shape: move sample to opencv_contrib
@ -1,26 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
import cv2 as cv
|
||||
|
||||
from tests_common import NewOpenCVTests
|
||||
|
||||
class shape_test(NewOpenCVTests):
|
||||
|
||||
def test_computeDistance(self):
|
||||
|
||||
a = self.get_sample('samples/data/shape_sample/1.png', cv.IMREAD_GRAYSCALE)
|
||||
b = self.get_sample('samples/data/shape_sample/2.png', cv.IMREAD_GRAYSCALE)
|
||||
|
||||
ca, _ = cv.findContours(a, cv.RETR_CCOMP, cv.CHAIN_APPROX_TC89_KCOS)
|
||||
cb, _ = cv.findContours(b, cv.RETR_CCOMP, cv.CHAIN_APPROX_TC89_KCOS)
|
||||
|
||||
hd = cv.createHausdorffDistanceExtractor()
|
||||
sd = cv.createShapeContextDistanceExtractor()
|
||||
|
||||
d1 = hd.computeDistance(ca[0], cb[0])
|
||||
d2 = sd.computeDistance(ca[0], cb[0])
|
||||
|
||||
self.assertAlmostEqual(d1, 26.4196891785, 3, "HausdorffDistanceExtractor")
|
||||
self.assertAlmostEqual(d2, 0.25804194808, 3, "ShapeContextDistanceExtractor")
|
||||
|
||||
if __name__ == '__main__':
|
||||
NewOpenCVTests.bootstrap()
|
@ -15,7 +15,6 @@ set(OPENCV_CPP_SAMPLES_REQUIRED_DEPS
|
||||
opencv_calib3d
|
||||
opencv_stitching
|
||||
opencv_videostab
|
||||
opencv_shape
|
||||
${OPENCV_MODULES_PUBLIC}
|
||||
${OpenCV_LIB_COMPONENTS})
|
||||
ocv_check_dependencies(${OPENCV_CPP_SAMPLES_REQUIRED_DEPS})
|
||||
|
@ -1,121 +0,0 @@
|
||||
/*
|
||||
* shape_context.cpp -- Shape context demo for shape matching
|
||||
*/
|
||||
|
||||
#include "opencv2/shape.hpp"
|
||||
#include "opencv2/imgcodecs.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
#include "opencv2/imgproc.hpp"
|
||||
#include <opencv2/core/utility.hpp>
|
||||
#include <iostream>
|
||||
#include <string>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
|
||||
static void help()
|
||||
{
|
||||
printf("\n"
|
||||
"This program demonstrates a method for shape comparison based on Shape Context\n"
|
||||
"You should run the program providing a number between 1 and 20 for selecting an image in the folder ../data/shape_sample.\n"
|
||||
"Call\n"
|
||||
"./shape_example [number between 1 and 20, 1 default]\n\n");
|
||||
}
|
||||
|
||||
static vector<Point> simpleContour( const Mat& currentQuery, int n=300 )
|
||||
{
|
||||
vector<vector<Point> > _contoursQuery;
|
||||
vector <Point> contoursQuery;
|
||||
findContours(currentQuery, _contoursQuery, RETR_LIST, CHAIN_APPROX_NONE);
|
||||
for (size_t border=0; border<_contoursQuery.size(); border++)
|
||||
{
|
||||
for (size_t p=0; p<_contoursQuery[border].size(); p++)
|
||||
{
|
||||
contoursQuery.push_back( _contoursQuery[border][p] );
|
||||
}
|
||||
}
|
||||
|
||||
// In case actual number of points is less than n
|
||||
int dummy=0;
|
||||
for (int add=(int)contoursQuery.size()-1; add<n; add++)
|
||||
{
|
||||
contoursQuery.push_back(contoursQuery[dummy++]); //adding dummy values
|
||||
}
|
||||
|
||||
// Uniformly sampling
|
||||
cv::randShuffle(contoursQuery);
|
||||
vector<Point> cont;
|
||||
for (int i=0; i<n; i++)
|
||||
{
|
||||
cont.push_back(contoursQuery[i]);
|
||||
}
|
||||
return cont;
|
||||
}
|
||||
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
string path = "../data/shape_sample/";
|
||||
cv::CommandLineParser parser(argc, argv, "{help h||}{@input|1|}");
|
||||
if (parser.has("help"))
|
||||
{
|
||||
help();
|
||||
return 0;
|
||||
}
|
||||
int indexQuery = parser.get<int>("@input");
|
||||
if (!parser.check())
|
||||
{
|
||||
parser.printErrors();
|
||||
help();
|
||||
return 1;
|
||||
}
|
||||
if (indexQuery < 1 || indexQuery > 20)
|
||||
{
|
||||
help();
|
||||
return 1;
|
||||
}
|
||||
cv::Ptr <cv::ShapeContextDistanceExtractor> mysc = cv::createShapeContextDistanceExtractor();
|
||||
|
||||
Size sz2Sh(300,300);
|
||||
stringstream queryName;
|
||||
queryName<<path<<indexQuery<<".png";
|
||||
Mat query=imread(queryName.str(), IMREAD_GRAYSCALE);
|
||||
Mat queryToShow;
|
||||
resize(query, queryToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT);
|
||||
imshow("QUERY", queryToShow);
|
||||
moveWindow("TEST", 0,0);
|
||||
vector<Point> contQuery = simpleContour(query);
|
||||
int bestMatch = 0;
|
||||
float bestDis=FLT_MAX;
|
||||
for ( int ii=1; ii<=20; ii++ )
|
||||
{
|
||||
if (ii==indexQuery) continue;
|
||||
waitKey(30);
|
||||
stringstream iiname;
|
||||
iiname<<path<<ii<<".png";
|
||||
cout<<"name: "<<iiname.str()<<endl;
|
||||
Mat iiIm=imread(iiname.str(), 0);
|
||||
Mat iiToShow;
|
||||
resize(iiIm, iiToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT);
|
||||
imshow("TEST", iiToShow);
|
||||
moveWindow("TEST", sz2Sh.width+50,0);
|
||||
vector<Point> contii = simpleContour(iiIm);
|
||||
float dis = mysc->computeDistance( contQuery, contii );
|
||||
if ( dis<bestDis )
|
||||
{
|
||||
bestMatch = ii;
|
||||
bestDis = dis;
|
||||
}
|
||||
std::cout<<" distance between "<<queryName.str()<<" and "<<iiname.str()<<" is: "<<dis<<std::endl;
|
||||
}
|
||||
destroyWindow("TEST");
|
||||
stringstream bestname;
|
||||
bestname<<path<<bestMatch<<".png";
|
||||
Mat iiIm=imread(bestname.str(), 0);
|
||||
Mat bestToShow;
|
||||
resize(iiIm, bestToShow, sz2Sh, 0, 0, INTER_LINEAR_EXACT);
|
||||
imshow("BEST MATCH", bestToShow);
|
||||
moveWindow("BEST MATCH", sz2Sh.width+50,0);
|
||||
waitKey();
|
||||
|
||||
return 0;
|
||||
}
|
Before Width: | Height: | Size: 705 B |
Before Width: | Height: | Size: 1.0 KiB |
Before Width: | Height: | Size: 722 B |
Before Width: | Height: | Size: 437 B |
Before Width: | Height: | Size: 443 B |
Before Width: | Height: | Size: 1.8 KiB |
Before Width: | Height: | Size: 803 B |
Before Width: | Height: | Size: 830 B |
Before Width: | Height: | Size: 3.0 KiB |
Before Width: | Height: | Size: 3.2 KiB |
Before Width: | Height: | Size: 1.5 KiB |
Before Width: | Height: | Size: 813 B |
Before Width: | Height: | Size: 1.5 KiB |
Before Width: | Height: | Size: 2.2 KiB |
Before Width: | Height: | Size: 2.4 KiB |
Before Width: | Height: | Size: 852 B |
Before Width: | Height: | Size: 969 B |
Before Width: | Height: | Size: 874 B |
Before Width: | Height: | Size: 851 B |
Before Width: | Height: | Size: 1.2 KiB |