix-scalar sum. + +@param src1 First source matrix or scalar. +@param src2 Second source matrix or scalar. Matrix should have the same size and type as src1 . +@param dst Destination matrix that has the same size and number of channels as the input array(s). +The depth is defined by dtype or src1 depth. +@param mask Optional operation mask, 8-bit single channel array, that specifies elements of the +destination array to be changed. +@param dtype Optional depth of the output array. +@param stream Stream for the asynchronous version. + +@sa add + */ CV_EXPORTS void add(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null()); -//! subtracts one matrix from another (dst = src1 - src2) +/** @brief Computes a matrix-matrix or matrix-scalar difference. + +@param src1 First source matrix or scalar. +@param src2 Second source matrix or scalar. Matrix should have the same size and type as src1 . +@param dst Destination matrix that has the same size and number of channels as the input array(s). +The depth is defined by dtype or src1 depth. +@param mask Optional operation mask, 8-bit single channel array, that specifies elements of the +destination array to be changed. +@param dtype Optional depth of the output array. +@param stream Stream for the asynchronous version. + +@sa subtract + */ CV_EXPORTS void subtract(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), int dtype = -1, Stream& stream = Stream::Null()); -//! computes element-wise weighted product of the two arrays (dst = scale * src1 * src2) +/** @brief Computes a matrix-matrix or matrix-scalar per-element product. + +@param src1 First source matrix or scalar. +@param src2 Second source matrix or scalar. +@param dst Destination matrix that has the same size and number of channels as the input array(s). +The depth is defined by dtype or src1 depth. +@param scale Optional scale factor. +@param dtype Optional depth of the output array. +@param stream Stream for the asynchronous version. + +@sa multiply + */ CV_EXPORTS void multiply(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()); -//! computes element-wise weighted quotient of the two arrays (dst = scale * (src1 / src2)) +/** @brief Computes a matrix-matrix or matrix-scalar division. + +@param src1 First source matrix or a scalar. +@param src2 Second source matrix or scalar. +@param dst Destination matrix that has the same size and number of channels as the input array(s). +The depth is defined by dtype or src1 depth. +@param scale Optional scale factor. +@param dtype Optional depth of the output array. +@param stream Stream for the asynchronous version. + +This function, in contrast to divide, uses a round-down rounding mode. + +@sa divide + */ CV_EXPORTS void divide(InputArray src1, InputArray src2, OutputArray dst, double scale = 1, int dtype = -1, Stream& stream = Stream::Null()); //! computes element-wise weighted reciprocal of an array (dst = scale/src2) @@ -69,59 +136,199 @@ static inline void divide(double src1, InputArray src2, OutputArray dst, int dty divide(src1, src2, dst, 1.0, dtype, stream); } -//! computes element-wise absolute difference of two arrays (dst = abs(src1 - src2)) +/** @brief Computes per-element absolute difference of two matrices (or of a matrix and scalar). + +@param src1 First source matrix or scalar. +@param src2 Second source matrix or scalar. +@param dst Destination matrix that has the same size and type as the input array(s). +@param stream Stream for the asynchronous version. + +@sa absdiff + */ CV_EXPORTS void absdiff(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null()); -//! computes absolute value of each matrix element +/** @brief Computes an absolute value of each matrix element. + +@param src Source matrix. +@param dst Destination matrix with the same size and type as src . +@param stream Stream for the asynchronous version. + +@sa abs + */ CV_EXPORTS void abs(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); -//! computes square of each pixel in an image +/** @brief Computes a square value of each matrix element. + +@param src Source matrix. +@param dst Destination matrix with the same size and type as src . +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void sqr(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); -//! computes square root of each pixel in an image +/** @brief Computes a square root of each matrix element. + +@param src Source matrix. +@param dst Destination matrix with the same size and type as src . +@param stream Stream for the asynchronous version. + +@sa sqrt + */ CV_EXPORTS void sqrt(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); -//! computes exponent of each matrix element +/** @brief Computes an exponent of each matrix element. + +@param src Source matrix. +@param dst Destination matrix with the same size and type as src . +@param stream Stream for the asynchronous version. + +@sa exp + */ CV_EXPORTS void exp(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); -//! computes natural logarithm of absolute value of each matrix element +/** @brief Computes a natural logarithm of absolute value of each matrix element. + +@param src Source matrix. +@param dst Destination matrix with the same size and type as src . +@param stream Stream for the asynchronous version. + +@sa log + */ CV_EXPORTS void log(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); -//! computes power of each matrix element: -//! (dst(i,j) = pow( src(i,j) , power), if src.type() is integer -//! (dst(i,j) = pow(fabs(src(i,j)), power), otherwise +/** @brief Raises every matrix element to a power. + +@param src Source matrix. +@param power Exponent of power. +@param dst Destination matrix with the same size and type as src . +@param stream Stream for the asynchronous version. + +The function pow raises every element of the input matrix to power : + +\f[\texttt{dst} (I) = \fork{\texttt{src}(I)^power}{if \texttt{power} is integer}{|\texttt{src}(I)|^power}{otherwise}\f] + +@sa pow + */ CV_EXPORTS void pow(InputArray src, double power, OutputArray dst, Stream& stream = Stream::Null()); -//! compares elements of two arrays (dst = src1 src2) +/** @brief Compares elements of two matrices (or of a matrix and scalar). + +@param src1 First source matrix or scalar. +@param src2 Second source matrix or scalar. +@param dst Destination matrix that has the same size and type as the input array(s). +@param cmpop Flag specifying the relation between the elements to be checked: +- **CMP\_EQ:** a(.) == b(.) +- **CMP\_GT:** a(.) \< b(.) +- **CMP\_GE:** a(.) \<= b(.) +- **CMP\_LT:** a(.) \< b(.) +- **CMP\_LE:** a(.) \<= b(.) +- **CMP\_NE:** a(.) != b(.) +@param stream Stream for the asynchronous version. + +@sa compare + */ CV_EXPORTS void compare(InputArray src1, InputArray src2, OutputArray dst, int cmpop, Stream& stream = Stream::Null()); -//! performs per-elements bit-wise inversion +/** @brief Performs a per-element bitwise inversion. + +@param src Source matrix. +@param dst Destination matrix with the same size and type as src . +@param mask Optional operation mask. 8-bit single channel image. +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void bitwise_not(InputArray src, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); -//! calculates per-element bit-wise disjunction of two arrays +/** @brief Performs a per-element bitwise disjunction of two matrices (or of matrix and scalar). + +@param src1 First source matrix or scalar. +@param src2 Second source matrix or scalar. +@param dst Destination matrix that has the same size and type as the input array(s). +@param mask Optional operation mask. 8-bit single channel image. +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void bitwise_or(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); -//! calculates per-element bit-wise conjunction of two arrays +/** @brief Performs a per-element bitwise conjunction of two matrices (or of matrix and scalar). + +@param src1 First source matrix or scalar. +@param src2 Second source matrix or scalar. +@param dst Destination matrix that has the same size and type as the input array(s). +@param mask Optional operation mask. 8-bit single channel image. +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void bitwise_and(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); -//! calculates per-element bit-wise "exclusive or" operation +/** @brief Performs a per-element bitwise exclusive or operation of two matrices (or of matrix and scalar). + +@param src1 First source matrix or scalar. +@param src2 Second source matrix or scalar. +@param dst Destination matrix that has the same size and type as the input array(s). +@param mask Optional operation mask. 8-bit single channel image. +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void bitwise_xor(InputArray src1, InputArray src2, OutputArray dst, InputArray mask = noArray(), Stream& stream = Stream::Null()); -//! pixel by pixel right shift of an image by a constant value -//! supports 1, 3 and 4 channels images with integers elements +/** @brief Performs pixel by pixel right shift of an image by a constant value. + +@param src Source matrix. Supports 1, 3 and 4 channels images with integers elements. +@param val Constant values, one per channel. +@param dst Destination matrix with the same size and type as src . +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void rshift(InputArray src, Scalar_ val, OutputArray dst, Stream& stream = Stream::Null()); -//! pixel by pixel left shift of an image by a constant value -//! supports 1, 3 and 4 channels images with CV_8U, CV_16U or CV_32S depth +/** @brief Performs pixel by pixel right left of an image by a constant value. + +@param src Source matrix. Supports 1, 3 and 4 channels images with CV\_8U , CV\_16U or CV\_32S +depth. +@param val Constant values, one per channel. +@param dst Destination matrix with the same size and type as src . +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void lshift(InputArray src, Scalar_ val, OutputArray dst, Stream& stream = Stream::Null()); -//! computes per-element minimum of two arrays (dst = min(src1, src2)) +/** @brief Computes the per-element minimum of two matrices (or a matrix and a scalar). + +@param src1 First source matrix or scalar. +@param src2 Second source matrix or scalar. +@param dst Destination matrix that has the same size and type as the input array(s). +@param stream Stream for the asynchronous version. + +@sa min + */ CV_EXPORTS void min(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null()); -//! computes per-element maximum of two arrays (dst = max(src1, src2)) +/** @brief Computes the per-element maximum of two matrices (or a matrix and a scalar). + +@param src1 First source matrix or scalar. +@param src2 Second source matrix or scalar. +@param dst Destination matrix that has the same size and type as the input array(s). +@param stream Stream for the asynchronous version. + +@sa max + */ CV_EXPORTS void max(InputArray src1, InputArray src2, OutputArray dst, Stream& stream = Stream::Null()); -//! computes the weighted sum of two arrays (dst = alpha*src1 + beta*src2 + gamma) +/** @brief Computes the weighted sum of two arrays. + +@param src1 First source array. +@param alpha Weight for the first array elements. +@param src2 Second source array of the same size and channel number as src1 . +@param beta Weight for the second array elements. +@param dst Destination array that has the same size and number of channels as the input arrays. +@param gamma Scalar added to each sum. +@param dtype Optional depth of the destination array. When both input arrays have the same depth, +dtype can be set to -1, which will be equivalent to src1.depth(). +@param stream Stream for the asynchronous version. + +The function addWeighted calculates the weighted sum of two arrays as follows: + +\f[\texttt{dst} (I)= \texttt{saturate} ( \texttt{src1} (I)* \texttt{alpha} + \texttt{src2} (I)* \texttt{beta} + \texttt{gamma} )\f] + +where I is a multi-dimensional index of array elements. In case of multi-channel arrays, each +channel is processed independently. + +@sa addWeighted + */ CV_EXPORTS void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, int dtype = -1, Stream& stream = Stream::Null()); @@ -131,142 +338,352 @@ static inline void scaleAdd(InputArray src1, double alpha, InputArray src2, Outp addWeighted(src1, alpha, src2, 1.0, 0.0, dst, -1, stream); } -//! applies fixed threshold to the image +/** @brief Applies a fixed-level threshold to each array element. + +@param src Source array (single-channel). +@param dst Destination array with the same size and type as src . +@param thresh Threshold value. +@param maxval Maximum value to use with THRESH\_BINARY and THRESH\_BINARY\_INV threshold types. +@param type Threshold type. For details, see threshold . The THRESH\_OTSU and THRESH\_TRIANGLE +threshold types are not supported. +@param stream Stream for the asynchronous version. + +@sa threshold + */ CV_EXPORTS double threshold(InputArray src, OutputArray dst, double thresh, double maxval, int type, Stream& stream = Stream::Null()); -//! computes magnitude of complex (x(i).re, x(i).im) vector -//! supports only CV_32FC2 type +/** @brief Computes magnitudes of complex matrix elements. + +@param xy Source complex matrix in the interleaved format ( CV\_32FC2 ). +@param magnitude Destination matrix of float magnitudes ( CV\_32FC1 ). +@param stream Stream for the asynchronous version. + +@sa magnitude + */ CV_EXPORTS void magnitude(InputArray xy, OutputArray magnitude, Stream& stream = Stream::Null()); -//! computes squared magnitude of complex (x(i).re, x(i).im) vector -//! supports only CV_32FC2 type +/** @brief Computes squared magnitudes of complex matrix elements. + +@param xy Source complex matrix in the interleaved format ( CV\_32FC2 ). +@param magnitude Destination matrix of float magnitude squares ( CV\_32FC1 ). +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void magnitudeSqr(InputArray xy, OutputArray magnitude, Stream& stream = Stream::Null()); -//! computes magnitude of each (x(i), y(i)) vector -//! supports only floating-point source +/** @overload + computes magnitude of each (x(i), y(i)) vector + supports only floating-point source +@param x Source matrix containing real components ( CV\_32FC1 ). +@param y Source matrix containing imaginary components ( CV\_32FC1 ). +@param magnitude Destination matrix of float magnitudes ( CV\_32FC1 ). +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void magnitude(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null()); -//! computes squared magnitude of each (x(i), y(i)) vector -//! supports only floating-point source +/** @overload + computes squared magnitude of each (x(i), y(i)) vector + supports only floating-point source +@param x Source matrix containing real components ( CV\_32FC1 ). +@param y Source matrix containing imaginary components ( CV\_32FC1 ). +@param magnitude Destination matrix of float magnitude squares ( CV\_32FC1 ). +@param stream Stream for the asynchronous version. +*/ CV_EXPORTS void magnitudeSqr(InputArray x, InputArray y, OutputArray magnitude, Stream& stream = Stream::Null()); -//! computes angle of each (x(i), y(i)) vector -//! supports only floating-point source +/** @brief Computes polar angles of complex matrix elements. + +@param x Source matrix containing real components ( CV\_32FC1 ). +@param y Source matrix containing imaginary components ( CV\_32FC1 ). +@param angle Destination matrix of angles ( CV\_32FC1 ). +@param angleInDegrees Flag for angles that must be evaluated in degrees. +@param stream Stream for the asynchronous version. + +@sa phase + */ CV_EXPORTS void phase(InputArray x, InputArray y, OutputArray angle, bool angleInDegrees = false, Stream& stream = Stream::Null()); -//! converts Cartesian coordinates to polar -//! supports only floating-point source +/** @brief Converts Cartesian coordinates into polar. + +@param x Source matrix containing real components ( CV\_32FC1 ). +@param y Source matrix containing imaginary components ( CV\_32FC1 ). +@param magnitude Destination matrix of float magnitudes ( CV\_32FC1 ). +@param angle Destination matrix of angles ( CV\_32FC1 ). +@param angleInDegrees Flag for angles that must be evaluated in degrees. +@param stream Stream for the asynchronous version. + +@sa cartToPolar + */ CV_EXPORTS void cartToPolar(InputArray x, InputArray y, OutputArray magnitude, OutputArray angle, bool angleInDegrees = false, Stream& stream = Stream::Null()); -//! converts polar coordinates to Cartesian -//! supports only floating-point source +/** @brief Converts polar coordinates into Cartesian. + +@param magnitude Source matrix containing magnitudes ( CV\_32FC1 ). +@param angle Source matrix containing angles ( CV\_32FC1 ). +@param x Destination matrix of real components ( CV\_32FC1 ). +@param y Destination matrix of imaginary components ( CV\_32FC1 ). +@param angleInDegrees Flag that indicates angles in degrees. +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void polarToCart(InputArray magnitude, InputArray angle, OutputArray x, OutputArray y, bool angleInDegrees = false, Stream& stream = Stream::Null()); -//! makes multi-channel array out of several single-channel arrays +//! @} cudaarithm_elem + +//! @addtogroup cudaarithm_core +//! @{ + +/** @brief Makes a multi-channel matrix out of several single-channel matrices. + +@param src Array/vector of source matrices. +@param n Number of source matrices. +@param dst Destination matrix. +@param stream Stream for the asynchronous version. + +@sa merge + */ CV_EXPORTS void merge(const GpuMat* src, size_t n, OutputArray dst, Stream& stream = Stream::Null()); +/** @overload */ CV_EXPORTS void merge(const std::vector& src, OutputArray dst, Stream& stream = Stream::Null()); -//! copies each plane of a multi-channel array to a dedicated array +/** @brief Copies each plane of a multi-channel matrix into an array. + +@param src Source matrix. +@param dst Destination array/vector of single-channel matrices. +@param stream Stream for the asynchronous version. + +@sa split + */ CV_EXPORTS void split(InputArray src, GpuMat* dst, Stream& stream = Stream::Null()); +/** @overload */ CV_EXPORTS void split(InputArray src, std::vector& dst, Stream& stream = Stream::Null()); -//! transposes the matrix -//! supports matrix with element size = 1, 4 and 8 bytes (CV_8UC1, CV_8UC4, CV_16UC2, CV_32FC1, etc) +/** @brief Transposes a matrix. + +@param src1 Source matrix. 1-, 4-, 8-byte element sizes are supported for now. +@param dst Destination matrix. +@param stream Stream for the asynchronous version. + +@sa transpose + */ CV_EXPORTS void transpose(InputArray src1, OutputArray dst, Stream& stream = Stream::Null()); -//! reverses the order of the rows, columns or both in a matrix -//! supports 1, 3 and 4 channels images with CV_8U, CV_16U, CV_32S or CV_32F depth +/** @brief Flips a 2D matrix around vertical, horizontal, or both axes. + +@param src Source matrix. Supports 1, 3 and 4 channels images with CV\_8U, CV\_16U, CV\_32S or +CV\_32F depth. +@param dst Destination matrix. +@param flipCode Flip mode for the source: +- 0 Flips around x-axis. +- \> 0 Flips around y-axis. +- \< 0 Flips around both axes. +@param stream Stream for the asynchronous version. + +@sa flip + */ CV_EXPORTS void flip(InputArray src, OutputArray dst, int flipCode, Stream& stream = Stream::Null()); -//! transforms 8-bit unsigned integers using lookup table: dst(i)=lut(src(i)) -//! destination array will have the depth type as lut and the same channels number as source -//! supports CV_8UC1, CV_8UC3 types +/** @brief Base class for transform using lookup table. + */ class CV_EXPORTS LookUpTable : public Algorithm { public: + /** @brief Transforms the source matrix into the destination matrix using the given look-up table: + dst(I) = lut(src(I)) . + + @param src Source matrix. CV\_8UC1 and CV\_8UC3 matrices are supported for now. + @param dst Destination matrix. + @param stream Stream for the asynchronous version. + */ virtual void transform(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0; }; +/** @brief Creates implementation for cuda::LookUpTable . + +@param lut Look-up table of 256 elements. It is a continuous CV\_8U matrix. + */ CV_EXPORTS Ptr createLookUpTable(InputArray lut); -//! copies 2D array to a larger destination array and pads borders with user-specifiable constant +/** @brief Forms a border around an image. + +@param src Source image. CV\_8UC1 , CV\_8UC4 , CV\_32SC1 , and CV\_32FC1 types are supported. +@param dst Destination image with the same type as src. The size is +Size(src.cols+left+right, src.rows+top+bottom) . +@param top +@param bottom +@param left +@param right Number of pixels in each direction from the source image rectangle to extrapolate. +For example: top=1, bottom=1, left=1, right=1 mean that 1 pixel-wide border needs to be built. +@param borderType Border type. See borderInterpolate for details. BORDER\_REFLECT101 , +BORDER\_REPLICATE , BORDER\_CONSTANT , BORDER\_REFLECT and BORDER\_WRAP are supported for now. +@param value Border value. +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void copyMakeBorder(InputArray src, OutputArray dst, int top, int bottom, int left, int right, int borderType, Scalar value = Scalar(), Stream& stream = Stream::Null()); -//! computes norm of array -//! supports NORM_INF, NORM_L1, NORM_L2 -//! supports all matrices except 64F +//! @} cudaarithm_core + +//! @addtogroup cudaarithm_reduce +//! @{ + +/** @brief Returns the norm of a matrix (or difference of two matrices). + +@param src1 Source matrix. Any matrices except 64F are supported. +@param normType Norm type. NORM\_L1 , NORM\_L2 , and NORM\_INF are supported for now. +@param mask optional operation mask; it must have the same size as src1 and CV\_8UC1 type. +@param buf Optional buffer to avoid extra memory allocations. It is resized automatically. + +@sa norm + */ CV_EXPORTS double norm(InputArray src1, int normType, InputArray mask, GpuMat& buf); +/** @overload +uses new buffer, no mask +*/ static inline double norm(InputArray src, int normType) { GpuMat buf; return norm(src, normType, GpuMat(), buf); } +/** @overload +no mask +*/ static inline double norm(InputArray src, int normType, GpuMat& buf) { return norm(src, normType, GpuMat(), buf); } -//! computes norm of the difference between two arrays -//! supports NORM_INF, NORM_L1, NORM_L2 -//! supports only CV_8UC1 type +/** @brief Returns the difference of two matrices. + +@param src1 Source matrix. Any matrices except 64F are supported. +@param src2 Second source matrix (if any) with the same size and type as src1. +@param normType Norm type. NORM\_L1 , NORM\_L2 , and NORM\_INF are supported for now. +@param buf Optional buffer to avoid extra memory allocations. It is resized automatically. + +@sa norm + */ CV_EXPORTS double norm(InputArray src1, InputArray src2, GpuMat& buf, int normType=NORM_L2); +/** @overload +uses new buffer +*/ static inline double norm(InputArray src1, InputArray src2, int normType=NORM_L2) { GpuMat buf; return norm(src1, src2, buf, normType); } -//! computes sum of array elements -//! supports only single channel images +/** @brief Returns the sum of matrix elements. + +@param src Source image of any depth except for CV\_64F . +@param mask optional operation mask; it must have the same size as src1 and CV\_8UC1 type. +@param buf Optional buffer to avoid extra memory allocations. It is resized automatically. + +@sa sum + */ CV_EXPORTS Scalar sum(InputArray src, InputArray mask, GpuMat& buf); +/** @overload +uses new buffer, no mask +*/ static inline Scalar sum(InputArray src) { GpuMat buf; return sum(src, GpuMat(), buf); } +/** @overload +no mask +*/ static inline Scalar sum(InputArray src, GpuMat& buf) { return sum(src, GpuMat(), buf); } -//! computes sum of array elements absolute values -//! supports only single channel images +/** @brief Returns the sum of absolute values for matrix elements. + +@param src Source image of any depth except for CV\_64F . +@param mask optional operation mask; it must have the same size as src1 and CV\_8UC1 type. +@param buf Optional buffer to avoid extra memory allocations. It is resized automatically. + */ CV_EXPORTS Scalar absSum(InputArray src, InputArray mask, GpuMat& buf); +/** @overload +uses new buffer, no mask +*/ static inline Scalar absSum(InputArray src) { GpuMat buf; return absSum(src, GpuMat(), buf); } +/** @overload +no mask +*/ static inline Scalar absSum(InputArray src, GpuMat& buf) { return absSum(src, GpuMat(), buf); } -//! computes squared sum of array elements -//! supports only single channel images +/** @brief Returns the squared sum of matrix elements. + +@param src Source image of any depth except for CV\_64F . +@param mask optional operation mask; it must have the same size as src1 and CV\_8UC1 type. +@param buf Optional buffer to avoid extra memory allocations. It is resized automatically. + */ CV_EXPORTS Scalar sqrSum(InputArray src, InputArray mask, GpuMat& buf); +/** @overload +uses new buffer, no mask +*/ static inline Scalar sqrSum(InputArray src) { GpuMat buf; return sqrSum(src, GpuMat(), buf); } +/** @overload +no mask +*/ static inline Scalar sqrSum(InputArray src, GpuMat& buf) { return sqrSum(src, GpuMat(), buf); } -//! finds global minimum and maximum array elements and returns their values +/** @brief Finds global minimum and maximum matrix elements and returns their values. + +@param src Single-channel source image. +@param minVal Pointer to the returned minimum value. Use NULL if not required. +@param maxVal Pointer to the returned maximum value. Use NULL if not required. +@param mask Optional mask to select a sub-matrix. +@param buf Optional buffer to avoid extra memory allocations. It is resized automatically. + +The function does not work with CV\_64F images on GPUs with the compute capability \< 1.3. + +@sa minMaxLoc + */ CV_EXPORTS void minMax(InputArray src, double* minVal, double* maxVal, InputArray mask, GpuMat& buf); +/** @overload +uses new buffer +*/ static inline void minMax(InputArray src, double* minVal, double* maxVal=0, InputArray mask=noArray()) { GpuMat buf; minMax(src, minVal, maxVal, mask, buf); } -//! finds global minimum and maximum array elements and returns their values with locations +/** @brief Finds global minimum and maximum matrix elements and returns their values with locations. + +@param src Single-channel source image. +@param minVal Pointer to the returned minimum value. Use NULL if not required. +@param maxVal Pointer to the returned maximum value. Use NULL if not required. +@param minLoc Pointer to the returned minimum location. Use NULL if not required. +@param maxLoc Pointer to the returned maximum location. Use NULL if not required. +@param mask Optional mask to select a sub-matrix. +@param valbuf Optional values buffer to avoid extra memory allocations. It is resized +automatically. +@param locbuf Optional locations buffer to avoid extra memory allocations. It is resized +automatically. +The function does not work with CV\_64F images on GPU with the compute capability \< 1.3. + +@sa minMaxLoc + */ CV_EXPORTS void minMaxLoc(InputArray src, double* minVal, double* maxVal, Point* minLoc, Point* maxLoc, InputArray mask, GpuMat& valbuf, GpuMat& locbuf); +/** @overload +uses new buffer +*/ static inline void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, Point* minLoc=0, Point* maxLoc=0, InputArray mask=noArray()) { @@ -274,34 +691,104 @@ static inline void minMaxLoc(InputArray src, double* minVal, double* maxVal=0, P minMaxLoc(src, minVal, maxVal, minLoc, maxLoc, mask, valBuf, locBuf); } -//! counts non-zero array elements +/** @brief Counts non-zero matrix elements. + +@param src Single-channel source image. +@param buf Optional buffer to avoid extra memory allocations. It is resized automatically. + +The function does not work with CV\_64F images on GPUs with the compute capability \< 1.3. + +@sa countNonZero + */ CV_EXPORTS int countNonZero(InputArray src, GpuMat& buf); +/** @overload +uses new buffer +*/ static inline int countNonZero(const GpuMat& src) { GpuMat buf; return countNonZero(src, buf); } -//! reduces a matrix to a vector +/** @brief Reduces a matrix to a vector. + +@param mtx Source 2D matrix. +@param vec Destination vector. Its size and type is defined by dim and dtype parameters. +@param dim Dimension index along which the matrix is reduced. 0 means that the matrix is reduced +to a single row. 1 means that the matrix is reduced to a single column. +@param reduceOp Reduction operation that could be one of the following: +- **CV\_REDUCE\_SUM** The output is the sum of all rows/columns of the matrix. +- **CV\_REDUCE\_AVG** The output is the mean vector of all rows/columns of the matrix. +- **CV\_REDUCE\_MAX** The output is the maximum (column/row-wise) of all rows/columns of the +matrix. +- **CV\_REDUCE\_MIN** The output is the minimum (column/row-wise) of all rows/columns of the +matrix. +@param dtype When it is negative, the destination vector will have the same type as the source +matrix. Otherwise, its type will be CV\_MAKE\_TYPE(CV\_MAT\_DEPTH(dtype), mtx.channels()) . +@param stream Stream for the asynchronous version. + +The function reduce reduces the matrix to a vector by treating the matrix rows/columns as a set of +1D vectors and performing the specified operation on the vectors until a single row/column is +obtained. For example, the function can be used to compute horizontal and vertical projections of a +raster image. In case of CV\_REDUCE\_SUM and CV\_REDUCE\_AVG , the output may have a larger element +bit-depth to preserve accuracy. And multi-channel arrays are also supported in these two reduction +modes. + +@sa reduce + */ CV_EXPORTS void reduce(InputArray mtx, OutputArray vec, int dim, int reduceOp, int dtype = -1, Stream& stream = Stream::Null()); -//! computes mean value and standard deviation of all or selected array elements -//! supports only CV_8UC1 type +/** @brief Computes a mean value and a standard deviation of matrix elements. + +@param mtx Source matrix. CV\_8UC1 matrices are supported for now. +@param mean Mean value. +@param stddev Standard deviation value. +@param buf Optional buffer to avoid extra memory allocations. It is resized automatically. + +@sa meanStdDev + */ CV_EXPORTS void meanStdDev(InputArray mtx, Scalar& mean, Scalar& stddev, GpuMat& buf); +/** @overload +uses new buffer +*/ static inline void meanStdDev(InputArray src, Scalar& mean, Scalar& stddev) { GpuMat buf; meanStdDev(src, mean, stddev, buf); } -//! computes the standard deviation of integral images -//! supports only CV_32SC1 source type and CV_32FC1 sqr type -//! output will have CV_32FC1 type +/** @brief Computes a standard deviation of integral images. + +@param src Source image. Only the CV\_32SC1 type is supported. +@param sqr Squared source image. Only the CV\_32FC1 type is supported. +@param dst Destination image with the same type and size as src . +@param rect Rectangular window. +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void rectStdDev(InputArray src, InputArray sqr, OutputArray dst, Rect rect, Stream& stream = Stream::Null()); -//! scales and shifts array elements so that either the specified norm (alpha) or the minimum (alpha) and maximum (beta) array values get the specified values +/** @brief Normalizes the norm or value range of an array. + +@param src Input array. +@param dst Output array of the same size as src . +@param alpha Norm value to normalize to or the lower range boundary in case of the range +normalization. +@param beta Upper range boundary in case of the range normalization; it is not used for the norm +normalization. +@param norm_type Normalization type ( NORM\_MINMAX , NORM\_L2 , NORM\_L1 or NORM\_INF ). +@param dtype When negative, the output array has the same type as src; otherwise, it has the same +number of channels as src and the depth =CV\_MAT\_DEPTH(dtype). +@param mask Optional operation mask. +@param norm\_buf Optional buffer to avoid extra memory allocations. It is resized automatically. +@param cvt\_buf Optional buffer to avoid extra memory allocations. It is resized automatically. + +@sa normalize + */ CV_EXPORTS void normalize(InputArray src, OutputArray dst, double alpha, double beta, int norm_type, int dtype, InputArray mask, GpuMat& norm_buf, GpuMat& cvt_buf); +/** @overload +uses new buffers +*/ static inline void normalize(InputArray src, OutputArray dst, double alpha = 1, double beta = 0, int norm_type = NORM_L2, int dtype = -1, InputArray mask = noArray()) { @@ -310,65 +797,179 @@ static inline void normalize(InputArray src, OutputArray dst, double alpha = 1, normalize(src, dst, alpha, beta, norm_type, dtype, mask, norm_buf, cvt_buf); } -//! computes the integral image -//! sum will have CV_32S type, but will contain unsigned int values -//! supports only CV_8UC1 source type +/** @brief Computes an integral image. + +@param src Source image. Only CV\_8UC1 images are supported for now. +@param sum Integral image containing 32-bit unsigned integer values packed into CV\_32SC1 . +@param buffer Optional buffer to avoid extra memory allocations. It is resized automatically. +@param stream Stream for the asynchronous version. + +@sa integral + */ CV_EXPORTS void integral(InputArray src, OutputArray sum, GpuMat& buffer, Stream& stream = Stream::Null()); static inline void integralBuffered(InputArray src, OutputArray sum, GpuMat& buffer, Stream& stream = Stream::Null()) { integral(src, sum, buffer, stream); } +/** @overload +uses new buffer +*/ static inline void integral(InputArray src, OutputArray sum, Stream& stream = Stream::Null()) { GpuMat buffer; integral(src, sum, buffer, stream); } -//! computes squared integral image -//! result matrix will have 64F type, but will contain 64U values -//! supports source images of 8UC1 type only +/** @brief Computes a squared integral image. + +@param src Source image. Only CV\_8UC1 images are supported for now. +@param sqsum Squared integral image containing 64-bit unsigned integer values packed into +CV\_64FC1 . +@param buf Optional buffer to avoid extra memory allocations. It is resized automatically. +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void sqrIntegral(InputArray src, OutputArray sqsum, GpuMat& buf, Stream& stream = Stream::Null()); +/** @overload +uses new buffer +*/ static inline void sqrIntegral(InputArray src, OutputArray sqsum, Stream& stream = Stream::Null()) { GpuMat buffer; sqrIntegral(src, sqsum, buffer, stream); } +//! @} cudaarithm_reduce + +//! @addtogroup cudaarithm_arithm +//! @{ + +/** @brief Performs generalized matrix multiplication. + +@param src1 First multiplied input matrix that should have CV\_32FC1 , CV\_64FC1 , CV\_32FC2 , or +CV\_64FC2 type. +@param src2 Second multiplied input matrix of the same type as src1 . +@param alpha Weight of the matrix product. +@param src3 Third optional delta matrix added to the matrix product. It should have the same type +as src1 and src2 . +@param beta Weight of src3 . +@param dst Destination matrix. It has the proper size and the same type as input matrices. +@param flags Operation flags: +- **GEMM\_1\_T** transpose src1 +- **GEMM\_2\_T** transpose src2 +- **GEMM\_3\_T** transpose src3 +@param stream Stream for the asynchronous version. + +The function performs generalized matrix multiplication similar to the gemm functions in BLAS level +3. For example, gemm(src1, src2, alpha, src3, beta, dst, GEMM\_1\_T + GEMM\_3\_T) corresponds to + +\f[\texttt{dst} = \texttt{alpha} \cdot \texttt{src1} ^T \cdot \texttt{src2} + \texttt{beta} \cdot \texttt{src3} ^T\f] + +@note Transposition operation doesn't support CV\_64FC2 input type. + +@sa gemm + */ CV_EXPORTS void gemm(InputArray src1, InputArray src2, double alpha, InputArray src3, double beta, OutputArray dst, int flags = 0, Stream& stream = Stream::Null()); -//! performs per-element multiplication of two full (not packed) Fourier spectrums -//! supports 32FC2 matrices only (interleaved format) +/** @brief Performs a per-element multiplication of two Fourier spectrums. + +@param src1 First spectrum. +@param src2 Second spectrum with the same size and type as a . +@param dst Destination spectrum. +@param flags Mock parameter used for CPU/CUDA interfaces similarity. +@param conjB Optional flag to specify if the second spectrum needs to be conjugated before the +multiplication. +@param stream Stream for the asynchronous version. + +Only full (not packed) CV\_32FC2 complex spectrums in the interleaved format are supported for now. + +@sa mulSpectrums + */ CV_EXPORTS void mulSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, bool conjB=false, Stream& stream = Stream::Null()); -//! performs per-element multiplication of two full (not packed) Fourier spectrums -//! supports 32FC2 matrices only (interleaved format) +/** @brief Performs a per-element multiplication of two Fourier spectrums and scales the result. + +@param src1 First spectrum. +@param src2 Second spectrum with the same size and type as a . +@param dst Destination spectrum. +@param flags Mock parameter used for CPU/CUDA interfaces similarity. +@param scale Scale constant. +@param conjB Optional flag to specify if the second spectrum needs to be conjugated before the +multiplication. +@param stream Stream for the asynchronous version. + +Only full (not packed) CV\_32FC2 complex spectrums in the interleaved format are supported for now. + +@sa mulSpectrums + */ CV_EXPORTS void mulAndScaleSpectrums(InputArray src1, InputArray src2, OutputArray dst, int flags, float scale, bool conjB=false, Stream& stream = Stream::Null()); -//! Performs a forward or inverse discrete Fourier transform (1D or 2D) of floating point matrix. -//! Param dft_size is the size of DFT transform. -//! -//! If the source matrix is not continous, then additional copy will be done, -//! so to avoid copying ensure the source matrix is continous one. If you want to use -//! preallocated output ensure it is continuous too, otherwise it will be reallocated. -//! -//! Being implemented via CUFFT real-to-complex transform result contains only non-redundant values -//! in CUFFT's format. Result as full complex matrix for such kind of transform cannot be retrieved. -//! -//! For complex-to-real transform it is assumed that the source matrix is packed in CUFFT's format. +/** @brief Performs a forward or inverse discrete Fourier transform (1D or 2D) of the floating point matrix. + +@param src Source matrix (real or complex). +@param dst Destination matrix (real or complex). +@param dft\_size Size of a discrete Fourier transform. +@param flags Optional flags: +- **DFT\_ROWS** transforms each individual row of the source matrix. +- **DFT\_SCALE** scales the result: divide it by the number of elements in the transform +(obtained from dft\_size ). +- **DFT\_INVERSE** inverts DFT. Use for complex-complex cases (real-complex and complex-real +cases are always forward and inverse, respectively). +- **DFT\_REAL\_OUTPUT** specifies the output as real. The source matrix is the result of +real-complex transform, so the destination matrix must be real. +@param stream Stream for the asynchronous version. + +Use to handle real matrices ( CV32FC1 ) and complex matrices in the interleaved format ( CV32FC2 ). + +The source matrix should be continuous, otherwise reallocation and data copying is performed. The +function chooses an operation mode depending on the flags, size, and channel count of the source +matrix: + +- If the source matrix is complex and the output is not specified as real, the destination +matrix is complex and has the dft\_size size and CV\_32FC2 type. The destination matrix +contains a full result of the DFT (forward or inverse). +- If the source matrix is complex and the output is specified as real, the function assumes that +its input is the result of the forward transform (see the next item). The destination matrix +has the dft\_size size and CV\_32FC1 type. It contains the result of the inverse DFT. +- If the source matrix is real (its type is CV\_32FC1 ), forward DFT is performed. The result of +the DFT is packed into complex ( CV\_32FC2 ) matrix. So, the width of the destination matrix +is dft\_size.width / 2 + 1 . But if the source is a single column, the height is reduced +instead of the width. + +@sa dft + */ CV_EXPORTS void dft(InputArray src, OutputArray dst, Size dft_size, int flags=0, Stream& stream = Stream::Null()); -//! computes convolution (or cross-correlation) of two images using discrete Fourier transform -//! supports source images of 32FC1 type only -//! result matrix will have 32FC1 type +/** @brief Base class for convolution (or cross-correlation) operator. : + */ class CV_EXPORTS Convolution : public Algorithm { public: + /** @brief Computes a convolution (or cross-correlation) of two images. + + @param image Source image. Only CV\_32FC1 images are supported for now. + @param templ Template image. The size is not greater than the image size. The type is the same as + image . + @param result Result image. If image is *W x H* and templ is *w x h*, then result must be *W-w+1 x + H-h+1*. + @param ccorr Flags to evaluate cross-correlation instead of convolution. + @param stream Stream for the asynchronous version. + */ virtual void convolve(InputArray image, InputArray templ, OutputArray result, bool ccorr = false, Stream& stream = Stream::Null()) = 0; }; +/** @brief Creates implementation for cuda::Convolution . + +@param user\_block\_size Block size. If you leave default value Size(0,0) then automatic +estimation of block size will be used (which is optimized for speed). By varying user\_block\_size +you can reduce memory requirements at the cost of speed. + */ CV_EXPORTS Ptr createConvolution(Size user_block_size = Size()); +//! @} cudaarithm_arithm + +//! @} cudaarithm + }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDAARITHM_HPP__ */ diff --git a/modules/cudabgsegm/include/opencv2/cudabgsegm.hpp b/modules/cudabgsegm/include/opencv2/cudabgsegm.hpp index a08ed64b1a..b2970f2a1f 100644 --- a/modules/cudabgsegm/include/opencv2/cudabgsegm.hpp +++ b/modules/cudabgsegm/include/opencv2/cudabgsegm.hpp @@ -50,11 +50,33 @@ #include "opencv2/core/cuda.hpp" #include "opencv2/video/background_segm.hpp" +/** + @addtogroup cuda + @{ + @defgroup cudabgsegm Background Segmentation + @} + */ + namespace cv { namespace cuda { +//! @addtogroup cudabgsegm +//! @{ + //////////////////////////////////////////////////// // MOG +/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm. + +The class discriminates between foreground and background pixels by building and maintaining a model +of the background. Any pixel which does not fit this model is then deemed to be foreground. The +class implements algorithm described in @cite MOG2001. + +@sa BackgroundSubtractorMOG + +@note + - An example on gaussian mixture based background/foreground segmantation can be found at + opencv\_source\_code/samples/gpu/bgfg\_segm.cpp + */ class CV_EXPORTS BackgroundSubtractorMOG : public cv::BackgroundSubtractor { public: @@ -78,6 +100,14 @@ public: virtual void setNoiseSigma(double noiseSigma) = 0; }; +/** @brief Creates mixture-of-gaussian background subtractor + +@param history Length of the history. +@param nmixtures Number of Gaussian mixtures. +@param backgroundRatio Background ratio. +@param noiseSigma Noise strength (standard deviation of the brightness or each color channel). 0 +means some automatic value. + */ CV_EXPORTS Ptr createBackgroundSubtractorMOG(int history = 200, int nmixtures = 5, double backgroundRatio = 0.7, double noiseSigma = 0); @@ -85,6 +115,14 @@ CV_EXPORTS Ptr //////////////////////////////////////////////////// // MOG2 +/** @brief Gaussian Mixture-based Background/Foreground Segmentation Algorithm. + +The class discriminates between foreground and background pixels by building and maintaining a model +of the background. Any pixel which does not fit this model is then deemed to be foreground. The +class implements algorithm described in @cite MOG2004. + +@sa BackgroundSubtractorMOG2 + */ class CV_EXPORTS BackgroundSubtractorMOG2 : public cv::BackgroundSubtractorMOG2 { public: @@ -96,6 +134,15 @@ public: virtual void getBackgroundImage(OutputArray backgroundImage, Stream& stream) const = 0; }; +/** @brief Creates MOG2 Background Subtractor + +@param history Length of the history. +@param varThreshold Threshold on the squared Mahalanobis distance between the pixel and the model +to decide whether a pixel is well described by the background model. This parameter does not +affect the background update. +@param detectShadows If true, the algorithm will detect shadows and mark them. It decreases the +speed a bit, so if you do not need this feature, set the parameter to false. + */ CV_EXPORTS Ptr createBackgroundSubtractorMOG2(int history = 500, double varThreshold = 16, bool detectShadows = true); @@ -103,6 +150,12 @@ CV_EXPORTS Ptr //////////////////////////////////////////////////// // GMG +/** @brief Background/Foreground Segmentation Algorithm. + +The class discriminates between foreground and background pixels by building and maintaining a model +of the background. Any pixel which does not fit this model is then deemed to be foreground. The +class implements algorithm described in @cite GMG2012. + */ class CV_EXPORTS BackgroundSubtractorGMG : public cv::BackgroundSubtractor { public: @@ -140,54 +193,71 @@ public: virtual void setMaxVal(double val) = 0; }; +/** @brief Creates GMG Background Subtractor + +@param initializationFrames Number of frames of video to use to initialize histograms. +@param decisionThreshold Value above which pixel is determined to be FG. + */ CV_EXPORTS Ptr createBackgroundSubtractorGMG(int initializationFrames = 120, double decisionThreshold = 0.8); //////////////////////////////////////////////////// // FGD -/** - * Foreground Object Detection from Videos Containing Complex Background. - * Liyuan Li, Weimin Huang, Irene Y.H. Gu, and Qi Tian. - * ACM MM2003 9p +/** @brief The class discriminates between foreground and background pixels by building and maintaining a model +of the background. + +Any pixel which does not fit this model is then deemed to be foreground. The class implements +algorithm described in @cite FGD2003. +@sa BackgroundSubtractor */ class CV_EXPORTS BackgroundSubtractorFGD : public cv::BackgroundSubtractor { public: + /** @brief Returns the output foreground regions calculated by findContours. + + @param foreground\_regions Output array (CPU memory). + */ virtual void getForegroundRegions(OutputArrayOfArrays foreground_regions) = 0; }; struct CV_EXPORTS FGDParams { - int Lc; // Quantized levels per 'color' component. Power of two, typically 32, 64 or 128. - int N1c; // Number of color vectors used to model normal background color variation at a given pixel. - int N2c; // Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c. - // Used to allow the first N1c vectors to adapt over time to changing background. + int Lc; //!< Quantized levels per 'color' component. Power of two, typically 32, 64 or 128. + int N1c; //!< Number of color vectors used to model normal background color variation at a given pixel. + int N2c; //!< Number of color vectors retained at given pixel. Must be > N1c, typically ~ 5/3 of N1c. + //!< Used to allow the first N1c vectors to adapt over time to changing background. - int Lcc; // Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64. - int N1cc; // Number of color co-occurrence vectors used to model normal background color variation at a given pixel. - int N2cc; // Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc. - // Used to allow the first N1cc vectors to adapt over time to changing background. + int Lcc; //!< Quantized levels per 'color co-occurrence' component. Power of two, typically 16, 32 or 64. + int N1cc; //!< Number of color co-occurrence vectors used to model normal background color variation at a given pixel. + int N2cc; //!< Number of color co-occurrence vectors retained at given pixel. Must be > N1cc, typically ~ 5/3 of N1cc. + //!< Used to allow the first N1cc vectors to adapt over time to changing background. - bool is_obj_without_holes; // If TRUE we ignore holes within foreground blobs. Defaults to TRUE. - int perform_morphing; // Number of erode-dilate-erode foreground-blob cleanup iterations. - // These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1. + bool is_obj_without_holes; //!< If TRUE we ignore holes within foreground blobs. Defaults to TRUE. + int perform_morphing; //!< Number of erode-dilate-erode foreground-blob cleanup iterations. + //!< These erase one-pixel junk blobs and merge almost-touching blobs. Default value is 1. - float alpha1; // How quickly we forget old background pixel values seen. Typically set to 0.1. - float alpha2; // "Controls speed of feature learning". Depends on T. Typical value circa 0.005. - float alpha3; // Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1. + float alpha1; //!< How quickly we forget old background pixel values seen. Typically set to 0.1. + float alpha2; //!< "Controls speed of feature learning". Depends on T. Typical value circa 0.005. + float alpha3; //!< Alternate to alpha2, used (e.g.) for quicker initial convergence. Typical value 0.1. - float delta; // Affects color and color co-occurrence quantization, typically set to 2. - float T; // A percentage value which determines when new features can be recognized as new background. (Typically 0.9). - float minArea; // Discard foreground blobs whose bounding box is smaller than this threshold. + float delta; //!< Affects color and color co-occurrence quantization, typically set to 2. + float T; //!< A percentage value which determines when new features can be recognized as new background. (Typically 0.9). + float minArea; //!< Discard foreground blobs whose bounding box is smaller than this threshold. - // default Params + //! default Params FGDParams(); }; +/** @brief Creates FGD Background Subtractor + +@param params Algorithm's parameters. See @cite FGD2003 for explanation. + */ CV_EXPORTS Ptr createBackgroundSubtractorFGD(const FGDParams& params = FGDParams()); +//! @} + }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDABGSEGM_HPP__ */ diff --git a/modules/cudacodec/include/opencv2/cudacodec.hpp b/modules/cudacodec/include/opencv2/cudacodec.hpp index 747c044ee5..850a181d1d 100644 --- a/modules/cudacodec/include/opencv2/cudacodec.hpp +++ b/modules/cudacodec/include/opencv2/cudacodec.hpp @@ -50,8 +50,18 @@ #include "opencv2/core/cuda.hpp" +/** + @addtogroup cuda + @{ + @defgroup cudacodec Video Encoding/Decoding + @} + */ + namespace cv { namespace cudacodec { +//! @addtogroup cudacodec +//! @{ + ////////////////////////////////// Video Encoding ////////////////////////////////// // Works only under Windows. @@ -68,35 +78,53 @@ enum SurfaceFormat SF_GRAY = SF_BGR }; +/** @brief Different parameters for CUDA video encoder. + */ struct CV_EXPORTS EncoderParams { - int P_Interval; // NVVE_P_INTERVAL, - int IDR_Period; // NVVE_IDR_PERIOD, - int DynamicGOP; // NVVE_DYNAMIC_GOP, - int RCType; // NVVE_RC_TYPE, - int AvgBitrate; // NVVE_AVG_BITRATE, - int PeakBitrate; // NVVE_PEAK_BITRATE, - int QP_Level_Intra; // NVVE_QP_LEVEL_INTRA, - int QP_Level_InterP; // NVVE_QP_LEVEL_INTER_P, - int QP_Level_InterB; // NVVE_QP_LEVEL_INTER_B, - int DeblockMode; // NVVE_DEBLOCK_MODE, - int ProfileLevel; // NVVE_PROFILE_LEVEL, - int ForceIntra; // NVVE_FORCE_INTRA, - int ForceIDR; // NVVE_FORCE_IDR, - int ClearStat; // NVVE_CLEAR_STAT, - int DIMode; // NVVE_SET_DEINTERLACE, - int Presets; // NVVE_PRESETS, - int DisableCabac; // NVVE_DISABLE_CABAC, - int NaluFramingType; // NVVE_CONFIGURE_NALU_FRAMING_TYPE - int DisableSPSPPS; // NVVE_DISABLE_SPS_PPS + int P_Interval; //!< NVVE_P_INTERVAL, + int IDR_Period; //!< NVVE_IDR_PERIOD, + int DynamicGOP; //!< NVVE_DYNAMIC_GOP, + int RCType; //!< NVVE_RC_TYPE, + int AvgBitrate; //!< NVVE_AVG_BITRATE, + int PeakBitrate; //!< NVVE_PEAK_BITRATE, + int QP_Level_Intra; //!< NVVE_QP_LEVEL_INTRA, + int QP_Level_InterP; //!< NVVE_QP_LEVEL_INTER_P, + int QP_Level_InterB; //!< NVVE_QP_LEVEL_INTER_B, + int DeblockMode; //!< NVVE_DEBLOCK_MODE, + int ProfileLevel; //!< NVVE_PROFILE_LEVEL, + int ForceIntra; //!< NVVE_FORCE_INTRA, + int ForceIDR; //!< NVVE_FORCE_IDR, + int ClearStat; //!< NVVE_CLEAR_STAT, + int DIMode; //!< NVVE_SET_DEINTERLACE, + int Presets; //!< NVVE_PRESETS, + int DisableCabac; //!< NVVE_DISABLE_CABAC, + int NaluFramingType; //!< NVVE_CONFIGURE_NALU_FRAMING_TYPE + int DisableSPSPPS; //!< NVVE_DISABLE_SPS_PPS EncoderParams(); + /** @brief Constructors. + + @param configFile Config file name. + + Creates default parameters or reads parameters from config file. + */ explicit EncoderParams(const String& configFile); + /** @brief Reads parameters from config file. + + @param configFile Config file name. + */ void load(const String& configFile); + /** @brief Saves parameters to config file. + + @param configFile Config file name. + */ void save(const String& configFile) const; }; +/** @brief Callbacks for CUDA video encoder. + */ class CV_EXPORTS EncoderCallBack { public: @@ -109,41 +137,109 @@ public: virtual ~EncoderCallBack() {} - //! callback function to signal the start of bitstream that is to be encoded - //! callback must allocate host buffer for CUDA encoder and return pointer to it and it's size + /** @brief Callback function to signal the start of bitstream that is to be encoded. + + Callback must allocate buffer for CUDA encoder and return pointer to it and it's size. + */ virtual uchar* acquireBitStream(int* bufferSize) = 0; - //! callback function to signal that the encoded bitstream is ready to be written to file + /** @brief Callback function to signal that the encoded bitstream is ready to be written to file. + */ virtual void releaseBitStream(unsigned char* data, int size) = 0; - //! callback function to signal that the encoding operation on the frame has started + /** @brief Callback function to signal that the encoding operation on the frame has started. + + @param frameNumber + @param picType Specify frame type (I-Frame, P-Frame or B-Frame). + */ virtual void onBeginFrame(int frameNumber, PicType picType) = 0; - //! callback function signals that the encoding operation on the frame has finished + /** @brief Callback function signals that the encoding operation on the frame has finished. + + @param frameNumber + @param picType Specify frame type (I-Frame, P-Frame or B-Frame). + */ virtual void onEndFrame(int frameNumber, PicType picType) = 0; }; +/** @brief Video writer interface. + +The implementation uses H264 video codec. + +@note Currently only Windows platform is supported. + +@note + - An example on how to use the videoWriter class can be found at + opencv\_source\_code/samples/gpu/video\_writer.cpp + */ class CV_EXPORTS VideoWriter { public: virtual ~VideoWriter() {} - //! writes the next frame from GPU memory + /** @brief Writes the next video frame. + + @param frame The written frame. + @param lastFrame Indicates that it is end of stream. The parameter can be ignored. + + The method write the specified image to video file. The image must have the same size and the same + surface format as has been specified when opening the video writer. + */ virtual void write(InputArray frame, bool lastFrame = false) = 0; virtual EncoderParams getEncoderParams() const = 0; }; -//! create VideoWriter for specified output file (only AVI file format is supported) +/** @brief Creates video writer. + +@param fileName Name of the output video file. Only AVI file format is supported. +@param frameSize Size of the input video frames. +@param fps Framerate of the created video stream. +@param format Surface format of input frames ( SF\_UYVY , SF\_YUY2 , SF\_YV12 , SF\_NV12 , +SF\_IYUV , SF\_BGR or SF\_GRAY). BGR or gray frames will be converted to YV12 format before +encoding, frames with other formats will be used as is. + +The constructors initialize video writer. FFMPEG is used to write videos. User can implement own +multiplexing with cudacodec::EncoderCallBack . + */ CV_EXPORTS Ptr createVideoWriter(const String& fileName, Size frameSize, double fps, SurfaceFormat format = SF_BGR); +/** @overload +@param fileName Name of the output video file. Only AVI file format is supported. +@param frameSize Size of the input video frames. +@param fps Framerate of the created video stream. +@param params Encoder parameters. See cudacodec::EncoderParams . +@param format Surface format of input frames ( SF\_UYVY , SF\_YUY2 , SF\_YV12 , SF\_NV12 , +SF\_IYUV , SF\_BGR or SF\_GRAY). BGR or gray frames will be converted to YV12 format before +encoding, frames with other formats will be used as is. +*/ CV_EXPORTS Ptr createVideoWriter(const String& fileName, Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR); -//! create VideoWriter for user-defined callbacks +/** @overload +@param encoderCallback Callbacks for video encoder. See cudacodec::EncoderCallBack . Use it if you +want to work with raw video stream. +@param frameSize Size of the input video frames. +@param fps Framerate of the created video stream. +@param format Surface format of input frames ( SF\_UYVY , SF\_YUY2 , SF\_YV12 , SF\_NV12 , +SF\_IYUV , SF\_BGR or SF\_GRAY). BGR or gray frames will be converted to YV12 format before +encoding, frames with other formats will be used as is. +*/ CV_EXPORTS Ptr createVideoWriter(const Ptr& encoderCallback, Size frameSize, double fps, SurfaceFormat format = SF_BGR); +/** @overload +@param encoderCallback Callbacks for video encoder. See cudacodec::EncoderCallBack . Use it if you +want to work with raw video stream. +@param frameSize Size of the input video frames. +@param fps Framerate of the created video stream. +@param params Encoder parameters. See cudacodec::EncoderParams . +@param format Surface format of input frames ( SF\_UYVY , SF\_YUY2 , SF\_YV12 , SF\_NV12 , +SF\_IYUV , SF\_BGR or SF\_GRAY). BGR or gray frames will be converted to YV12 format before +encoding, frames with other formats will be used as is. +*/ CV_EXPORTS Ptr createVideoWriter(const Ptr& encoderCallback, Size frameSize, double fps, const EncoderParams& params, SurfaceFormat format = SF_BGR); ////////////////////////////////// Video Decoding ////////////////////////////////////////// +/** @brief Video codecs supported by cudacodec::VideoReader . + */ enum Codec { MPEG1 = 0, @@ -155,13 +251,15 @@ enum Codec H264_SVC, H264_MVC, - Uncompressed_YUV420 = (('I'<<24)|('Y'<<16)|('U'<<8)|('V')), // Y,U,V (4:2:0) - Uncompressed_YV12 = (('Y'<<24)|('V'<<16)|('1'<<8)|('2')), // Y,V,U (4:2:0) - Uncompressed_NV12 = (('N'<<24)|('V'<<16)|('1'<<8)|('2')), // Y,UV (4:2:0) - Uncompressed_YUYV = (('Y'<<24)|('U'<<16)|('Y'<<8)|('V')), // YUYV/YUY2 (4:2:2) - Uncompressed_UYVY = (('U'<<24)|('Y'<<16)|('V'<<8)|('Y')) // UYVY (4:2:2) + Uncompressed_YUV420 = (('I'<<24)|('Y'<<16)|('U'<<8)|('V')), //!< Y,U,V (4:2:0) + Uncompressed_YV12 = (('Y'<<24)|('V'<<16)|('1'<<8)|('2')), //!< Y,V,U (4:2:0) + Uncompressed_NV12 = (('N'<<24)|('V'<<16)|('1'<<8)|('2')), //!< Y,UV (4:2:0) + Uncompressed_YUYV = (('Y'<<24)|('U'<<16)|('Y'<<8)|('V')), //!< YUYV/YUY2 (4:2:2) + Uncompressed_UYVY = (('U'<<24)|('Y'<<16)|('V'<<8)|('Y')) //!< UYVY (4:2:2) }; +/** @brief Chroma formats supported by cudacodec::VideoReader . + */ enum ChromaFormat { Monochrome = 0, @@ -170,6 +268,8 @@ enum ChromaFormat YUV444 }; +/** @brief Struct providing information about video file format. : + */ struct FormatInfo { Codec codec; @@ -178,29 +278,65 @@ struct FormatInfo int height; }; +/** @brief Video reader interface. + +@note + - An example on how to use the videoReader class can be found at + opencv\_source\_code/samples/gpu/video\_reader.cpp + */ class CV_EXPORTS VideoReader { public: virtual ~VideoReader() {} + /** @brief Grabs, decodes and returns the next video frame. + + If no frames has been grabbed (there are no more frames in video file), the methods return false . + The method throws Exception if error occurs. + */ virtual bool nextFrame(OutputArray frame) = 0; + /** @brief Returns information about video file format. + */ virtual FormatInfo format() const = 0; }; +/** @brief Interface for video demultiplexing. : + +User can implement own demultiplexing by implementing this interface. + */ class CV_EXPORTS RawVideoSource { public: virtual ~RawVideoSource() {} + /** @brief Returns next packet with RAW video frame. + + @param data Pointer to frame data. + @param size Size in bytes of current frame. + @param endOfFile Indicates that it is end of stream. + */ virtual bool getNextPacket(unsigned char** data, int* size, bool* endOfFile) = 0; + /** @brief Returns information about video file format. + */ virtual FormatInfo format() const = 0; }; +/** @brief Creates video reader. + +@param filename Name of the input video file. + +FFMPEG is used to read videos. User can implement own demultiplexing with cudacodec::RawVideoSource + */ CV_EXPORTS Ptr createVideoReader(const String& filename); +/** @overload +@param source RAW video source implemented by user. +*/ CV_EXPORTS Ptr createVideoReader(const Ptr& source); +//! @} + }} // namespace cv { namespace cudacodec { #endif /* __OPENCV_CUDACODEC_HPP__ */ diff --git a/modules/cudafeatures2d/include/opencv2/cudafeatures2d.hpp b/modules/cudafeatures2d/include/opencv2/cudafeatures2d.hpp index a89580e0ee..5c71607090 100644 --- a/modules/cudafeatures2d/include/opencv2/cudafeatures2d.hpp +++ b/modules/cudafeatures2d/include/opencv2/cudafeatures2d.hpp @@ -50,150 +50,175 @@ #include "opencv2/core/cuda.hpp" #include "opencv2/cudafilters.hpp" +/** + @addtogroup cuda + @{ + @defgroup cudafeatures2d Feature Detection and Description + @} + */ + namespace cv { namespace cuda { +//! @addtogroup cudafeatures2d +//! @{ + +/** @brief Brute-force descriptor matcher. + +For each descriptor in the first set, this matcher finds the closest descriptor in the second set +by trying each one. This descriptor matcher supports masking permissible matches between descriptor +sets. + +The class BFMatcher\_CUDA has an interface similar to the class DescriptorMatcher. It has two groups +of match methods: for matching descriptors of one image with another image or with an image set. +Also, all functions have an alternative to save results either to the GPU memory or to the CPU +memory. + +@sa DescriptorMatcher, BFMatcher + */ class CV_EXPORTS BFMatcher_CUDA { public: explicit BFMatcher_CUDA(int norm = cv::NORM_L2); - // Add descriptors to train descriptor collection + //! Add descriptors to train descriptor collection void add(const std::vector& descCollection); - // Get train descriptors collection + //! Get train descriptors collection const std::vector& getTrainDescriptors() const; - // Clear train descriptors collection + //! Clear train descriptors collection void clear(); - // Return true if there are not train descriptors in collection + //! Return true if there are not train descriptors in collection bool empty() const; - // Return true if the matcher supports mask in match methods + //! Return true if the matcher supports mask in match methods bool isMaskSupported() const; - // Find one best match for each query descriptor + //! Find one best match for each query descriptor void matchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); - // Download trainIdx and distance and convert it to CPU vector with DMatch + //! Download trainIdx and distance and convert it to CPU vector with DMatch static void matchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector& matches); - // Convert trainIdx and distance to vector with DMatch + //! Convert trainIdx and distance to vector with DMatch static void matchConvert(const Mat& trainIdx, const Mat& distance, std::vector& matches); - // Find one best match for each query descriptor + //! Find one best match for each query descriptor void match(const GpuMat& query, const GpuMat& train, std::vector& matches, const GpuMat& mask = GpuMat()); - // Make gpu collection of trains and masks in suitable format for matchCollection function + //! Make gpu collection of trains and masks in suitable format for matchCollection function void makeGpuCollection(GpuMat& trainCollection, GpuMat& maskCollection, const std::vector& masks = std::vector()); - // Find one best match from train collection for each query descriptor + //! Find one best match from train collection for each query descriptor void matchCollection(const GpuMat& query, const GpuMat& trainCollection, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& masks = GpuMat(), Stream& stream = Stream::Null()); - // Download trainIdx, imgIdx and distance and convert it to vector with DMatch + //! Download trainIdx, imgIdx and distance and convert it to vector with DMatch static void matchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector& matches); - // Convert trainIdx, imgIdx and distance to vector with DMatch + //! Convert trainIdx, imgIdx and distance to vector with DMatch static void matchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector& matches); - // Find one best match from train collection for each query descriptor. + //! Find one best match from train collection for each query descriptor. void match(const GpuMat& query, std::vector& matches, const std::vector& masks = std::vector()); - // Find k best matches for each query descriptor (in increasing order of distances) + //! Find k best matches for each query descriptor (in increasing order of distances) void knnMatchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, GpuMat& allDist, int k, const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); - // Download trainIdx and distance and convert it to vector with DMatch - // compactResult is used when mask is not empty. If compactResult is false matches - // vector will have the same size as queryDescriptors rows. If compactResult is true - // matches vector will not contain matches for fully masked out query descriptors. + //! Download trainIdx and distance and convert it to vector with DMatch + //! compactResult is used when mask is not empty. If compactResult is false matches + //! vector will have the same size as queryDescriptors rows. If compactResult is true + //! matches vector will not contain matches for fully masked out query descriptors. static void knnMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, std::vector< std::vector >& matches, bool compactResult = false); - // Convert trainIdx and distance to vector with DMatch + //! Convert trainIdx and distance to vector with DMatch static void knnMatchConvert(const Mat& trainIdx, const Mat& distance, std::vector< std::vector >& matches, bool compactResult = false); - // Find k best matches for each query descriptor (in increasing order of distances). - // compactResult is used when mask is not empty. If compactResult is false matches - // vector will have the same size as queryDescriptors rows. If compactResult is true - // matches vector will not contain matches for fully masked out query descriptors. + //! Find k best matches for each query descriptor (in increasing order of distances). + //! compactResult is used when mask is not empty. If compactResult is false matches + //! vector will have the same size as queryDescriptors rows. If compactResult is true + //! matches vector will not contain matches for fully masked out query descriptors. void knnMatch(const GpuMat& query, const GpuMat& train, std::vector< std::vector >& matches, int k, const GpuMat& mask = GpuMat(), bool compactResult = false); - // Find k best matches from train collection for each query descriptor (in increasing order of distances) + //! Find k best matches from train collection for each query descriptor (in increasing order of distances) void knnMatch2Collection(const GpuMat& query, const GpuMat& trainCollection, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, const GpuMat& maskCollection = GpuMat(), Stream& stream = Stream::Null()); - // Download trainIdx and distance and convert it to vector with DMatch - // compactResult is used when mask is not empty. If compactResult is false matches - // vector will have the same size as queryDescriptors rows. If compactResult is true - // matches vector will not contain matches for fully masked out query descriptors. + //! Download trainIdx and distance and convert it to vector with DMatch + //! compactResult is used when mask is not empty. If compactResult is false matches + //! vector will have the same size as queryDescriptors rows. If compactResult is true + //! matches vector will not contain matches for fully masked out query descriptors. + //! @see BFMatcher_CUDA::knnMatchDownload static void knnMatch2Download(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, std::vector< std::vector >& matches, bool compactResult = false); - // Convert trainIdx and distance to vector with DMatch + //! Convert trainIdx and distance to vector with DMatch + //! @see BFMatcher_CUDA::knnMatchConvert static void knnMatch2Convert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, std::vector< std::vector >& matches, bool compactResult = false); - // Find k best matches for each query descriptor (in increasing order of distances). - // compactResult is used when mask is not empty. If compactResult is false matches - // vector will have the same size as queryDescriptors rows. If compactResult is true - // matches vector will not contain matches for fully masked out query descriptors. + //! Find k best matches for each query descriptor (in increasing order of distances). + //! compactResult is used when mask is not empty. If compactResult is false matches + //! vector will have the same size as queryDescriptors rows. If compactResult is true + //! matches vector will not contain matches for fully masked out query descriptors. void knnMatch(const GpuMat& query, std::vector< std::vector >& matches, int k, const std::vector& masks = std::vector(), bool compactResult = false); - // Find best matches for each query descriptor which have distance less than maxDistance. - // nMatches.at(0, queryIdx) will contain matches count for queryIdx. - // carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches, - // because it didn't have enough memory. - // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10), - // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches - // Matches doesn't sorted. + //! Find best matches for each query descriptor which have distance less than maxDistance. + //! nMatches.at(0, queryIdx) will contain matches count for queryIdx. + //! carefully nMatches can be greater than trainIdx.cols - it means that matcher didn't find all matches, + //! because it didn't have enough memory. + //! If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nTrain / 100), 10), + //! otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches + //! Matches doesn't sorted. void radiusMatchSingle(const GpuMat& query, const GpuMat& train, GpuMat& trainIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const GpuMat& mask = GpuMat(), Stream& stream = Stream::Null()); - // Download trainIdx, nMatches and distance and convert it to vector with DMatch. - // matches will be sorted in increasing order of distances. - // compactResult is used when mask is not empty. If compactResult is false matches - // vector will have the same size as queryDescriptors rows. If compactResult is true - // matches vector will not contain matches for fully masked out query descriptors. + //! Download trainIdx, nMatches and distance and convert it to vector with DMatch. + //! matches will be sorted in increasing order of distances. + //! compactResult is used when mask is not empty. If compactResult is false matches + //! vector will have the same size as queryDescriptors rows. If compactResult is true + //! matches vector will not contain matches for fully masked out query descriptors. static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& distance, const GpuMat& nMatches, std::vector< std::vector >& matches, bool compactResult = false); - // Convert trainIdx, nMatches and distance to vector with DMatch. + //! Convert trainIdx, nMatches and distance to vector with DMatch. static void radiusMatchConvert(const Mat& trainIdx, const Mat& distance, const Mat& nMatches, std::vector< std::vector >& matches, bool compactResult = false); - // Find best matches for each query descriptor which have distance less than maxDistance - // in increasing order of distances). + //! Find best matches for each query descriptor which have distance less than maxDistance + //! in increasing order of distances). void radiusMatch(const GpuMat& query, const GpuMat& train, std::vector< std::vector >& matches, float maxDistance, const GpuMat& mask = GpuMat(), bool compactResult = false); - // Find best matches for each query descriptor which have distance less than maxDistance. - // If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10), - // otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches - // Matches doesn't sorted. + //! Find best matches for each query descriptor which have distance less than maxDistance. + //! If trainIdx is empty, then trainIdx and distance will be created with size nQuery x max((nQuery / 100), 10), + //! otherwize user can pass own allocated trainIdx and distance with size nQuery x nMaxMatches + //! Matches doesn't sorted. void radiusMatchCollection(const GpuMat& query, GpuMat& trainIdx, GpuMat& imgIdx, GpuMat& distance, GpuMat& nMatches, float maxDistance, const std::vector& masks = std::vector(), Stream& stream = Stream::Null()); - // Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch. - // matches will be sorted in increasing order of distances. - // compactResult is used when mask is not empty. If compactResult is false matches - // vector will have the same size as queryDescriptors rows. If compactResult is true - // matches vector will not contain matches for fully masked out query descriptors. + //! Download trainIdx, imgIdx, nMatches and distance and convert it to vector with DMatch. + //! matches will be sorted in increasing order of distances. + //! compactResult is used when mask is not empty. If compactResult is false matches + //! vector will have the same size as queryDescriptors rows. If compactResult is true + //! matches vector will not contain matches for fully masked out query descriptors. static void radiusMatchDownload(const GpuMat& trainIdx, const GpuMat& imgIdx, const GpuMat& distance, const GpuMat& nMatches, std::vector< std::vector >& matches, bool compactResult = false); - // Convert trainIdx, nMatches and distance to vector with DMatch. + //! Convert trainIdx, nMatches and distance to vector with DMatch. static void radiusMatchConvert(const Mat& trainIdx, const Mat& imgIdx, const Mat& distance, const Mat& nMatches, std::vector< std::vector >& matches, bool compactResult = false); - // Find best matches from train collection for each query descriptor which have distance less than - // maxDistance (in increasing order of distances). + //! Find best matches from train collection for each query descriptor which have distance less than + //! maxDistance (in increasing order of distances). void radiusMatch(const GpuMat& query, std::vector< std::vector >& matches, float maxDistance, const std::vector& masks = std::vector(), bool compactResult = false); @@ -203,6 +228,8 @@ private: std::vector trainDescCollection; }; +/** @brief Class used for corner detection using the FAST algorithm. : + */ class CV_EXPORTS FAST_CUDA { public: @@ -213,23 +240,45 @@ public: ROWS_COUNT }; - // all features have same size + //! all features have same size static const int FEATURE_SIZE = 7; + /** @brief Constructor. + + @param threshold Threshold on difference between intensity of the central pixel and pixels on a + circle around this pixel. + @param nonmaxSuppression If it is true, non-maximum suppression is applied to detected corners + (keypoints). + @param keypointsRatio Inner buffer size for keypoints store is determined as (keypointsRatio \* + image\_width \* image\_height). + */ explicit FAST_CUDA(int threshold, bool nonmaxSuppression = true, double keypointsRatio = 0.05); - //! finds the keypoints using FAST detector - //! supports only CV_8UC1 images + /** @brief Finds the keypoints using FAST detector. + + @param image Image where keypoints (corners) are detected. Only 8-bit grayscale images are + supported. + @param mask Optional input mask that marks the regions where we should detect features. + @param keypoints The output vector of keypoints. Can be stored both in CPU and GPU memory. For GPU + memory: + - keypoints.ptr\(LOCATION\_ROW)[i] will contain location of i'th point + - keypoints.ptr\(RESPONSE\_ROW)[i] will contain response of i'th point (if non-maximum + suppression is applied) + */ void operator ()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints); + /** @overload */ void operator ()(const GpuMat& image, const GpuMat& mask, std::vector& keypoints); - //! download keypoints from device to host memory + /** @brief Download keypoints from GPU to CPU memory. + */ static void downloadKeypoints(const GpuMat& d_keypoints, std::vector& keypoints); - //! convert keypoints to KeyPoint vector + /** @brief Converts keypoints from CUDA representation to vector of KeyPoint. + */ static void convertKeypoints(const Mat& h_keypoints, std::vector& keypoints); - //! release temporary buffer's memory + /** @brief Releases inner buffer memory. + */ void release(); bool nonmaxSuppression; @@ -239,13 +288,22 @@ public: //! max keypoints = keypointsRatio * img.size().area() double keypointsRatio; - //! find keypoints and compute it's response if nonmaxSuppression is true - //! return count of detected keypoints + /** @brief Find keypoints and compute it's response if nonmaxSuppression is true. + + @param image Image where keypoints (corners) are detected. Only 8-bit grayscale images are + supported. + @param mask Optional input mask that marks the regions where we should detect features. + + The function returns count of detected keypoints. + */ int calcKeyPointsLocation(const GpuMat& image, const GpuMat& mask); - //! get final array of keypoints - //! performs nonmax suppression if needed - //! return final count of keypoints + /** @brief Gets final array of keypoints. + + @param keypoints The output vector of keypoints. + + The function performs non-max suppression if needed and returns final count of keypoints. + */ int getKeyPoints(GpuMat& keypoints); private: @@ -257,6 +315,8 @@ private: GpuMat d_keypoints_; }; +/** @brief Class for extracting ORB features and descriptors from an image. : + */ class CV_EXPORTS ORB_CUDA { public: @@ -276,28 +336,51 @@ public: DEFAULT_FAST_THRESHOLD = 20 }; - //! Constructor + /** @brief Constructor. + + @param nFeatures The number of desired features. + @param scaleFactor Coefficient by which we divide the dimensions from one scale pyramid level to + the next. + @param nLevels The number of levels in the scale pyramid. + @param edgeThreshold How far from the boundary the points should be. + @param firstLevel The level at which the image is given. If 1, that means we will also look at the + image scaleFactor times bigger. + @param WTA_K + @param scoreType + @param patchSize + */ explicit ORB_CUDA(int nFeatures = 500, float scaleFactor = 1.2f, int nLevels = 8, int edgeThreshold = 31, int firstLevel = 0, int WTA_K = 2, int scoreType = 0, int patchSize = 31); - //! Compute the ORB features on an image - //! image - the image to compute the features (supports only CV_8UC1 images) - //! mask - the mask to apply - //! keypoints - the resulting keypoints + /** @overload */ void operator()(const GpuMat& image, const GpuMat& mask, std::vector& keypoints); + /** @overload */ void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints); - //! Compute the ORB features and descriptors on an image - //! image - the image to compute the features (supports only CV_8UC1 images) - //! mask - the mask to apply - //! keypoints - the resulting keypoints - //! descriptors - descriptors array + /** @brief Detects keypoints and computes descriptors for them. + + @param image Input 8-bit grayscale image. + @param mask Optional input mask that marks the regions where we should detect features. + @param keypoints The input/output vector of keypoints. Can be stored both in CPU and GPU memory. + For GPU memory: + - keypoints.ptr\(X\_ROW)[i] contains x coordinate of the i'th feature. + - keypoints.ptr\(Y\_ROW)[i] contains y coordinate of the i'th feature. + - keypoints.ptr\(RESPONSE\_ROW)[i] contains the response of the i'th feature. + - keypoints.ptr\(ANGLE\_ROW)[i] contains orientation of the i'th feature. + - keypoints.ptr\(OCTAVE\_ROW)[i] contains the octave of the i'th feature. + - keypoints.ptr\(SIZE\_ROW)[i] contains the size of the i'th feature. + @param descriptors Computed descriptors. if blurForDescriptor is true, image will be blurred + before descriptors calculation. + */ void operator()(const GpuMat& image, const GpuMat& mask, std::vector& keypoints, GpuMat& descriptors); + /** @overload */ void operator()(const GpuMat& image, const GpuMat& mask, GpuMat& keypoints, GpuMat& descriptors); - //! download keypoints from device to host memory + /** @brief Download keypoints from GPU to CPU memory. + */ static void downloadKeyPoints(const GpuMat& d_keypoints, std::vector& keypoints); - //! convert keypoints to KeyPoint vector + /** @brief Converts keypoints from CUDA representation to vector of KeyPoint. + */ static void convertKeyPoints(const Mat& d_keypoints, std::vector& keypoints); //! returns the descriptor size in bytes @@ -309,7 +392,8 @@ public: fastDetector_.nonmaxSuppression = nonmaxSuppression; } - //! release temporary buffer's memory + /** @brief Releases inner buffer memory. + */ void release(); //! if true, image will be blurred before descriptors calculation @@ -335,10 +419,10 @@ private: int scoreType_; int patchSize_; - // The number of desired features per scale + //! The number of desired features per scale std::vector n_features_per_level_; - // Points to compute BRIEF descriptors from + //! Points to compute BRIEF descriptors from GpuMat pattern_; std::vector imagePyr_; @@ -356,6 +440,8 @@ private: GpuMat d_keypoints_; }; +//! @} + }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDAFEATURES2D_HPP__ */ diff --git a/modules/cudafilters/include/opencv2/cudafilters.hpp b/modules/cudafilters/include/opencv2/cudafilters.hpp index 2c06575b5d..a7954916b6 100644 --- a/modules/cudafilters/include/opencv2/cudafilters.hpp +++ b/modules/cudafilters/include/opencv2/cudafilters.hpp @@ -50,65 +50,189 @@ #include "opencv2/core/cuda.hpp" #include "opencv2/imgproc.hpp" +/** + @addtogroup cuda + @{ + @defgroup cudafilters Image Filtering + +Functions and classes described in this section are used to perform various linear or non-linear +filtering operations on 2D images. + +@note + - An example containing all basic morphology operators like erode and dilate can be found at + opencv\_source\_code/samples/gpu/morphology.cpp + + @} + */ + namespace cv { namespace cuda { +//! @addtogroup cudafilters +//! @{ + +/** @brief Common interface for all CUDA filters : + */ class CV_EXPORTS Filter : public Algorithm { public: + /** @brief Applies the specified filter to the image. + + @param src Input image. + @param dst Output image. + @param stream Stream for the asynchronous version. + */ virtual void apply(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0; }; //////////////////////////////////////////////////////////////////////////////////////////////////// // Box Filter -//! creates a normalized 2D box filter -//! supports CV_8UC1, CV_8UC4 types +/** @brief Creates a normalized 2D box filter. + +@param srcType Input image type. Only CV\_8UC1 and CV\_8UC4 are supported for now. +@param dstType Output image type. Only the same type as src is supported for now. +@param ksize Kernel size. +@param anchor Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel +center. +@param borderMode Pixel extrapolation method. For details, see borderInterpolate . +@param borderVal Default border value. + +@sa boxFilter + */ CV_EXPORTS Ptr createBoxFilter(int srcType, int dstType, Size ksize, Point anchor = Point(-1,-1), int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0)); //////////////////////////////////////////////////////////////////////////////////////////////////// // Linear Filter -//! Creates a non-separable linear 2D filter -//! supports 1 and 4 channel CV_8U, CV_16U and CV_32F input +/** @brief Creates a non-separable linear 2D filter. + +@param srcType Input image type. Supports CV\_8U , CV\_16U and CV\_32F one and four channel image. +@param dstType Output image type. Only the same type as src is supported for now. +@param kernel 2D array of filter coefficients. +@param anchor Anchor point. The default value Point(-1, -1) means that the anchor is at the kernel +center. +@param borderMode Pixel extrapolation method. For details, see borderInterpolate . +@param borderVal Default border value. + +@sa filter2D + */ CV_EXPORTS Ptr createLinearFilter(int srcType, int dstType, InputArray kernel, Point anchor = Point(-1,-1), int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0)); //////////////////////////////////////////////////////////////////////////////////////////////////// // Laplacian Filter -//! creates a Laplacian operator -//! supports only ksize = 1 and ksize = 3 +/** @brief Creates a Laplacian operator. + +@param srcType Input image type. Supports CV\_8U , CV\_16U and CV\_32F one and four channel image. +@param dstType Output image type. Only the same type as src is supported for now. +@param ksize Aperture size used to compute the second-derivative filters (see getDerivKernels). It +must be positive and odd. Only ksize = 1 and ksize = 3 are supported. +@param scale Optional scale factor for the computed Laplacian values. By default, no scaling is +applied (see getDerivKernels ). +@param borderMode Pixel extrapolation method. For details, see borderInterpolate . +@param borderVal Default border value. + +@sa Laplacian + */ CV_EXPORTS Ptr createLaplacianFilter(int srcType, int dstType, int ksize = 1, double scale = 1, int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0)); //////////////////////////////////////////////////////////////////////////////////////////////////// // Separable Linear Filter -//! creates a separable linear filter +/** @brief Creates a separable linear filter. + +@param srcType Source array type. +@param dstType Destination array type. +@param rowKernel Horizontal filter coefficients. Support kernels with size \<= 32 . +@param columnKernel Vertical filter coefficients. Support kernels with size \<= 32 . +@param anchor Anchor position within the kernel. Negative values mean that anchor is positioned at +the aperture center. +@param rowBorderMode Pixel extrapolation method in the vertical direction For details, see +borderInterpolate. +@param columnBorderMode Pixel extrapolation method in the horizontal direction. + +@sa sepFilter2D + */ CV_EXPORTS Ptr createSeparableLinearFilter(int srcType, int dstType, InputArray rowKernel, InputArray columnKernel, Point anchor = Point(-1,-1), int rowBorderMode = BORDER_DEFAULT, int columnBorderMode = -1); //////////////////////////////////////////////////////////////////////////////////////////////////// // Deriv Filter -//! creates a generalized Deriv operator +/** @brief Creates a generalized Deriv operator. + +@param srcType Source image type. +@param dstType Destination array type. +@param dx Derivative order in respect of x. +@param dy Derivative order in respect of y. +@param ksize Aperture size. See getDerivKernels for details. +@param normalize Flag indicating whether to normalize (scale down) the filter coefficients or not. +See getDerivKernels for details. +@param scale Optional scale factor for the computed derivative values. By default, no scaling is +applied. For details, see getDerivKernels . +@param rowBorderMode Pixel extrapolation method in the vertical direction. For details, see +borderInterpolate. +@param columnBorderMode Pixel extrapolation method in the horizontal direction. + */ CV_EXPORTS Ptr createDerivFilter(int srcType, int dstType, int dx, int dy, int ksize, bool normalize = false, double scale = 1, int rowBorderMode = BORDER_DEFAULT, int columnBorderMode = -1); -//! creates a Sobel operator +/** @brief Creates a Sobel operator. + +@param srcType Source image type. +@param dstType Destination array type. +@param dx Derivative order in respect of x. +@param dy Derivative order in respect of y. +@param ksize Size of the extended Sobel kernel. Possible values are 1, 3, 5 or 7. +@param scale Optional scale factor for the computed derivative values. By default, no scaling is +applied. For details, see getDerivKernels . +@param rowBorderMode Pixel extrapolation method in the vertical direction. For details, see +borderInterpolate. +@param columnBorderMode Pixel extrapolation method in the horizontal direction. + +@sa Sobel + */ CV_EXPORTS Ptr createSobelFilter(int srcType, int dstType, int dx, int dy, int ksize = 3, double scale = 1, int rowBorderMode = BORDER_DEFAULT, int columnBorderMode = -1); -//! creates a vertical or horizontal Scharr operator +/** @brief Creates a vertical or horizontal Scharr operator. + +@param srcType Source image type. +@param dstType Destination array type. +@param dx Order of the derivative x. +@param dy Order of the derivative y. +@param scale Optional scale factor for the computed derivative values. By default, no scaling is +applied. See getDerivKernels for details. +@param rowBorderMode Pixel extrapolation method in the vertical direction. For details, see +borderInterpolate. +@param columnBorderMode Pixel extrapolation method in the horizontal direction. + +@sa Scharr + */ CV_EXPORTS Ptr createScharrFilter(int srcType, int dstType, int dx, int dy, double scale = 1, int rowBorderMode = BORDER_DEFAULT, int columnBorderMode = -1); //////////////////////////////////////////////////////////////////////////////////////////////////// // Gaussian Filter -//! creates a Gaussian filter +/** @brief Creates a Gaussian filter. + +@param srcType Source image type. +@param dstType Destination array type. +@param ksize Aperture size. See getGaussianKernel for details. +@param sigma1 Gaussian sigma in the horizontal direction. See getGaussianKernel for details. +@param sigma2 Gaussian sigma in the vertical direction. If 0, then +\f$\texttt{sigma2}\leftarrow\texttt{sigma1}\f$ . +@param rowBorderMode Pixel extrapolation method in the vertical direction. For details, see +borderInterpolate. +@param columnBorderMode Pixel extrapolation method in the horizontal direction. + +@sa GaussianBlur + */ CV_EXPORTS Ptr createGaussianFilter(int srcType, int dstType, Size ksize, double sigma1, double sigma2 = 0, int rowBorderMode = BORDER_DEFAULT, int columnBorderMode = -1); @@ -116,19 +240,49 @@ CV_EXPORTS Ptr createGaussianFilter(int srcType, int dstType, Size ksize //////////////////////////////////////////////////////////////////////////////////////////////////// // Morphology Filter -//! creates a 2D morphological filter -//! supports CV_8UC1 and CV_8UC4 types +/** @brief Creates a 2D morphological filter. + +@param op Type of morphological operation. The following types are possible: +- **MORPH\_ERODE** erode +- **MORPH\_DILATE** dilate +- **MORPH\_OPEN** opening +- **MORPH\_CLOSE** closing +- **MORPH\_GRADIENT** morphological gradient +- **MORPH\_TOPHAT** "top hat" +- **MORPH\_BLACKHAT** "black hat" +@param srcType Input/output image type. Only CV\_8UC1 and CV\_8UC4 are supported. +@param kernel 2D 8-bit structuring element for the morphological operation. +@param anchor Anchor position within the structuring element. Negative values mean that the anchor +is at the center. +@param iterations Number of times erosion and dilation to be applied. + +@sa morphologyEx + */ CV_EXPORTS Ptr createMorphologyFilter(int op, int srcType, InputArray kernel, Point anchor = Point(-1, -1), int iterations = 1); //////////////////////////////////////////////////////////////////////////////////////////////////// // Image Rank Filter -//! result pixel value is the maximum of pixel values under the rectangular mask region +/** @brief Creates the maximum filter. + +@param srcType Input/output image type. Only CV\_8UC1 and CV\_8UC4 are supported. +@param ksize Kernel size. +@param anchor Anchor point. The default value (-1) means that the anchor is at the kernel center. +@param borderMode Pixel extrapolation method. For details, see borderInterpolate . +@param borderVal Default border value. + */ CV_EXPORTS Ptr createBoxMaxFilter(int srcType, Size ksize, Point anchor = Point(-1, -1), int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0)); -//! result pixel value is the maximum of pixel values under the rectangular mask region +/** @brief Creates the minimum filter. + +@param srcType Input/output image type. Only CV\_8UC1 and CV\_8UC4 are supported. +@param ksize Kernel size. +@param anchor Anchor point. The default value (-1) means that the anchor is at the kernel center. +@param borderMode Pixel extrapolation method. For details, see borderInterpolate . +@param borderVal Default border value. + */ CV_EXPORTS Ptr createBoxMinFilter(int srcType, Size ksize, Point anchor = Point(-1, -1), int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0)); @@ -136,14 +290,30 @@ CV_EXPORTS Ptr createBoxMinFilter(int srcType, Size ksize, //////////////////////////////////////////////////////////////////////////////////////////////////// // 1D Sum Filter -//! creates a horizontal 1D box filter -//! supports only CV_8UC1 source type and CV_32FC1 sum type +/** @brief Creates a horizontal 1D box filter. + +@param srcType Input image type. Only CV\_8UC1 type is supported for now. +@param dstType Output image type. Only CV\_32FC1 type is supported for now. +@param ksize Kernel size. +@param anchor Anchor point. The default value (-1) means that the anchor is at the kernel center. +@param borderMode Pixel extrapolation method. For details, see borderInterpolate . +@param borderVal Default border value. + */ CV_EXPORTS Ptr createRowSumFilter(int srcType, int dstType, int ksize, int anchor = -1, int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0)); -//! creates a vertical 1D box filter -//! supports only CV_8UC1 sum type and CV_32FC1 dst type +/** @brief Creates a vertical 1D box filter. + +@param srcType Input image type. Only CV\_8UC1 type is supported for now. +@param dstType Output image type. Only CV\_32FC1 type is supported for now. +@param ksize Kernel size. +@param anchor Anchor point. The default value (-1) means that the anchor is at the kernel center. +@param borderMode Pixel extrapolation method. For details, see borderInterpolate . +@param borderVal Default border value. + */ CV_EXPORTS Ptr createColumnSumFilter(int srcType, int dstType, int ksize, int anchor = -1, int borderMode = BORDER_DEFAULT, Scalar borderVal = Scalar::all(0)); +//! @} + }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDAFILTERS_HPP__ */ diff --git a/modules/cudaimgproc/include/opencv2/cudaimgproc.hpp b/modules/cudaimgproc/include/opencv2/cudaimgproc.hpp index d451b93b1e..2b3e14659b 100644 --- a/modules/cudaimgproc/include/opencv2/cudaimgproc.hpp +++ b/modules/cudaimgproc/include/opencv2/cudaimgproc.hpp @@ -50,16 +50,48 @@ #include "opencv2/core/cuda.hpp" #include "opencv2/imgproc.hpp" +/** + @addtogroup cuda + @{ + @defgroup cudaimgproc Image Processing + @{ + @defgroup cudaimgproc_color Color space processing + @defgroup cudaimgproc_hist Histogram Calculation + @defgroup cudaimgproc_hough Hough Transform + @defgroup cudaimgproc_feature Feature Detection + @} + @} +*/ + namespace cv { namespace cuda { +//! @addtogroup cudaimgproc +//! @{ + /////////////////////////// Color Processing /////////////////////////// -//! converts image from one color space to another +//! @addtogroup cudaimgproc_color +//! @{ + +/** @brief Converts an image from one color space to another. + +@param src Source image with CV\_8U , CV\_16U , or CV\_32F depth and 1, 3, or 4 channels. +@param dst Destination image. +@param code Color space conversion code. For details, see cvtColor . +@param dcn Number of channels in the destination image. If the parameter is 0, the number of the +channels is derived automatically from src and the code . +@param stream Stream for the asynchronous version. + +3-channel color spaces (like HSV, XYZ, and so on) can be stored in a 4-channel image for better +performance. + +@sa cvtColor + */ CV_EXPORTS void cvtColor(InputArray src, OutputArray dst, int code, int dcn = 0, Stream& stream = Stream::Null()); enum { - // Bayer Demosaicing (Malvar, He, and Cutler) + //! Bayer Demosaicing (Malvar, He, and Cutler) COLOR_BayerBG2BGR_MHT = 256, COLOR_BayerGB2BGR_MHT = 257, COLOR_BayerRG2BGR_MHT = 258, @@ -75,105 +107,228 @@ enum COLOR_BayerRG2GRAY_MHT = 262, COLOR_BayerGR2GRAY_MHT = 263 }; + +/** @brief Converts an image from Bayer pattern to RGB or grayscale. + +@param src Source image (8-bit or 16-bit single channel). +@param dst Destination image. +@param code Color space conversion code (see the description below). +@param dcn Number of channels in the destination image. If the parameter is 0, the number of the +channels is derived automatically from src and the code . +@param stream Stream for the asynchronous version. + +The function can do the following transformations: + +- Demosaicing using bilinear interpolation + + > - COLOR\_BayerBG2GRAY , COLOR\_BayerGB2GRAY , COLOR\_BayerRG2GRAY , COLOR\_BayerGR2GRAY + > - COLOR\_BayerBG2BGR , COLOR\_BayerGB2BGR , COLOR\_BayerRG2BGR , COLOR\_BayerGR2BGR + +- Demosaicing using Malvar-He-Cutler algorithm (@cite MHT2011) + + > - COLOR\_BayerBG2GRAY\_MHT , COLOR\_BayerGB2GRAY\_MHT , COLOR\_BayerRG2GRAY\_MHT , + > COLOR\_BayerGR2GRAY\_MHT + > - COLOR\_BayerBG2BGR\_MHT , COLOR\_BayerGB2BGR\_MHT , COLOR\_BayerRG2BGR\_MHT , + > COLOR\_BayerGR2BGR\_MHT + +@sa cvtColor + */ CV_EXPORTS void demosaicing(InputArray src, OutputArray dst, int code, int dcn = -1, Stream& stream = Stream::Null()); -//! swap channels -//! dstOrder - Integer array describing how channel values are permutated. The n-th entry -//! of the array contains the number of the channel that is stored in the n-th channel of -//! the output image. E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR -//! channel order. +/** @brief Exchanges the color channels of an image in-place. + +@param image Source image. Supports only CV\_8UC4 type. +@param dstOrder Integer array describing how channel values are permutated. The n-th entry of the +array contains the number of the channel that is stored in the n-th channel of the output image. +E.g. Given an RGBA image, aDstOrder = [3,2,1,0] converts this to ABGR channel order. +@param stream Stream for the asynchronous version. + +The methods support arbitrary permutations of the original channels, including replication. + */ CV_EXPORTS void swapChannels(InputOutputArray image, const int dstOrder[4], Stream& stream = Stream::Null()); -//! Routines for correcting image color gamma +/** @brief Routines for correcting image color gamma. + +@param src Source image (3- or 4-channel 8 bit). +@param dst Destination image. +@param forward true for forward gamma correction or false for inverse gamma correction. +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void gammaCorrection(InputArray src, OutputArray dst, bool forward = true, Stream& stream = Stream::Null()); enum { ALPHA_OVER, ALPHA_IN, ALPHA_OUT, ALPHA_ATOP, ALPHA_XOR, ALPHA_PLUS, ALPHA_OVER_PREMUL, ALPHA_IN_PREMUL, ALPHA_OUT_PREMUL, ALPHA_ATOP_PREMUL, ALPHA_XOR_PREMUL, ALPHA_PLUS_PREMUL, ALPHA_PREMUL}; -//! Composite two images using alpha opacity values contained in each image -//! Supports CV_8UC4, CV_16UC4, CV_32SC4 and CV_32FC4 types +/** @brief Composites two images using alpha opacity values contained in each image. + +@param img1 First image. Supports CV\_8UC4 , CV\_16UC4 , CV\_32SC4 and CV\_32FC4 types. +@param img2 Second image. Must have the same size and the same type as img1 . +@param dst Destination image. +@param alpha\_op Flag specifying the alpha-blending operation: +- **ALPHA\_OVER** +- **ALPHA\_IN** +- **ALPHA\_OUT** +- **ALPHA\_ATOP** +- **ALPHA\_XOR** +- **ALPHA\_PLUS** +- **ALPHA\_OVER\_PREMUL** +- **ALPHA\_IN\_PREMUL** +- **ALPHA\_OUT\_PREMUL** +- **ALPHA\_ATOP\_PREMUL** +- **ALPHA\_XOR\_PREMUL** +- **ALPHA\_PLUS\_PREMUL** +- **ALPHA\_PREMUL** +@param stream Stream for the asynchronous version. + +@note + - An example demonstrating the use of alphaComp can be found at + opencv\_source\_code/samples/gpu/alpha\_comp.cpp + */ CV_EXPORTS void alphaComp(InputArray img1, InputArray img2, OutputArray dst, int alpha_op, Stream& stream = Stream::Null()); +//! @} cudaimgproc_color + ////////////////////////////// Histogram /////////////////////////////// -//! Calculates histogram for 8u one channel image -//! Output hist will have one row, 256 cols and CV32SC1 type. +//! @addtogroup cudaimgproc_hist +//! @{ + +/** @brief Calculates histogram for one channel 8-bit image. + +@param src Source image with CV\_8UC1 type. +@param hist Destination histogram with one row, 256 columns, and the CV\_32SC1 type. +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void calcHist(InputArray src, OutputArray hist, Stream& stream = Stream::Null()); -//! normalizes the grayscale image brightness and contrast by normalizing its histogram +/** @brief Equalizes the histogram of a grayscale image. + +@param src Source image with CV\_8UC1 type. +@param dst Destination image. +@param buf Optional buffer to avoid extra memory allocations (for many calls with the same sizes). +@param stream Stream for the asynchronous version. + +@sa equalizeHist + */ CV_EXPORTS void equalizeHist(InputArray src, OutputArray dst, InputOutputArray buf, Stream& stream = Stream::Null()); +/** @overload */ static inline void equalizeHist(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) { GpuMat buf; cuda::equalizeHist(src, dst, buf, stream); } +/** @brief Base class for Contrast Limited Adaptive Histogram Equalization. : + */ class CV_EXPORTS CLAHE : public cv::CLAHE { public: using cv::CLAHE::apply; + /** @brief Equalizes the histogram of a grayscale image using Contrast Limited Adaptive Histogram Equalization. + + @param src Source image with CV\_8UC1 type. + @param dst Destination image. + @param stream Stream for the asynchronous version. + */ virtual void apply(InputArray src, OutputArray dst, Stream& stream) = 0; }; + +/** @brief Creates implementation for cuda::CLAHE . + +@param clipLimit Threshold for contrast limiting. +@param tileGridSize Size of grid for histogram equalization. Input image will be divided into +equally sized rectangular tiles. tileGridSize defines the number of tiles in row and column. + */ CV_EXPORTS Ptr createCLAHE(double clipLimit = 40.0, Size tileGridSize = Size(8, 8)); -//! Compute levels with even distribution. levels will have 1 row and nLevels cols and CV_32SC1 type. +/** @brief Computes levels with even distribution. + +@param levels Destination array. levels has 1 row, nLevels columns, and the CV\_32SC1 type. +@param nLevels Number of computed levels. nLevels must be at least 2. +@param lowerLevel Lower boundary value of the lowest level. +@param upperLevel Upper boundary value of the greatest level. + */ CV_EXPORTS void evenLevels(OutputArray levels, int nLevels, int lowerLevel, int upperLevel); -//! Calculates histogram with evenly distributed bins for signle channel source. -//! Supports CV_8UC1, CV_16UC1 and CV_16SC1 source types. -//! Output hist will have one row and histSize cols and CV_32SC1 type. +/** @brief Calculates a histogram with evenly distributed bins. + +@param src Source image. CV\_8U, CV\_16U, or CV\_16S depth and 1 or 4 channels are supported. For +a four-channel image, all channels are processed separately. +@param hist Destination histogram with one row, histSize columns, and the CV\_32S type. +@param histSize Size of the histogram. +@param lowerLevel Lower boundary of lowest-level bin. +@param upperLevel Upper boundary of highest-level bin. +@param buf Optional buffer to avoid extra memory allocations (for many calls with the same sizes). +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void histEven(InputArray src, OutputArray hist, InputOutputArray buf, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()); +/** @overload */ static inline void histEven(InputArray src, OutputArray hist, int histSize, int lowerLevel, int upperLevel, Stream& stream = Stream::Null()) { GpuMat buf; cuda::histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream); } -//! Calculates histogram with evenly distributed bins for four-channel source. -//! All channels of source are processed separately. -//! Supports CV_8UC4, CV_16UC4 and CV_16SC4 source types. -//! Output hist[i] will have one row and histSize[i] cols and CV_32SC1 type. +/** @overload */ CV_EXPORTS void histEven(InputArray src, GpuMat hist[4], InputOutputArray buf, int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null()); +/** @overload */ static inline void histEven(InputArray src, GpuMat hist[4], int histSize[4], int lowerLevel[4], int upperLevel[4], Stream& stream = Stream::Null()) { GpuMat buf; cuda::histEven(src, hist, buf, histSize, lowerLevel, upperLevel, stream); } -//! Calculates histogram with bins determined by levels array. -//! levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise. -//! Supports CV_8UC1, CV_16UC1, CV_16SC1 and CV_32FC1 source types. -//! Output hist will have one row and (levels.cols-1) cols and CV_32SC1 type. +/** @brief Calculates a histogram with bins determined by the levels array. + +@param src Source image. CV\_8U , CV\_16U , or CV\_16S depth and 1 or 4 channels are supported. +For a four-channel image, all channels are processed separately. +@param hist Destination histogram with one row, (levels.cols-1) columns, and the CV\_32SC1 type. +@param levels Number of levels in the histogram. +@param buf Optional buffer to avoid extra memory allocations (for many calls with the same sizes). +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void histRange(InputArray src, OutputArray hist, InputArray levels, InputOutputArray buf, Stream& stream = Stream::Null()); +/** @overload */ static inline void histRange(InputArray src, OutputArray hist, InputArray levels, Stream& stream = Stream::Null()) { GpuMat buf; cuda::histRange(src, hist, levels, buf, stream); } -//! Calculates histogram with bins determined by levels array. -//! All levels must have one row and CV_32SC1 type if source has integer type or CV_32FC1 otherwise. -//! All channels of source are processed separately. -//! Supports CV_8UC4, CV_16UC4, CV_16SC4 and CV_32FC4 source types. -//! Output hist[i] will have one row and (levels[i].cols-1) cols and CV_32SC1 type. +/** @overload */ CV_EXPORTS void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], InputOutputArray buf, Stream& stream = Stream::Null()); +/** @overload */ static inline void histRange(InputArray src, GpuMat hist[4], const GpuMat levels[4], Stream& stream = Stream::Null()) { GpuMat buf; cuda::histRange(src, hist, levels, buf, stream); } +//! @} cudaimgproc_hist + //////////////////////////////// Canny //////////////////////////////// +/** @brief Base class for Canny Edge Detector. : + */ class CV_EXPORTS CannyEdgeDetector : public Algorithm { public: + /** @brief Finds edges in an image using the @cite Canny86 algorithm. + + @param image Single-channel 8-bit input image. + @param edges Output edge map. It has the same size and type as image . + */ virtual void detect(InputArray image, OutputArray edges) = 0; + /** @overload + @param dx First derivative of image in the vertical direction. Support only CV\_32S type. + @param dy First derivative of image in the horizontal direction. Support only CV\_32S type. + @param edges Output edge map. It has the same size and type as image . + */ virtual void detect(InputArray dx, InputArray dy, OutputArray edges) = 0; virtual void setLowThreshold(double low_thresh) = 0; @@ -189,6 +344,16 @@ public: virtual bool getL2Gradient() const = 0; }; +/** @brief Creates implementation for cuda::CannyEdgeDetector . + +@param low\_thresh First threshold for the hysteresis procedure. +@param high\_thresh Second threshold for the hysteresis procedure. +@param apperture\_size Aperture size for the Sobel operator. +@param L2gradient Flag indicating whether a more accurate \f$L_2\f$ norm +\f$=\sqrt{(dI/dx)^2 + (dI/dy)^2}\f$ should be used to compute the image gradient magnitude ( +L2gradient=true ), or a faster default \f$L_1\f$ norm \f$=|dI/dx|+|dI/dy|\f$ is enough ( L2gradient=false +). + */ CV_EXPORTS Ptr createCannyEdgeDetector(double low_thresh, double high_thresh, int apperture_size = 3, bool L2gradient = false); /////////////////////////// Hough Transform //////////////////////////// @@ -196,10 +361,32 @@ CV_EXPORTS Ptr createCannyEdgeDetector(double low_thresh, dou ////////////////////////////////////// // HoughLines +//! @addtogroup cudaimgproc_hough +//! @{ + +/** @brief Base class for lines detector algorithm. : + */ class CV_EXPORTS HoughLinesDetector : public Algorithm { public: + /** @brief Finds lines in a binary image using the classical Hough transform. + + @param src 8-bit, single-channel binary source image. + @param lines Output vector of lines. Each line is represented by a two-element vector + \f$(\rho, \theta)\f$ . \f$\rho\f$ is the distance from the coordinate origin \f$(0,0)\f$ (top-left corner of + the image). \f$\theta\f$ is the line rotation angle in radians ( + \f$0 \sim \textrm{vertical line}, \pi/2 \sim \textrm{horizontal line}\f$ ). + + @sa HoughLines + */ virtual void detect(InputArray src, OutputArray lines) = 0; + + /** @brief Downloads results from cuda::HoughLinesDetector::detect to host memory. + + @param d\_lines Result of cuda::HoughLinesDetector::detect . + @param h\_lines Output host array. + @param h\_votes Optional output array for line's votes. + */ virtual void downloadResults(InputArray d_lines, OutputArray h_lines, OutputArray h_votes = noArray()) = 0; virtual void setRho(float rho) = 0; @@ -218,16 +405,35 @@ public: virtual int getMaxLines() const = 0; }; +/** @brief Creates implementation for cuda::HoughLinesDetector . + +@param rho Distance resolution of the accumulator in pixels. +@param theta Angle resolution of the accumulator in radians. +@param threshold Accumulator threshold parameter. Only those lines are returned that get enough +votes ( \f$>\texttt{threshold}\f$ ). +@param doSort Performs lines sort by votes. +@param maxLines Maximum number of output lines. + */ CV_EXPORTS Ptr createHoughLinesDetector(float rho, float theta, int threshold, bool doSort = false, int maxLines = 4096); ////////////////////////////////////// // HoughLinesP -//! finds line segments in the black-n-white image using probabilistic Hough transform +/** @brief Base class for line segments detector algorithm. : + */ class CV_EXPORTS HoughSegmentDetector : public Algorithm { public: + /** @brief Finds line segments in a binary image using the probabilistic Hough transform. + + @param src 8-bit, single-channel binary source image. + @param lines Output vector of lines. Each line is represented by a 4-element vector + \f$(x_1, y_1, x_2, y_2)\f$ , where \f$(x_1,y_1)\f$ and \f$(x_2, y_2)\f$ are the ending points of each detected + line segment. + + @sa HoughLinesP + */ virtual void detect(InputArray src, OutputArray lines) = 0; virtual void setRho(float rho) = 0; @@ -246,14 +452,32 @@ public: virtual int getMaxLines() const = 0; }; +/** @brief Creates implementation for cuda::HoughSegmentDetector . + +@param rho Distance resolution of the accumulator in pixels. +@param theta Angle resolution of the accumulator in radians. +@param minLineLength Minimum line length. Line segments shorter than that are rejected. +@param maxLineGap Maximum allowed gap between points on the same line to link them. +@param maxLines Maximum number of output lines. + */ CV_EXPORTS Ptr createHoughSegmentDetector(float rho, float theta, int minLineLength, int maxLineGap, int maxLines = 4096); ////////////////////////////////////// // HoughCircles +/** @brief Base class for circles detector algorithm. : + */ class CV_EXPORTS HoughCirclesDetector : public Algorithm { public: + /** @brief Finds circles in a grayscale image using the Hough transform. + + @param src 8-bit, single-channel grayscale input image. + @param circles Output vector of found circles. Each vector is encoded as a 3-element + floating-point vector \f$(x, y, radius)\f$ . + + @sa HoughCircles + */ virtual void detect(InputArray src, OutputArray circles) = 0; virtual void setDp(float dp) = 0; @@ -278,85 +502,257 @@ public: virtual int getMaxCircles() const = 0; }; +/** @brief Creates implementation for cuda::HoughCirclesDetector . + +@param dp Inverse ratio of the accumulator resolution to the image resolution. For example, if +dp=1 , the accumulator has the same resolution as the input image. If dp=2 , the accumulator has +half as big width and height. +@param minDist Minimum distance between the centers of the detected circles. If the parameter is +too small, multiple neighbor circles may be falsely detected in addition to a true one. If it is +too large, some circles may be missed. +@param cannyThreshold The higher threshold of the two passed to Canny edge detector (the lower one +is twice smaller). +@param votesThreshold The accumulator threshold for the circle centers at the detection stage. The +smaller it is, the more false circles may be detected. +@param minRadius Minimum circle radius. +@param maxRadius Maximum circle radius. +@param maxCircles Maximum number of output circles. + */ CV_EXPORTS Ptr createHoughCirclesDetector(float dp, float minDist, int cannyThreshold, int votesThreshold, int minRadius, int maxRadius, int maxCircles = 4096); ////////////////////////////////////// // GeneralizedHough -//! Ballard, D.H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 13 (2): 111-122. -//! Detects position only without traslation and rotation +/** @brief Creates implementation for generalized hough transform from @cite Ballard1981 . + */ CV_EXPORTS Ptr createGeneralizedHoughBallard(); -//! Guil, N., González-Linares, J.M. and Zapata, E.L. (1999). Bidimensional shape detection using an invariant approach. Pattern Recognition 32 (6): 1025-1038. -//! Detects position, traslation and rotation +/** @brief Creates implementation for generalized hough transform from @cite Guil1999 . + */ CV_EXPORTS Ptr createGeneralizedHoughGuil(); +//! @} cudaimgproc_hough + ////////////////////////// Corners Detection /////////////////////////// +//! @addtogroup cudaimgproc_feature +//! @{ + +/** @brief Base class for Cornerness Criteria computation. : + */ class CV_EXPORTS CornernessCriteria : public Algorithm { public: + /** @brief Computes the cornerness criteria at each image pixel. + + @param src Source image. + @param dst Destination image containing cornerness values. It will have the same size as src and + CV\_32FC1 type. + @param stream Stream for the asynchronous version. + */ virtual void compute(InputArray src, OutputArray dst, Stream& stream = Stream::Null()) = 0; }; -//! computes Harris cornerness criteria at each image pixel +/** @brief Creates implementation for Harris cornerness criteria. + +@param srcType Input source type. Only CV\_8UC1 and CV\_32FC1 are supported for now. +@param blockSize Neighborhood size. +@param ksize Aperture parameter for the Sobel operator. +@param k Harris detector free parameter. +@param borderType Pixel extrapolation method. Only BORDER\_REFLECT101 and BORDER\_REPLICATE are +supported for now. + +@sa cornerHarris + */ CV_EXPORTS Ptr createHarrisCorner(int srcType, int blockSize, int ksize, double k, int borderType = BORDER_REFLECT101); -//! computes minimum eigen value of 2x2 derivative covariation matrix at each pixel - the cornerness criteria +/** @brief Creates implementation for the minimum eigen value of a 2x2 derivative covariation matrix (the +cornerness criteria). + +@param srcType Input source type. Only CV\_8UC1 and CV\_32FC1 are supported for now. +@param blockSize Neighborhood size. +@param ksize Aperture parameter for the Sobel operator. +@param borderType Pixel extrapolation method. Only BORDER\_REFLECT101 and BORDER\_REPLICATE are +supported for now. + +@sa cornerMinEigenVal + */ CV_EXPORTS Ptr createMinEigenValCorner(int srcType, int blockSize, int ksize, int borderType = BORDER_REFLECT101); ////////////////////////// Corners Detection /////////////////////////// +/** @brief Base class for Corners Detector. : + */ class CV_EXPORTS CornersDetector : public Algorithm { public: - //! return 1 rows matrix with CV_32FC2 type + /** @brief Determines strong corners on an image. + + @param image Input 8-bit or floating-point 32-bit, single-channel image. + @param corners Output vector of detected corners (1-row matrix with CV\_32FC2 type with corners + positions). + @param mask Optional region of interest. If the image is not empty (it needs to have the type + CV\_8UC1 and the same size as image ), it specifies the region in which the corners are detected. + */ virtual void detect(InputArray image, OutputArray corners, InputArray mask = noArray()) = 0; }; +/** @brief Creates implementation for cuda::CornersDetector . + +@param srcType Input source type. Only CV\_8UC1 and CV\_32FC1 are supported for now. +@param maxCorners Maximum number of corners to return. If there are more corners than are found, +the strongest of them is returned. +@param qualityLevel Parameter characterizing the minimal accepted quality of image corners. The +parameter value is multiplied by the best corner quality measure, which is the minimal eigenvalue +(see cornerMinEigenVal ) or the Harris function response (see cornerHarris ). The corners with the +quality measure less than the product are rejected. For example, if the best corner has the +quality measure = 1500, and the qualityLevel=0.01 , then all the corners with the quality measure +less than 15 are rejected. +@param minDistance Minimum possible Euclidean distance between the returned corners. +@param blockSize Size of an average block for computing a derivative covariation matrix over each +pixel neighborhood. See cornerEigenValsAndVecs . +@param useHarrisDetector Parameter indicating whether to use a Harris detector (see cornerHarris) +or cornerMinEigenVal. +@param harrisK Free parameter of the Harris detector. + */ CV_EXPORTS Ptr createGoodFeaturesToTrackDetector(int srcType, int maxCorners = 1000, double qualityLevel = 0.01, double minDistance = 0.0, int blockSize = 3, bool useHarrisDetector = false, double harrisK = 0.04); +//! @} cudaimgproc_feature + ///////////////////////////// Mean Shift ////////////////////////////// -//! Does mean shift filtering on GPU. +/** @brief Performs mean-shift filtering for each point of the source image. + +@param src Source image. Only CV\_8UC4 images are supported for now. +@param dst Destination image containing the color of mapped points. It has the same size and type +as src . +@param sp Spatial window radius. +@param sr Color window radius. +@param criteria Termination criteria. See TermCriteria. +@param stream + +It maps each point of the source image into another point. As a result, you have a new color and new +position of each point. + */ CV_EXPORTS void meanShiftFiltering(InputArray src, OutputArray dst, int sp, int sr, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), Stream& stream = Stream::Null()); -//! Does mean shift procedure on GPU. +/** @brief Performs a mean-shift procedure and stores information about processed points (their colors and +positions) in two images. + +@param src Source image. Only CV\_8UC4 images are supported for now. +@param dstr Destination image containing the color of mapped points. The size and type is the same +as src . +@param dstsp Destination image containing the position of mapped points. The size is the same as +src size. The type is CV\_16SC2 . +@param sp Spatial window radius. +@param sr Color window radius. +@param criteria Termination criteria. See TermCriteria. +@param stream + +@sa cuda::meanShiftFiltering + */ CV_EXPORTS void meanShiftProc(InputArray src, OutputArray dstr, OutputArray dstsp, int sp, int sr, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1), Stream& stream = Stream::Null()); -//! Does mean shift segmentation with elimination of small regions. +/** @brief Performs a mean-shift segmentation of the source image and eliminates small segments. + +@param src Source image. Only CV\_8UC4 images are supported for now. +@param dst Segmented image with the same size and type as src (host memory). +@param sp Spatial window radius. +@param sr Color window radius. +@param minsize Minimum segment size. Smaller segments are merged. +@param criteria Termination criteria. See TermCriteria. + */ CV_EXPORTS void meanShiftSegmentation(InputArray src, OutputArray dst, int sp, int sr, int minsize, TermCriteria criteria = TermCriteria(TermCriteria::MAX_ITER + TermCriteria::EPS, 5, 1)); /////////////////////////// Match Template //////////////////////////// -//! computes the proximity map for the raster template and the image where the template is searched for +/** @brief Base class for Template Matching. : + */ class CV_EXPORTS TemplateMatching : public Algorithm { public: + /** @brief Computes a proximity map for a raster template and an image where the template is searched for. + + @param image Source image. + @param templ Template image with the size and type the same as image . + @param result Map containing comparison results ( CV\_32FC1 ). If image is *W x H* and templ is *w + x h*, then result must be *W-w+1 x H-h+1*. + @param stream Stream for the asynchronous version. + */ virtual void match(InputArray image, InputArray templ, OutputArray result, Stream& stream = Stream::Null()) = 0; }; +/** @brief Creates implementation for cuda::TemplateMatching . + +@param srcType Input source type. CV\_32F and CV\_8U depth images (1..4 channels) are supported +for now. +@param method Specifies the way to compare the template with the image. +@param user\_block\_size You can use field user\_block\_size to set specific block size. If you +leave its default value Size(0,0) then automatic estimation of block size will be used (which is +optimized for speed). By varying user\_block\_size you can reduce memory requirements at the cost +of speed. + +The following methods are supported for the CV\_8U depth images for now: + +- CV\_TM\_SQDIFF +- CV\_TM\_SQDIFF\_NORMED +- CV\_TM\_CCORR +- CV\_TM\_CCORR\_NORMED +- CV\_TM\_CCOEFF +- CV\_TM\_CCOEFF\_NORMED + +The following methods are supported for the CV\_32F images for now: + +- CV\_TM\_SQDIFF +- CV\_TM\_CCORR + +@sa matchTemplate + */ CV_EXPORTS Ptr createTemplateMatching(int srcType, int method, Size user_block_size = Size()); ////////////////////////// Bilateral Filter /////////////////////////// -//! Performa bilateral filtering of passsed image +/** @brief Performs bilateral filtering of passed image + +@param src Source image. Supports only (channles != 2 && depth() != CV\_8S && depth() != CV\_32S +&& depth() != CV\_64F). +@param dst Destination imagwe. +@param kernel\_size Kernel window size. +@param sigma\_color Filter sigma in the color space. +@param sigma\_spatial Filter sigma in the coordinate space. +@param borderMode Border type. See borderInterpolate for details. BORDER\_REFLECT101 , +BORDER\_REPLICATE , BORDER\_CONSTANT , BORDER\_REFLECT and BORDER\_WRAP are supported for now. +@param stream Stream for the asynchronous version. + +@sa bilateralFilter + */ CV_EXPORTS void bilateralFilter(InputArray src, OutputArray dst, int kernel_size, float sigma_color, float sigma_spatial, int borderMode = BORDER_DEFAULT, Stream& stream = Stream::Null()); ///////////////////////////// Blending //////////////////////////////// -//! performs linear blending of two images -//! to avoid accuracy errors sum of weigths shouldn't be very close to zero +/** @brief Performs linear blending of two images. + +@param img1 First image. Supports only CV\_8U and CV\_32F depth. +@param img2 Second image. Must have the same size and the same type as img1 . +@param weights1 Weights for first image. Must have tha same size as img1 . Supports only CV\_32F +type. +@param weights2 Weights for second image. Must have tha same size as img2 . Supports only CV\_32F +type. +@param result Destination image. +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void blendLinear(InputArray img1, InputArray img2, InputArray weights1, InputArray weights2, OutputArray result, Stream& stream = Stream::Null()); +//! @} + }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDAIMGPROC_HPP__ */ diff --git a/modules/cudalegacy/include/opencv2/cudalegacy.hpp b/modules/cudalegacy/include/opencv2/cudalegacy.hpp index 5ae75cd316..a72ef09c75 100644 --- a/modules/cudalegacy/include/opencv2/cudalegacy.hpp +++ b/modules/cudalegacy/include/opencv2/cudalegacy.hpp @@ -49,4 +49,11 @@ #include "opencv2/cudalegacy/NCVHaarObjectDetection.hpp" #include "opencv2/cudalegacy/NCVBroxOpticalFlow.hpp" +/** + @addtogroup cuda + @{ + @defgroup cudalegacy Legacy support + @} +*/ + #endif /* __OPENCV_CUDALEGACY_HPP__ */ diff --git a/modules/cudalegacy/include/opencv2/cudalegacy/NCV.hpp b/modules/cudalegacy/include/opencv2/cudalegacy/NCV.hpp index cb84c23ad5..6eb65b0d85 100644 --- a/modules/cudalegacy/include/opencv2/cudalegacy/NCV.hpp +++ b/modules/cudalegacy/include/opencv2/cudalegacy/NCV.hpp @@ -60,6 +60,8 @@ // //============================================================================== +//! @addtogroup cudalegacy +//! @{ /** * Compile-time assert namespace @@ -1023,6 +1025,6 @@ CV_EXPORTS NCVStatus ncvDrawRects_32u_device(Ncv32u *d_dst, Ncv32u dstStride, Nc NCVMatrixAlloc name(alloc, width, height); \ ncvAssertReturn(name.isMemAllocated(), err); - +//! @} #endif // _ncv_hpp_ diff --git a/modules/cudalegacy/include/opencv2/cudalegacy/NCVBroxOpticalFlow.hpp b/modules/cudalegacy/include/opencv2/cudalegacy/NCVBroxOpticalFlow.hpp index 777000cf7b..c14532b480 100644 --- a/modules/cudalegacy/include/opencv2/cudalegacy/NCVBroxOpticalFlow.hpp +++ b/modules/cudalegacy/include/opencv2/cudalegacy/NCVBroxOpticalFlow.hpp @@ -62,6 +62,9 @@ #include "opencv2/cudalegacy/NCV.hpp" +//! @addtogroup cudalegacy +//! @{ + /// \brief Model and solver parameters struct NCVBroxOpticalFlowDescriptor { @@ -89,6 +92,7 @@ struct NCVBroxOpticalFlowDescriptor /// \param [in] frame1 frame to track /// \param [out] u flow horizontal component (along \b x axis) /// \param [out] v flow vertical component (along \b y axis) +/// \param stream /// \return computation status ///////////////////////////////////////////////////////////////////////////////////////// @@ -101,4 +105,6 @@ NCVStatus NCVBroxOpticalFlow(const NCVBroxOpticalFlowDescriptor desc, NCVMatrix &v, cudaStream_t stream); +//! @} + #endif diff --git a/modules/cudalegacy/include/opencv2/cudalegacy/NCVHaarObjectDetection.hpp b/modules/cudalegacy/include/opencv2/cudalegacy/NCVHaarObjectDetection.hpp index 6c69cbd5a1..6b84e8b255 100644 --- a/modules/cudalegacy/include/opencv2/cudalegacy/NCVHaarObjectDetection.hpp +++ b/modules/cudalegacy/include/opencv2/cudalegacy/NCVHaarObjectDetection.hpp @@ -61,6 +61,8 @@ #include "opencv2/cudalegacy/NCV.hpp" +//! @addtogroup cudalegacy +//! @{ //============================================================================== // @@ -456,6 +458,6 @@ CV_EXPORTS NCVStatus ncvHaarStoreNVBIN_host(const cv::String &filename, NCVVector &h_HaarNodes, NCVVector &h_HaarFeatures); - +//! @} #endif // _ncvhaarobjectdetection_hpp_ diff --git a/modules/cudalegacy/include/opencv2/cudalegacy/NCVPyramid.hpp b/modules/cudalegacy/include/opencv2/cudalegacy/NCVPyramid.hpp index 7ec22a367f..9f4501a5aa 100644 --- a/modules/cudalegacy/include/opencv2/cudalegacy/NCVPyramid.hpp +++ b/modules/cudalegacy/include/opencv2/cudalegacy/NCVPyramid.hpp @@ -48,6 +48,8 @@ #include "opencv2/cudalegacy/NCV.hpp" #include "opencv2/core/cuda/common.hpp" +//! @cond IGNORED + namespace cv { namespace cuda { namespace device { namespace pyramid @@ -106,4 +108,6 @@ private: #endif //_WIN32 +//! @endcond + #endif //_ncvpyramid_hpp_ diff --git a/modules/cudalegacy/include/opencv2/cudalegacy/NPP_staging.hpp b/modules/cudalegacy/include/opencv2/cudalegacy/NPP_staging.hpp index 979ceef41f..6cc50d7a47 100644 --- a/modules/cudalegacy/include/opencv2/cudalegacy/NPP_staging.hpp +++ b/modules/cudalegacy/include/opencv2/cudalegacy/NPP_staging.hpp @@ -45,19 +45,14 @@ #include "opencv2/cudalegacy/NCV.hpp" - -/** -* \file NPP_staging.hpp -* NPP Staging Library -*/ - +//! @addtogroup cudalegacy +//! @{ /** \defgroup core_npp NPPST Core * Basic functions for CUDA streams management. * @{ */ - /** * Gets an active CUDA stream used by NPPST * NOT THREAD SAFE @@ -168,6 +163,7 @@ NCVStatus nppiStInterpolateFrames(const NppStInterpolationState *pState); * \param nSrcStep [IN] Source image line step * \param pDst [OUT] Destination image pointer (CUDA device memory) * \param dstSize [OUT] Destination image size + * \param nDstStep * \param oROI [IN] Region of interest in the source image * \param borderType [IN] Type of border * \param pKernel [IN] Pointer to row kernel values (CUDA device memory) @@ -201,6 +197,7 @@ NCVStatus nppiStFilterRowBorder_32f_C1R(const Ncv32f *pSrc, * \param nSrcStep [IN] Source image line step * \param pDst [OUT] Destination image pointer (CUDA device memory) * \param dstSize [OUT] Destination image size + * \param nDstStep [IN] * \param oROI [IN] Region of interest in the source image * \param borderType [IN] Type of border * \param pKernel [IN] Pointer to column kernel values (CUDA device memory) @@ -228,7 +225,7 @@ NCVStatus nppiStFilterColumnBorder_32f_C1R(const Ncv32f *pSrc, /** Size of buffer required for vector image warping. * * \param srcSize [IN] Source image size - * \param nStep [IN] Source image line step + * \param nSrcStep [IN] Source image line step * \param hpSize [OUT] Where to store computed size (host memory) * * \return NCV status code @@ -285,6 +282,7 @@ NCVStatus nppiStVectorWarp_PSF1x1_32f_C1(const Ncv32f *pSrc, * \param pU [IN] Pointer to horizontal displacement field (CUDA device memory) * \param pV [IN] Pointer to vertical displacement field (CUDA device memory) * \param nVFStep [IN] Displacement field line step + * \param pBuffer * \param timeScale [IN] Value by which displacement field will be scaled for warping * \param pDst [OUT] Destination image pointer (CUDA device memory) * @@ -903,5 +901,6 @@ NCVStatus nppsStCompact_32f_host(Ncv32f *h_src, Ncv32u srcLen, /*@}*/ +//! @} #endif // _npp_staging_hpp_ diff --git a/modules/cudalegacy/include/opencv2/cudalegacy/private.hpp b/modules/cudalegacy/include/opencv2/cudalegacy/private.hpp index 41c23836d9..721748099c 100644 --- a/modules/cudalegacy/include/opencv2/cudalegacy/private.hpp +++ b/modules/cudalegacy/include/opencv2/cudalegacy/private.hpp @@ -56,6 +56,8 @@ #include "opencv2/cudalegacy.hpp" +//! @cond IGNORED + namespace cv { namespace cuda { class NppStStreamHandler @@ -89,4 +91,6 @@ namespace cv { namespace cuda #define ncvSafeCall(expr) cv::cuda::checkNcvError(expr, __FILE__, __LINE__, CV_Func) +//! @endcond + #endif // __OPENCV_CORE_CUDALEGACY_PRIVATE_HPP__ diff --git a/modules/cudaoptflow/include/opencv2/cudaoptflow.hpp b/modules/cudaoptflow/include/opencv2/cudaoptflow.hpp index d07a834ef3..694ad8d87e 100644 --- a/modules/cudaoptflow/include/opencv2/cudaoptflow.hpp +++ b/modules/cudaoptflow/include/opencv2/cudaoptflow.hpp @@ -49,8 +49,21 @@ #include "opencv2/core/cuda.hpp" +/** + @addtogroup cuda + @{ + @defgroup cudaoptflow Optical Flow + @} + */ + namespace cv { namespace cuda { +//! @addtogroup cudaoptflow +//! @{ + +/** @brief Class computing the optical flow for two images using Brox et al Optical Flow algorithm +(@cite Brox2004). : + */ class CV_EXPORTS BroxOpticalFlow { public: @@ -88,16 +101,58 @@ public: GpuMat buf; }; +/** @brief Class used for calculating an optical flow. + +The class can calculate an optical flow for a sparse feature set or dense optical flow using the +iterative Lucas-Kanade method with pyramids. + +@sa calcOpticalFlowPyrLK + +@note + - An example of the Lucas Kanade optical flow algorithm can be found at + opencv\_source\_code/samples/gpu/pyrlk\_optical\_flow.cpp + */ class CV_EXPORTS PyrLKOpticalFlow { public: PyrLKOpticalFlow(); + /** @brief Calculate an optical flow for a sparse feature set. + + @param prevImg First 8-bit input image (supports both grayscale and color images). + @param nextImg Second input image of the same size and the same type as prevImg . + @param prevPts Vector of 2D points for which the flow needs to be found. It must be one row matrix + with CV\_32FC2 type. + @param nextPts Output vector of 2D points (with single-precision floating-point coordinates) + containing the calculated new positions of input features in the second image. When useInitialFlow + is true, the vector must have the same size as in the input. + @param status Output status vector (CV\_8UC1 type). Each element of the vector is set to 1 if the + flow for the corresponding features has been found. Otherwise, it is set to 0. + @param err Output vector (CV\_32FC1 type) that contains the difference between patches around the + original and moved points or min eigen value if getMinEigenVals is checked. It can be NULL, if not + needed. + + @sa calcOpticalFlowPyrLK + */ void sparse(const GpuMat& prevImg, const GpuMat& nextImg, const GpuMat& prevPts, GpuMat& nextPts, GpuMat& status, GpuMat* err = 0); + /** @brief Calculate dense optical flow. + + @param prevImg First 8-bit grayscale input image. + @param nextImg Second input image of the same size and the same type as prevImg . + @param u Horizontal component of the optical flow of the same size as input images, 32-bit + floating-point, single-channel + @param v Vertical component of the optical flow of the same size as input images, 32-bit + floating-point, single-channel + @param err Output vector (CV\_32FC1 type) that contains the difference between patches around the + original and moved points or min eigen value if getMinEigenVals is checked. It can be NULL, if not + needed. + */ void dense(const GpuMat& prevImg, const GpuMat& nextImg, GpuMat& u, GpuMat& v, GpuMat* err = 0); + /** @brief Releases inner buffers memory. + */ void releaseMemory(); Size winSize; @@ -115,6 +170,8 @@ private: GpuMat vPyr_[2]; }; +/** @brief Class computing a dense optical flow using the Gunnar Farneback’s algorithm. : + */ class CV_EXPORTS FarnebackOpticalFlow { public: @@ -139,8 +196,20 @@ public: double polySigma; int flags; + /** @brief Computes a dense optical flow using the Gunnar Farneback’s algorithm. + + @param frame0 First 8-bit gray-scale input image + @param frame1 Second 8-bit gray-scale input image + @param flowx Flow horizontal component + @param flowy Flow vertical component + @param s Stream + + @sa calcOpticalFlowFarneback + */ void operator ()(const GpuMat &frame0, const GpuMat &frame1, GpuMat &flowx, GpuMat &flowy, Stream &s = Stream::Null()); + /** @brief Releases unused auxiliary memory buffers. + */ void releaseMemory() { frames_[0].release(); @@ -295,20 +364,22 @@ private: GpuMat extended_I1; }; -//! Interpolate frames (images) using provided optical flow (displacement field). -//! frame0 - frame 0 (32-bit floating point images, single channel) -//! frame1 - frame 1 (the same type and size) -//! fu - forward horizontal displacement -//! fv - forward vertical displacement -//! bu - backward horizontal displacement -//! bv - backward vertical displacement -//! pos - new frame position -//! newFrame - new frame -//! buf - temporary buffer, will have width x 6*height size, CV_32FC1 type and contain 6 GpuMat; -//! occlusion masks 0, occlusion masks 1, -//! interpolated forward flow 0, interpolated forward flow 1, -//! interpolated backward flow 0, interpolated backward flow 1 -//! +/** @brief Interpolates frames (images) using provided optical flow (displacement field). + +@param frame0 First frame (32-bit floating point images, single channel). +@param frame1 Second frame. Must have the same type and size as frame0 . +@param fu Forward horizontal displacement. +@param fv Forward vertical displacement. +@param bu Backward horizontal displacement. +@param bv Backward vertical displacement. +@param pos New frame position. +@param newFrame Output image. +@param buf Temporary buffer, will have width x 6\*height size, CV\_32FC1 type and contain 6 +GpuMat: occlusion masks for first frame, occlusion masks for second, interpolated forward +horizontal flow, interpolated forward vertical flow, interpolated backward horizontal flow, +interpolated backward vertical flow. +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, const GpuMat& fu, const GpuMat& fv, const GpuMat& bu, const GpuMat& bv, @@ -317,6 +388,8 @@ CV_EXPORTS void interpolateFrames(const GpuMat& frame0, const GpuMat& frame1, CV_EXPORTS void createOpticalFlowNeedleMap(const GpuMat& u, const GpuMat& v, GpuMat& vertex, GpuMat& colors); +//! @} + }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDAOPTFLOW_HPP__ */ diff --git a/modules/cudastereo/include/opencv2/cudastereo.hpp b/modules/cudastereo/include/opencv2/cudastereo.hpp index a58156c433..ee39604e00 100644 --- a/modules/cudastereo/include/opencv2/cudastereo.hpp +++ b/modules/cudastereo/include/opencv2/cudastereo.hpp @@ -50,11 +50,25 @@ #include "opencv2/core/cuda.hpp" #include "opencv2/calib3d.hpp" +/** + @addtogroup cuda + @{ + @defgroup cudastereo Stereo Correspondence + @} + */ + namespace cv { namespace cuda { +//! @addtogroup cudastereo +//! @{ + ///////////////////////////////////////// // StereoBM +/** @brief Class computing stereo correspondence (disparity map) using the block matching algorithm. : + +@sa StereoBM + */ class CV_EXPORTS StereoBM : public cv::StereoBM { public: @@ -63,20 +77,70 @@ public: virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0; }; +/** @brief Creates StereoBM object. + +@param numDisparities the disparity search range. For each pixel algorithm will find the best +disparity from 0 (default minimum disparity) to numDisparities. The search range can then be +shifted by changing the minimum disparity. +@param blockSize the linear size of the blocks compared by the algorithm. The size should be odd +(as the block is centered at the current pixel). Larger block size implies smoother, though less +accurate disparity map. Smaller block size gives more detailed disparity map, but there is higher +chance for algorithm to find a wrong correspondence. + */ CV_EXPORTS Ptr createStereoBM(int numDisparities = 64, int blockSize = 19); ///////////////////////////////////////// // StereoBeliefPropagation -//! "Efficient Belief Propagation for Early Vision" P.Felzenszwalb +/** @brief Class computing stereo correspondence using the belief propagation algorithm. : + +The class implements algorithm described in @cite Felzenszwalb2006 . It can compute own data cost +(using a truncated linear model) or use a user-provided data cost. + +@note + StereoBeliefPropagation requires a lot of memory for message storage: + + \f[width \_ step \cdot height \cdot ndisp \cdot 4 \cdot (1 + 0.25)\f] + + and for data cost storage: + + \f[width\_step \cdot height \cdot ndisp \cdot (1 + 0.25 + 0.0625 + \dotsm + \frac{1}{4^{levels}})\f] + + width\_step is the number of bytes in a line including padding. + +StereoBeliefPropagation uses a truncated linear model for the data cost and discontinuity terms: + +\f[DataCost = data \_ weight \cdot \min ( \lvert Img_Left(x,y)-Img_Right(x-d,y) \rvert , max \_ data \_ term)\f] + +\f[DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)\f] + +For more details, see @cite Felzenszwalb2006. + +By default, StereoBeliefPropagation uses floating-point arithmetics and the CV\_32FC1 type for +messages. But it can also use fixed-point arithmetics and the CV\_16SC1 message type for better +performance. To avoid an overflow in this case, the parameters must satisfy the following +requirement: + +\f[10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX\f] + +@sa StereoMatcher + */ class CV_EXPORTS StereoBeliefPropagation : public cv::StereoMatcher { public: using cv::StereoMatcher::compute; + /** @overload */ virtual void compute(InputArray left, InputArray right, OutputArray disparity, Stream& stream) = 0; - //! version for user specified data term + /** @brief Enables the stereo correspondence operator that finds the disparity for the specified data cost. + + @param data User-specified data cost, a matrix of msg\_type type and + Size(\\*ndisp, \) size. + @param disparity Output disparity map. If disparity is empty, the output type is CV\_16SC1 . + Otherwise, the type is retained. + @param stream Stream for the asynchronous version. + */ virtual void compute(InputArray data, OutputArray disparity, Stream& stream = Stream::Null()) = 0; //! number of BP iterations on each level @@ -107,18 +171,48 @@ public: virtual int getMsgType() const = 0; virtual void setMsgType(int msg_type) = 0; + /** @brief Uses a heuristic method to compute the recommended parameters ( ndisp, iters and levels ) for the + specified image size ( width and height ). + */ static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels); }; +/** @brief Creates StereoBeliefPropagation object. + +@param ndisp Number of disparities. +@param iters Number of BP iterations on each level. +@param levels Number of levels. +@param msg\_type Type for messages. CV\_16SC1 and CV\_32FC1 types are supported. + */ CV_EXPORTS Ptr createStereoBeliefPropagation(int ndisp = 64, int iters = 5, int levels = 5, int msg_type = CV_32F); ///////////////////////////////////////// // StereoConstantSpaceBP -//! "A Constant-Space Belief Propagation Algorithm for Stereo Matching" -//! Qingxiong Yang, Liang Wang, Narendra Ahuja -//! http://vision.ai.uiuc.edu/~qyang6/ +/** @brief Class computing stereo correspondence using the constant space belief propagation algorithm. : + +The class implements algorithm described in @cite Yang2010. StereoConstantSpaceBP supports both local +minimum and global minimum data cost initialization algorithms. For more details, see the paper +mentioned above. By default, a local algorithm is used. To enable a global algorithm, set +use\_local\_init\_data\_cost to false . + +StereoConstantSpaceBP uses a truncated linear model for the data cost and discontinuity terms: + +\f[DataCost = data \_ weight \cdot \min ( \lvert I_2-I_1 \rvert , max \_ data \_ term)\f] + +\f[DiscTerm = \min (disc \_ single \_ jump \cdot \lvert f_1-f_2 \rvert , max \_ disc \_ term)\f] + +For more details, see @cite Yang2010. + +By default, StereoConstantSpaceBP uses floating-point arithmetics and the CV\_32FC1 type for +messages. But it can also use fixed-point arithmetics and the CV\_16SC1 message type for better +performance. To avoid an overflow in this case, the parameters must satisfy the following +requirement: + +\f[10 \cdot 2^{levels-1} \cdot max \_ data \_ term < SHRT \_ MAX\f] + + */ class CV_EXPORTS StereoConstantSpaceBP : public cuda::StereoBeliefPropagation { public: @@ -129,23 +223,40 @@ public: virtual bool getUseLocalInitDataCost() const = 0; virtual void setUseLocalInitDataCost(bool use_local_init_data_cost) = 0; + /** @brief Uses a heuristic method to compute parameters (ndisp, iters, levelsand nrplane) for the specified + image size (widthand height). + */ static void estimateRecommendedParams(int width, int height, int& ndisp, int& iters, int& levels, int& nr_plane); }; +/** @brief Creates StereoConstantSpaceBP object. + +@param ndisp Number of disparities. +@param iters Number of BP iterations on each level. +@param levels Number of levels. +@param nr\_plane Number of disparity levels on the first level. +@param msg\_type Type for messages. CV\_16SC1 and CV\_32FC1 types are supported. + */ CV_EXPORTS Ptr createStereoConstantSpaceBP(int ndisp = 128, int iters = 8, int levels = 4, int nr_plane = 4, int msg_type = CV_32F); ///////////////////////////////////////// // DisparityBilateralFilter -//! Disparity map refinement using joint bilateral filtering given a single color image. -//! Qingxiong Yang, Liang Wang, Narendra Ahuja -//! http://vision.ai.uiuc.edu/~qyang6/ +/** @brief Class refining a disparity map using joint bilateral filtering. : + +The class implements @cite Yang2010 algorithm. + */ class CV_EXPORTS DisparityBilateralFilter : public cv::Algorithm { public: - //! the disparity map refinement operator. Refine disparity map using joint bilateral filtering given a single color image. - //! disparity must have CV_8U or CV_16S type, image must have CV_8UC1 or CV_8UC3 type. + /** @brief Refines a disparity map using joint bilateral filtering. + + @param disparity Input disparity map. CV\_8UC1 and CV\_16SC1 types are supported. + @param image Input image. CV\_8UC1 and CV\_8UC3 types are supported. + @param dst Destination disparity map. It has the same size and type as disparity . + @param stream Stream for the asynchronous version. + */ virtual void apply(InputArray disparity, InputArray image, OutputArray dst, Stream& stream = Stream::Null()) = 0; virtual int getNumDisparities() const = 0; @@ -170,24 +281,48 @@ public: virtual void setSigmaRange(double sigma_range) = 0; }; +/** @brief Creates DisparityBilateralFilter object. + +@param ndisp Number of disparities. +@param radius Filter radius. +@param iters Number of iterations. + */ CV_EXPORTS Ptr createDisparityBilateralFilter(int ndisp = 64, int radius = 3, int iters = 1); ///////////////////////////////////////// // Utility -//! Reprojects disparity image to 3D space. -//! Supports CV_8U and CV_16S types of input disparity. -//! The output is a 3- or 4-channel floating-point matrix. -//! Each element of this matrix will contain the 3D coordinates of the point (x,y,z,1), computed from the disparity map. -//! Q is the 4x4 perspective transformation matrix that can be obtained with cvStereoRectify. +/** @brief Reprojects a disparity image to 3D space. + +@param disp Input disparity image. CV\_8U and CV\_16S types are supported. +@param xyzw Output 3- or 4-channel floating-point image of the same size as disp . Each element of +xyzw(x,y) contains 3D coordinates (x,y,z) or (x,y,z,1) of the point (x,y) , computed from the +disparity map. +@param Q \f$4 \times 4\f$ perspective transformation matrix that can be obtained via stereoRectify . +@param dst\_cn The number of channels for output image. Can be 3 or 4. +@param stream Stream for the asynchronous version. + +@sa reprojectImageTo3D + */ CV_EXPORTS void reprojectImageTo3D(InputArray disp, OutputArray xyzw, InputArray Q, int dst_cn = 4, Stream& stream = Stream::Null()); -//! Does coloring of disparity image: [0..ndisp) -> [0..240, 1, 1] in HSV. -//! Supported types of input disparity: CV_8U, CV_16S. -//! Output disparity has CV_8UC4 type in BGRA format (alpha = 255). +/** @brief Colors a disparity image. + +@param src\_disp Source disparity image. CV\_8UC1 and CV\_16SC1 types are supported. +@param dst\_disp Output disparity image. It has the same size as src\_disp . The type is CV\_8UC4 +in BGRA format (alpha = 255). +@param ndisp Number of disparities. +@param stream Stream for the asynchronous version. + +This function draws a colored disparity map by converting disparity values from [0..ndisp) interval +first to HSV color space (where different disparity values correspond to different hues) and then +converting the pixels to RGB for visualization. + */ CV_EXPORTS void drawColorDisp(InputArray src_disp, OutputArray dst_disp, int ndisp, Stream& stream = Stream::Null()); +//! @} + }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDASTEREO_HPP__ */ diff --git a/modules/cudawarping/include/opencv2/cudawarping.hpp b/modules/cudawarping/include/opencv2/cudawarping.hpp index d759f55598..fc07fcc93c 100644 --- a/modules/cudawarping/include/opencv2/cudawarping.hpp +++ b/modules/cudawarping/include/opencv2/cudawarping.hpp @@ -50,54 +50,178 @@ #include "opencv2/core/cuda.hpp" #include "opencv2/imgproc.hpp" +/** + @addtogroup cuda + @{ + @defgroup cudawarping Image Warping + @} + */ + namespace cv { namespace cuda { -//! DST[x,y] = SRC[xmap[x,y],ymap[x,y]] -//! supports only CV_32FC1 map type +//! @addtogroup cudawarping +//! @{ + +/** @brief Applies a generic geometrical transformation to an image. + +@param src Source image. +@param dst Destination image with the size the same as xmap and the type the same as src . +@param xmap X values. Only CV\_32FC1 type is supported. +@param ymap Y values. Only CV\_32FC1 type is supported. +@param interpolation Interpolation method (see resize ). INTER\_NEAREST , INTER\_LINEAR and +INTER\_CUBIC are supported for now. +@param borderMode Pixel extrapolation method (see borderInterpolate ). BORDER\_REFLECT101 , +BORDER\_REPLICATE , BORDER\_CONSTANT , BORDER\_REFLECT and BORDER\_WRAP are supported for now. +@param borderValue Value used in case of a constant border. By default, it is 0. +@param stream Stream for the asynchronous version. + +The function transforms the source image using the specified map: + +\f[\texttt{dst} (x,y) = \texttt{src} (xmap(x,y), ymap(x,y))\f] + +Values of pixels with non-integer coordinates are computed using the bilinear interpolation. + +@sa remap + */ CV_EXPORTS void remap(InputArray src, OutputArray dst, InputArray xmap, InputArray ymap, int interpolation, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null()); -//! resizes the image -//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC, INTER_AREA +/** @brief Resizes an image. + +@param src Source image. +@param dst Destination image with the same type as src . The size is dsize (when it is non-zero) +or the size is computed from src.size() , fx , and fy . +@param dsize Destination image size. If it is zero, it is computed as: +\f[\texttt{dsize = Size(round(fx*src.cols), round(fy*src.rows))}\f] +Either dsize or both fx and fy must be non-zero. +@param fx Scale factor along the horizontal axis. If it is zero, it is computed as: +\f[\texttt{(double)dsize.width/src.cols}\f] +@param fy Scale factor along the vertical axis. If it is zero, it is computed as: +\f[\texttt{(double)dsize.height/src.rows}\f] +@param interpolation Interpolation method. INTER\_NEAREST , INTER\_LINEAR and INTER\_CUBIC are +supported for now. +@param stream Stream for the asynchronous version. + +@sa resize + */ CV_EXPORTS void resize(InputArray src, OutputArray dst, Size dsize, double fx=0, double fy=0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null()); -//! warps the image using affine transformation -//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC +/** @brief Applies an affine transformation to an image. + +@param src Source image. CV\_8U , CV\_16U , CV\_32S , or CV\_32F depth and 1, 3, or 4 channels are +supported. +@param dst Destination image with the same type as src . The size is dsize . +@param M *2x3* transformation matrix. +@param dsize Size of the destination image. +@param flags Combination of interpolation methods (see resize) and the optional flag +WARP\_INVERSE\_MAP specifying that M is an inverse transformation ( dst=\>src ). Only +INTER\_NEAREST , INTER\_LINEAR , and INTER\_CUBIC interpolation methods are supported. +@param borderMode +@param borderValue +@param stream Stream for the asynchronous version. + +@sa warpAffine + */ CV_EXPORTS void warpAffine(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null()); +/** @brief Builds transformation maps for affine transformation. + +@param M *2x3* transformation matrix. +@param inverse Flag specifying that M is an inverse transformation ( dst=\>src ). +@param dsize Size of the destination image. +@param xmap X values with CV\_32FC1 type. +@param ymap Y values with CV\_32FC1 type. +@param stream Stream for the asynchronous version. + +@sa cuda::warpAffine , cuda::remap + */ CV_EXPORTS void buildWarpAffineMaps(InputArray M, bool inverse, Size dsize, OutputArray xmap, OutputArray ymap, Stream& stream = Stream::Null()); -//! warps the image using perspective transformation -//! Supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC +/** @brief Applies a perspective transformation to an image. + +@param src Source image. CV\_8U , CV\_16U , CV\_32S , or CV\_32F depth and 1, 3, or 4 channels are +supported. +@param dst Destination image with the same type as src . The size is dsize . +@param M *3x3* transformation matrix. +@param dsize Size of the destination image. +@param flags Combination of interpolation methods (see resize ) and the optional flag +WARP\_INVERSE\_MAP specifying that M is the inverse transformation ( dst =\> src ). Only +INTER\_NEAREST , INTER\_LINEAR , and INTER\_CUBIC interpolation methods are supported. +@param borderMode +@param borderValue +@param stream Stream for the asynchronous version. + +@sa warpPerspective + */ CV_EXPORTS void warpPerspective(InputArray src, OutputArray dst, InputArray M, Size dsize, int flags = INTER_LINEAR, int borderMode = BORDER_CONSTANT, Scalar borderValue = Scalar(), Stream& stream = Stream::Null()); +/** @brief Builds transformation maps for perspective transformation. + +@param M *3x3* transformation matrix. +@param inverse Flag specifying that M is an inverse transformation ( dst=\>src ). +@param dsize Size of the destination image. +@param xmap X values with CV\_32FC1 type. +@param ymap Y values with CV\_32FC1 type. +@param stream Stream for the asynchronous version. + +@sa cuda::warpPerspective , cuda::remap + */ CV_EXPORTS void buildWarpPerspectiveMaps(InputArray M, bool inverse, Size dsize, OutputArray xmap, OutputArray ymap, Stream& stream = Stream::Null()); -//! builds plane warping maps +/** @brief Builds plane warping maps. + */ CV_EXPORTS void buildWarpPlaneMaps(Size src_size, Rect dst_roi, InputArray K, InputArray R, InputArray T, float scale, OutputArray map_x, OutputArray map_y, Stream& stream = Stream::Null()); -//! builds cylindrical warping maps +/** @brief Builds cylindrical warping maps. + */ CV_EXPORTS void buildWarpCylindricalMaps(Size src_size, Rect dst_roi, InputArray K, InputArray R, float scale, OutputArray map_x, OutputArray map_y, Stream& stream = Stream::Null()); -//! builds spherical warping maps +/** @brief Builds spherical warping maps. + */ CV_EXPORTS void buildWarpSphericalMaps(Size src_size, Rect dst_roi, InputArray K, InputArray R, float scale, OutputArray map_x, OutputArray map_y, Stream& stream = Stream::Null()); -//! rotates an image around the origin (0,0) and then shifts it -//! supports INTER_NEAREST, INTER_LINEAR, INTER_CUBIC -//! supports 1, 3 or 4 channels images with CV_8U, CV_16U or CV_32F depth +/** @brief Rotates an image around the origin (0,0) and then shifts it. + +@param src Source image. Supports 1, 3 or 4 channels images with CV\_8U , CV\_16U or CV\_32F +depth. +@param dst Destination image with the same type as src . The size is dsize . +@param dsize Size of the destination image. +@param angle Angle of rotation in degrees. +@param xShift Shift along the horizontal axis. +@param yShift Shift along the vertical axis. +@param interpolation Interpolation method. Only INTER\_NEAREST , INTER\_LINEAR , and INTER\_CUBIC +are supported. +@param stream Stream for the asynchronous version. + +@sa cuda::warpAffine + */ CV_EXPORTS void rotate(InputArray src, OutputArray dst, Size dsize, double angle, double xShift = 0, double yShift = 0, int interpolation = INTER_LINEAR, Stream& stream = Stream::Null()); -//! smoothes the source image and downsamples it +/** @brief Smoothes an image and downsamples it. + +@param src Source image. +@param dst Destination image. Will have Size((src.cols+1)/2, (src.rows+1)/2) size and the same +type as src . +@param stream Stream for the asynchronous version. + +@sa pyrDown + */ CV_EXPORTS void pyrDown(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); -//! upsamples the source image and then smoothes it +/** @brief Upsamples an image and then smoothes it. + +@param src Source image. +@param dst Destination image. Will have Size(src.cols\*2, src.rows\*2) size and the same type as +src . +@param stream Stream for the asynchronous version. + */ CV_EXPORTS void pyrUp(InputArray src, OutputArray dst, Stream& stream = Stream::Null()); class CV_EXPORTS ImagePyramid : public Algorithm @@ -108,6 +232,8 @@ public: CV_EXPORTS Ptr createImagePyramid(InputArray img, int nLayers = -1, Stream& stream = Stream::Null()); +//! @} + }} // namespace cv { namespace cuda { #endif /* __OPENCV_CUDAWARPING_HPP__ */ diff --git a/modules/cudev/include/opencv2/cudev.hpp b/modules/cudev/include/opencv2/cudev.hpp index a5fb4f6967..565efa1c6a 100644 --- a/modules/cudev/include/opencv2/cudev.hpp +++ b/modules/cudev/include/opencv2/cudev.hpp @@ -109,4 +109,11 @@ #include "cudev/expr/unary_op.hpp" #include "cudev/expr/warping.hpp" +/** + @addtogroup cuda + @{ + @defgroup cudev Device layer + @} +*/ + #endif diff --git a/modules/cudev/include/opencv2/cudev/block/block.hpp b/modules/cudev/include/opencv2/cudev/block/block.hpp index 385e1713e5..e8d59bb20b 100644 --- a/modules/cudev/include/opencv2/cudev/block/block.hpp +++ b/modules/cudev/include/opencv2/cudev/block/block.hpp @@ -50,6 +50,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + struct Block { __device__ __forceinline__ static uint blockId() @@ -122,6 +125,9 @@ __device__ __forceinline__ static void blockTransfrom(InIt1 beg1, InIt1 end1, In for(; t1 < end1; t1 += STRIDE, t2 += STRIDE, o += STRIDE) *o = op(*t1, *t2); } + +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/block/dynamic_smem.hpp b/modules/cudev/include/opencv2/cudev/block/dynamic_smem.hpp index 9f9ba60009..e52f829bf6 100644 --- a/modules/cudev/include/opencv2/cudev/block/dynamic_smem.hpp +++ b/modules/cudev/include/opencv2/cudev/block/dynamic_smem.hpp @@ -50,6 +50,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template struct DynamicSharedMem { __device__ __forceinline__ operator T*() @@ -81,6 +84,8 @@ template <> struct DynamicSharedMem } }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/block/reduce.hpp b/modules/cudev/include/opencv2/cudev/block/reduce.hpp index 4c9022631b..74c8fcac77 100644 --- a/modules/cudev/include/opencv2/cudev/block/reduce.hpp +++ b/modules/cudev/include/opencv2/cudev/block/reduce.hpp @@ -54,6 +54,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // blockReduce template @@ -123,6 +126,8 @@ __device__ __forceinline__ void blockReduceKeyVal(const tuple(skeys, key, svals, val, tid, cmp); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/block/scan.hpp b/modules/cudev/include/opencv2/cudev/block/scan.hpp index c54dfef9f3..3369cff987 100644 --- a/modules/cudev/include/opencv2/cudev/block/scan.hpp +++ b/modules/cudev/include/opencv2/cudev/block/scan.hpp @@ -51,6 +51,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template __device__ T blockScanInclusive(T data, volatile T* smem, uint tid) { @@ -96,6 +99,8 @@ __device__ __forceinline__ T blockScanExclusive(T data, volatile T* smem, uint t return blockScanInclusive(data, smem, tid) - data; } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/block/vec_distance.hpp b/modules/cudev/include/opencv2/cudev/block/vec_distance.hpp index c48e9146ef..767d32a466 100644 --- a/modules/cudev/include/opencv2/cudev/block/vec_distance.hpp +++ b/modules/cudev/include/opencv2/cudev/block/vec_distance.hpp @@ -53,6 +53,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // NormL1 template struct NormL1 @@ -179,6 +182,8 @@ struct NormHamming } }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/common.hpp b/modules/cudev/include/opencv2/cudev/common.hpp index c8a7b7da25..f475e20b68 100644 --- a/modules/cudev/include/opencv2/cudev/common.hpp +++ b/modules/cudev/include/opencv2/cudev/common.hpp @@ -52,6 +52,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + using namespace cv::cuda; // CV_CUDEV_ARCH @@ -84,6 +87,8 @@ __host__ __device__ __forceinline__ int divUp(int total, int grain) #define CV_PI_F ((float)CV_PI) #define CV_LOG2_F ((float)CV_LOG2) +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/expr/binary_func.hpp b/modules/cudev/include/opencv2/cudev/expr/binary_func.hpp index f35ea2dc3c..2777a1e185 100644 --- a/modules/cudev/include/opencv2/cudev/expr/binary_func.hpp +++ b/modules/cudev/include/opencv2/cudev/expr/binary_func.hpp @@ -55,6 +55,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + #define CV_CUDEV_EXPR_BINARY_FUNC(name) \ template \ __host__ Expr::ptr_type, typename PtrTraits::ptr_type, name ## _func::value_type, typename PtrTraits::value_type>::type> > > \ @@ -70,6 +73,8 @@ CV_CUDEV_EXPR_BINARY_FUNC(absdiff) #undef CV_CUDEV_EXPR_BINARY_FUNC +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/expr/binary_op.hpp b/modules/cudev/include/opencv2/cudev/expr/binary_op.hpp index f7e9655720..7533946fcc 100644 --- a/modules/cudev/include/opencv2/cudev/expr/binary_op.hpp +++ b/modules/cudev/include/opencv2/cudev/expr/binary_op.hpp @@ -58,6 +58,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // Binary Operations #define CV_CUDEV_EXPR_BINOP_INST(op, functor) \ @@ -230,6 +233,8 @@ CV_CUDEV_EXPR_BINOP_INST(>>, bit_rshift) #undef CV_CUDEV_EXPR_BINOP_INST +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/expr/color.hpp b/modules/cudev/include/opencv2/cudev/expr/color.hpp index 13f07c15a4..f53de78b3c 100644 --- a/modules/cudev/include/opencv2/cudev/expr/color.hpp +++ b/modules/cudev/include/opencv2/cudev/expr/color.hpp @@ -54,6 +54,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + #define CV_CUDEV_EXPR_CVTCOLOR_INST(name) \ template \ __host__ Expr::ptr_type, name ## _func::value_type>::elem_type> > > \ @@ -277,6 +280,8 @@ CV_CUDEV_EXPR_CVTCOLOR_INST(Luv4_to_LBGRA) #undef CV_CUDEV_EXPR_CVTCOLOR_INST +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/expr/deriv.hpp b/modules/cudev/include/opencv2/cudev/expr/deriv.hpp index 822a86b9a3..da51cc711f 100644 --- a/modules/cudev/include/opencv2/cudev/expr/deriv.hpp +++ b/modules/cudev/include/opencv2/cudev/expr/deriv.hpp @@ -53,6 +53,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // derivX template @@ -116,6 +119,8 @@ laplacian_(const SrcPtr& src) return makeExpr(laplacianPtr(src)); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/expr/expr.hpp b/modules/cudev/include/opencv2/cudev/expr/expr.hpp index 46c780b4a2..cdc8612173 100644 --- a/modules/cudev/include/opencv2/cudev/expr/expr.hpp +++ b/modules/cudev/include/opencv2/cudev/expr/expr.hpp @@ -51,6 +51,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template struct Expr { Body body; @@ -87,6 +90,8 @@ template struct PtrTraits< Expr > } }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/expr/per_element_func.hpp b/modules/cudev/include/opencv2/cudev/expr/per_element_func.hpp index 56a067de9d..d7ecd3bb06 100644 --- a/modules/cudev/include/opencv2/cudev/expr/per_element_func.hpp +++ b/modules/cudev/include/opencv2/cudev/expr/per_element_func.hpp @@ -56,6 +56,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // min/max template @@ -127,6 +130,8 @@ lut_(const SrcPtr& src, const TablePtr& tbl) return makeExpr(lutPtr(src, tbl)); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/expr/reduction.hpp b/modules/cudev/include/opencv2/cudev/expr/reduction.hpp index 1f0a3ff0e5..598fb4f86c 100644 --- a/modules/cudev/include/opencv2/cudev/expr/reduction.hpp +++ b/modules/cudev/include/opencv2/cudev/expr/reduction.hpp @@ -56,6 +56,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // sum template struct SumExprBody @@ -254,6 +257,8 @@ integral_(const SrcPtr& src) return makeExpr(body); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/expr/unary_func.hpp b/modules/cudev/include/opencv2/cudev/expr/unary_func.hpp index a30f6a6f3c..b19cec8272 100644 --- a/modules/cudev/include/opencv2/cudev/expr/unary_func.hpp +++ b/modules/cudev/include/opencv2/cudev/expr/unary_func.hpp @@ -54,6 +54,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + #define CV_CUDEV_EXPR_UNARY_FUNC(name) \ template \ __host__ Expr::ptr_type, name ## _func::value_type> > > \ @@ -93,6 +96,8 @@ pow_(const SrcPtr& src, float power) return makeExpr(transformPtr(src, bind2nd(pow_func::value_type>(), power))); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/expr/unary_op.hpp b/modules/cudev/include/opencv2/cudev/expr/unary_op.hpp index 905013e42f..c5fabe4ac9 100644 --- a/modules/cudev/include/opencv2/cudev/expr/unary_op.hpp +++ b/modules/cudev/include/opencv2/cudev/expr/unary_op.hpp @@ -57,6 +57,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + #define CV_CUDEV_EXPR_UNOP_INST(op, functor) \ template \ __host__ Expr >::ptr_type, functor > > \ @@ -89,6 +92,8 @@ CV_CUDEV_EXPR_UNOP_INST(~, bit_not) #undef CV_CUDEV_EXPR_UNOP_INST +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/expr/warping.hpp b/modules/cudev/include/opencv2/cudev/expr/warping.hpp index f942a3fb6f..e1f78b9689 100644 --- a/modules/cudev/include/opencv2/cudev/expr/warping.hpp +++ b/modules/cudev/include/opencv2/cudev/expr/warping.hpp @@ -57,6 +57,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // resize template @@ -166,6 +169,8 @@ transpose_(const SrcPtr& src) return makeExpr(body); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/functional/color_cvt.hpp b/modules/cudev/include/opencv2/cudev/functional/color_cvt.hpp index 8be854780a..5134d04ed9 100644 --- a/modules/cudev/include/opencv2/cudev/functional/color_cvt.hpp +++ b/modules/cudev/include/opencv2/cudev/functional/color_cvt.hpp @@ -51,6 +51,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // Various 3/4-channel to 3/4-channel RGB transformations #define CV_CUDEV_RGB2RGB_INST(name, scn, dcn, bidx) \ @@ -469,6 +472,8 @@ CV_CUDEV_RGB5x52GRAY_INST(BGR565_to_GRAY, 6) #undef CV_CUDEV_RGB5x52GRAY_INST +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/functional/functional.hpp b/modules/cudev/include/opencv2/cudev/functional/functional.hpp index 7934f78b94..125b66f07a 100644 --- a/modules/cudev/include/opencv2/cudev/functional/functional.hpp +++ b/modules/cudev/include/opencv2/cudev/functional/functional.hpp @@ -54,6 +54,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // Function Objects template struct unary_function @@ -873,6 +876,8 @@ template struct IsBinaryFunction enum { value = (sizeof(check(makeF())) == sizeof(Yes)) }; }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/functional/tuple_adapter.hpp b/modules/cudev/include/opencv2/cudev/functional/tuple_adapter.hpp index d3a40db0ea..ff075dc2b3 100644 --- a/modules/cudev/include/opencv2/cudev/functional/tuple_adapter.hpp +++ b/modules/cudev/include/opencv2/cudev/functional/tuple_adapter.hpp @@ -51,6 +51,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template struct UnaryTupleAdapter { typedef typename Op::result_type result_type; @@ -93,6 +96,8 @@ __host__ __device__ BinaryTupleAdapter binaryTupleAdapter(const Op& return a; } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/grid/copy.hpp b/modules/cudev/include/opencv2/cudev/grid/copy.hpp index d7d3ea8343..1d30f99763 100644 --- a/modules/cudev/include/opencv2/cudev/grid/copy.hpp +++ b/modules/cudev/include/opencv2/cudev/grid/copy.hpp @@ -57,6 +57,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template __host__ void gridCopy_(const SrcPtr& src, GpuMat_& dst, const MaskPtr& mask, Stream& stream = Stream::Null()) { @@ -447,6 +450,8 @@ __host__ void gridCopy_(const SrcPtrTuple& src, const tuple< GlobPtrSz, Glob gridCopy_(src, dst, stream); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/grid/histogram.hpp b/modules/cudev/include/opencv2/cudev/grid/histogram.hpp index ecb1a19c85..154f73771b 100644 --- a/modules/cudev/include/opencv2/cudev/grid/histogram.hpp +++ b/modules/cudev/include/opencv2/cudev/grid/histogram.hpp @@ -54,6 +54,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template __host__ void gridHistogram_(const SrcPtr& src, GpuMat_& dst, const MaskPtr& mask, Stream& stream = Stream::Null()) { @@ -114,6 +117,8 @@ __host__ void gridHistogram(const SrcPtr& src, GpuMat_& dst, Stream& st gridHistogram_(src, dst, stream); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/grid/integral.hpp b/modules/cudev/include/opencv2/cudev/grid/integral.hpp index d948c1267f..6312f44772 100644 --- a/modules/cudev/include/opencv2/cudev/grid/integral.hpp +++ b/modules/cudev/include/opencv2/cudev/grid/integral.hpp @@ -53,6 +53,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template __host__ void gridIntegral(const SrcPtr& src, GpuMat_& dst, Stream& stream = Stream::Null()) { @@ -64,6 +67,8 @@ __host__ void gridIntegral(const SrcPtr& src, GpuMat_& dst, Stream& str integral_detail::integral(shrinkPtr(src), shrinkPtr(dst), rows, cols, StreamAccessor::getStream(stream)); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/grid/pyramids.hpp b/modules/cudev/include/opencv2/cudev/grid/pyramids.hpp index 99833bd3f7..22eafe69fb 100644 --- a/modules/cudev/include/opencv2/cudev/grid/pyramids.hpp +++ b/modules/cudev/include/opencv2/cudev/grid/pyramids.hpp @@ -55,6 +55,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template __host__ void gridPyrDown_(const SrcPtr& src, GpuMat_& dst, Stream& stream = Stream::Null()) { @@ -83,6 +86,8 @@ __host__ void gridPyrUp(const SrcPtr& src, GpuMat_& dst, Stream& stream pyramids_detail::pyrUp(shrinkPtr(src), shrinkPtr(dst), rows, cols, dst.rows, dst.cols, StreamAccessor::getStream(stream)); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/grid/reduce.hpp b/modules/cudev/include/opencv2/cudev/grid/reduce.hpp index 3861ae2281..4551bc886b 100644 --- a/modules/cudev/include/opencv2/cudev/grid/reduce.hpp +++ b/modules/cudev/include/opencv2/cudev/grid/reduce.hpp @@ -57,6 +57,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template __host__ void gridCalcSum_(const SrcPtr& src, GpuMat_& dst, const MaskPtr& mask, Stream& stream = Stream::Null()) { @@ -370,6 +373,8 @@ __host__ void gridCountNonZero(const SrcPtr& src, GpuMat_& dst, Stream& gridCountNonZero_(src, dst, stream); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/grid/reduce_to_vec.hpp b/modules/cudev/include/opencv2/cudev/grid/reduce_to_vec.hpp index 361d40d1c8..595ee8be6f 100644 --- a/modules/cudev/include/opencv2/cudev/grid/reduce_to_vec.hpp +++ b/modules/cudev/include/opencv2/cudev/grid/reduce_to_vec.hpp @@ -59,6 +59,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template struct Sum : plus { typedef T work_type; @@ -225,6 +228,8 @@ __host__ void gridReduceToColumn(const SrcPtr& src, GpuMat_& dst, Strea gridReduceToColumn_(src, dst, stream); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/grid/split_merge.hpp b/modules/cudev/include/opencv2/cudev/grid/split_merge.hpp index ed7e8ee605..1a7134793b 100644 --- a/modules/cudev/include/opencv2/cudev/grid/split_merge.hpp +++ b/modules/cudev/include/opencv2/cudev/grid/split_merge.hpp @@ -57,6 +57,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template __host__ void gridMerge_(const SrcPtrTuple& src, GpuMat_& dst, const MaskPtr& mask, Stream& stream = Stream::Null()) { @@ -579,6 +582,8 @@ __host__ void gridSplit(const SrcPtr& src, GlobPtrSz (&dst)[COUNT], Str gridSplit_(src, dst, stream); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/grid/transform.hpp b/modules/cudev/include/opencv2/cudev/grid/transform.hpp index 62555ab5ae..2f16f7d392 100644 --- a/modules/cudev/include/opencv2/cudev/grid/transform.hpp +++ b/modules/cudev/include/opencv2/cudev/grid/transform.hpp @@ -57,6 +57,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template __host__ void gridTransformUnary_(const SrcPtr& src, GpuMat_& dst, const UnOp& op, const MaskPtr& mask, Stream& stream = Stream::Null()) { @@ -536,6 +539,8 @@ __host__ void gridTransformTuple(const SrcPtr& src, const tuple< GlobPtrSz, gridTransformTuple_(src, dst, op, stream); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/grid/transpose.hpp b/modules/cudev/include/opencv2/cudev/grid/transpose.hpp index cf1bf8303e..0d7a19573d 100644 --- a/modules/cudev/include/opencv2/cudev/grid/transpose.hpp +++ b/modules/cudev/include/opencv2/cudev/grid/transpose.hpp @@ -54,6 +54,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template __host__ void gridTranspose_(const SrcPtr& src, GpuMat_& dst, Stream& stream = Stream::Null()) { @@ -98,6 +101,8 @@ __host__ void gridTranspose(const SrcPtr& src, const GlobPtrSz& dst, St gridTranspose_(src, dst, stream); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/ptr2d/constant.hpp b/modules/cudev/include/opencv2/cudev/ptr2d/constant.hpp index d3c56e7713..b3c5f5f23b 100644 --- a/modules/cudev/include/opencv2/cudev/ptr2d/constant.hpp +++ b/modules/cudev/include/opencv2/cudev/ptr2d/constant.hpp @@ -51,6 +51,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template struct ConstantPtr { typedef T value_type; @@ -88,6 +91,8 @@ template struct PtrTraits< ConstantPtrSz > : PtrTraitsBase< Cons { }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/ptr2d/deriv.hpp b/modules/cudev/include/opencv2/cudev/ptr2d/deriv.hpp index 097007400f..95088177f4 100644 --- a/modules/cudev/include/opencv2/cudev/ptr2d/deriv.hpp +++ b/modules/cudev/include/opencv2/cudev/ptr2d/deriv.hpp @@ -53,6 +53,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // derivX template struct DerivXPtr @@ -388,6 +391,8 @@ template struct PtrTraits< LaplacianPtrSz struct BrdConstant @@ -214,6 +217,8 @@ __host__ BrdBase::ptr_type> brdWrap(const Sr return b; } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/ptr2d/glob.hpp b/modules/cudev/include/opencv2/cudev/ptr2d/glob.hpp index 7385926638..3563e56fcc 100644 --- a/modules/cudev/include/opencv2/cudev/ptr2d/glob.hpp +++ b/modules/cudev/include/opencv2/cudev/ptr2d/glob.hpp @@ -51,6 +51,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template struct GlobPtr { typedef T value_type; @@ -106,6 +109,8 @@ template struct PtrTraits< GlobPtrSz > : PtrTraitsBase class GpuMat_ : public GpuMat { @@ -154,6 +157,8 @@ template struct PtrTraits< GpuMat_ > : PtrTraitsBase, { }; +//! @} + }} #include "detail/gpumat.hpp" diff --git a/modules/cudev/include/opencv2/cudev/ptr2d/interpolation.hpp b/modules/cudev/include/opencv2/cudev/ptr2d/interpolation.hpp index e86d7191ed..256d4fd00a 100644 --- a/modules/cudev/include/opencv2/cudev/ptr2d/interpolation.hpp +++ b/modules/cudev/include/opencv2/cudev/ptr2d/interpolation.hpp @@ -55,6 +55,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // Nearest template struct NearestInterPtr @@ -380,6 +383,8 @@ template struct PtrTraits< CommonAreaInterPtrSz > : PtrTr { }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/ptr2d/lut.hpp b/modules/cudev/include/opencv2/cudev/ptr2d/lut.hpp index accf545617..26a3725c08 100644 --- a/modules/cudev/include/opencv2/cudev/ptr2d/lut.hpp +++ b/modules/cudev/include/opencv2/cudev/ptr2d/lut.hpp @@ -54,6 +54,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template struct LutPtr { typedef typename PtrTraits::value_type value_type; @@ -95,6 +98,8 @@ template struct PtrTraits< LutPtrSz struct PtrTraits< SingleMaskChannelsSz > : Ptr { }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/ptr2d/remap.hpp b/modules/cudev/include/opencv2/cudev/ptr2d/remap.hpp index db2669a40a..9d8745f94e 100644 --- a/modules/cudev/include/opencv2/cudev/ptr2d/remap.hpp +++ b/modules/cudev/include/opencv2/cudev/ptr2d/remap.hpp @@ -54,6 +54,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template struct RemapPtr1 { typedef typename PtrTraits::value_type value_type; @@ -149,6 +152,8 @@ template struct PtrTraits< RemapPtr { }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/ptr2d/resize.hpp b/modules/cudev/include/opencv2/cudev/ptr2d/resize.hpp index 10a4bad906..63ae7eb8a1 100644 --- a/modules/cudev/include/opencv2/cudev/ptr2d/resize.hpp +++ b/modules/cudev/include/opencv2/cudev/ptr2d/resize.hpp @@ -54,6 +54,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template struct ResizePtr { typedef typename PtrTraits::value_type value_type; @@ -98,6 +101,8 @@ template struct PtrTraits< ResizePtrSz > : PtrTraitsBase< { }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/ptr2d/texture.hpp b/modules/cudev/include/opencv2/cudev/ptr2d/texture.hpp index 6df4a783d8..6fa83e631e 100644 --- a/modules/cudev/include/opencv2/cudev/ptr2d/texture.hpp +++ b/modules/cudev/include/opencv2/cudev/ptr2d/texture.hpp @@ -92,6 +92,9 @@ namespace namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + #if CUDART_VERSION >= 5050 template struct TexturePtr @@ -248,6 +251,8 @@ template struct PtrTraits< Texture > : PtrTraitsBase, #endif +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/ptr2d/traits.hpp b/modules/cudev/include/opencv2/cudev/ptr2d/traits.hpp index 7fb4b32b17..f1552cafe8 100644 --- a/modules/cudev/include/opencv2/cudev/ptr2d/traits.hpp +++ b/modules/cudev/include/opencv2/cudev/ptr2d/traits.hpp @@ -50,6 +50,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template struct PtrTraitsBase { typedef Ptr2DSz ptr_sz_type; @@ -96,6 +99,8 @@ __host__ int getCols(const Ptr2DSz& ptr) return PtrTraits::getCols(ptr); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/ptr2d/transform.hpp b/modules/cudev/include/opencv2/cudev/ptr2d/transform.hpp index f540e75213..b6edb913d1 100644 --- a/modules/cudev/include/opencv2/cudev/ptr2d/transform.hpp +++ b/modules/cudev/include/opencv2/cudev/ptr2d/transform.hpp @@ -53,6 +53,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // UnaryTransformPtr template struct UnaryTransformPtr @@ -146,6 +149,8 @@ template struct PtrTraits< BinaryTransf { }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/ptr2d/warping.hpp b/modules/cudev/include/opencv2/cudev/ptr2d/warping.hpp index 80e5fbeef0..c9d00833ff 100644 --- a/modules/cudev/include/opencv2/cudev/ptr2d/warping.hpp +++ b/modules/cudev/include/opencv2/cudev/ptr2d/warping.hpp @@ -53,6 +53,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // affine struct AffineMapPtr @@ -147,6 +150,8 @@ warpPerspectivePtr(const SrcPtr& src, Size dstSize, const GpuMat_& warpMa return remapPtr(src, perspectiveMap(dstSize, warpMat)); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/ptr2d/zip.hpp b/modules/cudev/include/opencv2/cudev/ptr2d/zip.hpp index 934939f624..368848248c 100644 --- a/modules/cudev/include/opencv2/cudev/ptr2d/zip.hpp +++ b/modules/cudev/include/opencv2/cudev/ptr2d/zip.hpp @@ -52,6 +52,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template struct ZipPtr; template struct ZipPtr< tuple > : tuple @@ -168,6 +171,8 @@ template struct PtrTraits< ZipPtrSz > : PtrTraitsBase { }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/util/atomic.hpp b/modules/cudev/include/opencv2/cudev/util/atomic.hpp index 2da110231b..a88cd99b36 100644 --- a/modules/cudev/include/opencv2/cudev/util/atomic.hpp +++ b/modules/cudev/include/opencv2/cudev/util/atomic.hpp @@ -50,6 +50,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // atomicAdd __device__ __forceinline__ int atomicAdd(int* address, int val) @@ -192,6 +195,8 @@ __device__ static double atomicMax(double* address, double val) #endif } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/util/limits.hpp b/modules/cudev/include/opencv2/cudev/util/limits.hpp index 58faca6b56..71e7faa779 100644 --- a/modules/cudev/include/opencv2/cudev/util/limits.hpp +++ b/modules/cudev/include/opencv2/cudev/util/limits.hpp @@ -52,6 +52,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template struct numeric_limits; template <> struct numeric_limits @@ -119,6 +122,8 @@ template <> struct numeric_limits static const bool is_signed = true; }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/util/saturate_cast.hpp b/modules/cudev/include/opencv2/cudev/util/saturate_cast.hpp index ff7ce85986..3176542d2c 100644 --- a/modules/cudev/include/opencv2/cudev/util/saturate_cast.hpp +++ b/modules/cudev/include/opencv2/cudev/util/saturate_cast.hpp @@ -50,6 +50,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template __device__ __forceinline__ T saturate_cast(uchar v) { return T(v); } template __device__ __forceinline__ T saturate_cast(schar v) { return T(v); } template __device__ __forceinline__ T saturate_cast(ushort v) { return T(v); } @@ -267,6 +270,8 @@ template <> __device__ __forceinline__ uint saturate_cast(double v) #endif } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/util/simd_functions.hpp b/modules/cudev/include/opencv2/cudev/util/simd_functions.hpp index db63f51800..2dd6f12ace 100644 --- a/modules/cudev/include/opencv2/cudev/util/simd_functions.hpp +++ b/modules/cudev/include/opencv2/cudev/util/simd_functions.hpp @@ -128,6 +128,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // 2 __device__ __forceinline__ uint vadd2(uint a, uint b) @@ -908,6 +911,8 @@ __device__ __forceinline__ uint vmin4(uint a, uint b) return r; } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/util/tuple.hpp b/modules/cudev/include/opencv2/cudev/util/tuple.hpp index b015ff3445..70d0424bdb 100644 --- a/modules/cudev/include/opencv2/cudev/util/tuple.hpp +++ b/modules/cudev/include/opencv2/cudev/util/tuple.hpp @@ -51,6 +51,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + using tuple_detail::tuple; using tuple_detail::tuple_size; using tuple_detail::get; @@ -75,6 +78,8 @@ template class CvtOp> struct ConvertTuple typedef typename tuple_detail::ConvertTuple::value, CvtOp>::type type; }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/util/type_traits.hpp b/modules/cudev/include/opencv2/cudev/util/type_traits.hpp index ca800c0b7a..acd1d3ba23 100644 --- a/modules/cudev/include/opencv2/cudev/util/type_traits.hpp +++ b/modules/cudev/include/opencv2/cudev/util/type_traits.hpp @@ -52,6 +52,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // NullType struct NullType {}; @@ -164,6 +167,8 @@ template struct LargerType >::type type; }; +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/util/vec_math.hpp b/modules/cudev/include/opencv2/cudev/util/vec_math.hpp index 361ef7b294..82fa06e9c9 100644 --- a/modules/cudev/include/opencv2/cudev/util/vec_math.hpp +++ b/modules/cudev/include/opencv2/cudev/util/vec_math.hpp @@ -51,6 +51,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // saturate_cast namespace vec_math_detail @@ -931,6 +934,8 @@ CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC(atan2, ::atan2, double, double, double) #undef CV_CUDEV_IMPLEMENT_SCALAR_BINARY_FUNC +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/util/vec_traits.hpp b/modules/cudev/include/opencv2/cudev/util/vec_traits.hpp index 585423dd52..9bb5678e6f 100644 --- a/modules/cudev/include/opencv2/cudev/util/vec_traits.hpp +++ b/modules/cudev/include/opencv2/cudev/util/vec_traits.hpp @@ -50,6 +50,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // MakeVec template struct MakeVec; @@ -177,6 +180,8 @@ template<> struct VecTraits __host__ __device__ __forceinline__ static char4 make(const schar* v) {return make_char4(v[0], v[1], v[2], v[3]);} }; +//! @} + }} // DataType diff --git a/modules/cudev/include/opencv2/cudev/warp/reduce.hpp b/modules/cudev/include/opencv2/cudev/warp/reduce.hpp index 089ef92d0f..f3919c2feb 100644 --- a/modules/cudev/include/opencv2/cudev/warp/reduce.hpp +++ b/modules/cudev/include/opencv2/cudev/warp/reduce.hpp @@ -53,6 +53,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + // warpReduce template @@ -201,6 +204,8 @@ smem_tuple(T0* t0, T1* t1, T2* t2, T3* t3, T4* t4, T5* t5, T6* t6, T7* t7, T8* t return make_tuple((volatile T0*) t0, (volatile T1*) t1, (volatile T2*) t2, (volatile T3*) t3, (volatile T4*) t4, (volatile T5*) t5, (volatile T6*) t6, (volatile T7*) t7, (volatile T8*) t8, (volatile T9*) t9); } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/warp/scan.hpp b/modules/cudev/include/opencv2/cudev/warp/scan.hpp index acd032fb00..a4402986dc 100644 --- a/modules/cudev/include/opencv2/cudev/warp/scan.hpp +++ b/modules/cudev/include/opencv2/cudev/warp/scan.hpp @@ -52,6 +52,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + template __device__ T warpScanInclusive(T data, volatile T* smem, uint tid) { @@ -94,6 +97,8 @@ __device__ __forceinline__ T warpScanExclusive(T data, volatile T* smem, uint ti return warpScanInclusive(data, smem, tid) - data; } +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/warp/shuffle.hpp b/modules/cudev/include/opencv2/cudev/warp/shuffle.hpp index a6aae5b902..97af06972e 100644 --- a/modules/cudev/include/opencv2/cudev/warp/shuffle.hpp +++ b/modules/cudev/include/opencv2/cudev/warp/shuffle.hpp @@ -51,6 +51,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + #if CV_CUDEV_ARCH >= 300 // shfl @@ -419,6 +422,8 @@ CV_CUDEV_SHFL_XOR_VEC_INST(double) #endif // CV_CUDEV_ARCH >= 300 +//! @} + }} #endif diff --git a/modules/cudev/include/opencv2/cudev/warp/warp.hpp b/modules/cudev/include/opencv2/cudev/warp/warp.hpp index c7649880f3..61caea259e 100644 --- a/modules/cudev/include/opencv2/cudev/warp/warp.hpp +++ b/modules/cudev/include/opencv2/cudev/warp/warp.hpp @@ -50,6 +50,9 @@ namespace cv { namespace cudev { +//! @addtogroup cudev +//! @{ + enum { LOG_WARP_SIZE = 5, @@ -117,6 +120,8 @@ __device__ __forceinline__ void warpYota(OutIt beg, OutIt end, T value) *t = value; } +//! @} + }} #endif diff --git a/modules/viz/include/opencv2/viz/types.hpp b/modules/viz/include/opencv2/viz/types.hpp index 0e638a9290..169a674427 100644 --- a/modules/viz/include/opencv2/viz/types.hpp +++ b/modules/viz/include/opencv2/viz/types.hpp @@ -187,6 +187,8 @@ namespace cv } /* namespace viz */ } /* namespace cv */ +//! @cond IGNORED + ////////////////////////////////////////////////////////////////////////////////////////////////////// /// cv::viz::Color @@ -237,4 +239,6 @@ inline cv::viz::Color cv::viz::Color::amethyst() { return Color(204, 102, inline cv::viz::Color cv::viz::Color::not_set() { return Color(-1, -1, -1); } +//! @endcond + #endif