mirror of
https://github.com/opencv/opencv.git
synced 2025-07-24 05:39:22 +08:00
Merge pull request #27331 from MaximSmolskiy:add-test-for-solveCubic
Add tests for solveCubic #27331 ### Pull Request Readiness Checklist Related to #27323 I found only randomized tests with number of roots always equal to `1` or `3`, `x^3 = 0` and some simple test for Java and Swift. Obviously, they don't cover all cases (implementation has strong branching and number of roots can be equal to `-1`, `0` and `2` additionally). So, I think it will be useful to try explicitly cover more cases (and implementation branches correspondingly) See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
parent
79a5e5276a
commit
d00738d97c
@ -2004,8 +2004,8 @@ The function solveCubic finds the real roots of a cubic equation:
|
||||
|
||||
The roots are stored in the roots array.
|
||||
@param coeffs equation coefficients, an array of 3 or 4 elements.
|
||||
@param roots output array of real roots that has 1 or 3 elements.
|
||||
@return number of real roots. It can be 0, 1 or 2.
|
||||
@param roots output array of real roots that has 0, 1, 2 or 3 elements.
|
||||
@return number of real roots. It can be -1 (all real numbers), 0, 1, 2 or 3.
|
||||
*/
|
||||
CV_EXPORTS_W int solveCubic(InputArray coeffs, OutputArray roots);
|
||||
|
||||
|
@ -1590,7 +1590,7 @@ int cv::solveCubic( InputArray _coeffs, OutputArray _roots )
|
||||
{
|
||||
if( a1 == 0 )
|
||||
{
|
||||
if( a2 == 0 )
|
||||
if( a2 == 0 ) // constant
|
||||
n = a3 == 0 ? -1 : 0;
|
||||
else
|
||||
{
|
||||
@ -1624,6 +1624,7 @@ int cv::solveCubic( InputArray _coeffs, OutputArray _roots )
|
||||
}
|
||||
else
|
||||
{
|
||||
// cubic equation
|
||||
a0 = 1./a0;
|
||||
a1 *= a0;
|
||||
a2 *= a0;
|
||||
|
@ -2445,6 +2445,158 @@ static void checkRoot(Mat& r, T re, T im)
|
||||
}
|
||||
GTEST_NONFATAL_FAILURE_("Can't find root") << "(" << re << ", " << im << ")";
|
||||
}
|
||||
|
||||
TEST(Core_SolveCubicConstant, accuracy)
|
||||
{
|
||||
{
|
||||
const std::vector<double> coeffs{0., 0., 0., 1.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_EQ(num_roots, 0);
|
||||
}
|
||||
|
||||
{
|
||||
const std::vector<double> coeffs{0., 0., 0., 0.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_EQ(num_roots, -1);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Core_SolveCubicLinear, accuracy)
|
||||
{
|
||||
const std::vector<double> coeffs{0., 0., 2., -2.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_EQ(num_roots, 1);
|
||||
EXPECT_EQ(roots[0], 1.);
|
||||
}
|
||||
|
||||
TEST(Core_SolveCubicQuadratic, accuracy)
|
||||
{
|
||||
{
|
||||
const std::vector<double> coeffs{0., 2., -4., 4.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_EQ(num_roots, 0);
|
||||
}
|
||||
|
||||
{
|
||||
const std::vector<double> coeffs{0., 2., -4., 2.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_EQ(num_roots, 1);
|
||||
EXPECT_EQ(roots[0], 1.);
|
||||
}
|
||||
|
||||
{
|
||||
const std::vector<double> coeffs{0., 2., -6., 4.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_EQ(num_roots, 2);
|
||||
EXPECT_EQ(roots[0], 2.);
|
||||
EXPECT_EQ(roots[1], 1.);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Core_SolveCubicCubic, accuracy)
|
||||
{
|
||||
{
|
||||
const std::vector<double> coeffs{2., -6., 6., -2.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_EQ(num_roots, 1);
|
||||
EXPECT_EQ(roots[0], 1.);
|
||||
}
|
||||
|
||||
{
|
||||
const std::vector<double> coeffs{2., -10., 24., -16.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_EQ(num_roots, 1);
|
||||
EXPECT_EQ(roots[0], 1.);
|
||||
}
|
||||
|
||||
{
|
||||
const std::vector<double> coeffs{2., -10., 16., -8.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_TRUE(num_roots == 2 || num_roots == 3);
|
||||
EXPECT_NEAR(roots[0], 1., 1e-8);
|
||||
EXPECT_NEAR(roots[1], 2., 1e-8);
|
||||
if (num_roots == 3)
|
||||
{
|
||||
EXPECT_NEAR(roots[2], 2., 1e-8);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
const std::vector<double> coeffs{2., -12., 22., -12.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_EQ(num_roots, 3);
|
||||
EXPECT_NEAR(roots[0], 1., 1e-8);
|
||||
EXPECT_NEAR(roots[1], 3., 1e-8);
|
||||
EXPECT_NEAR(roots[2], 2., 1e-8);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Core_SolveCubicNormalizedCubic, accuracy)
|
||||
{
|
||||
{
|
||||
const std::vector<double> coeffs{-3., 3., -1.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_EQ(num_roots, 1);
|
||||
EXPECT_EQ(roots[0], 1.);
|
||||
}
|
||||
|
||||
{
|
||||
const std::vector<double> coeffs{-5., 12., -8.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_EQ(num_roots, 1);
|
||||
EXPECT_EQ(roots[0], 1.);
|
||||
}
|
||||
|
||||
{
|
||||
const std::vector<double> coeffs{-5., 8., -4.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_TRUE(num_roots == 2 || num_roots == 3);
|
||||
EXPECT_NEAR(roots[0], 1., 1e-8);
|
||||
EXPECT_NEAR(roots[1], 2., 1e-8);
|
||||
if (num_roots == 3)
|
||||
{
|
||||
EXPECT_NEAR(roots[2], 2., 1e-8);
|
||||
}
|
||||
}
|
||||
|
||||
{
|
||||
const std::vector<double> coeffs{-6., 11., -6.};
|
||||
std::vector<double> roots;
|
||||
const auto num_roots = solveCubic(coeffs, roots);
|
||||
|
||||
EXPECT_EQ(num_roots, 3);
|
||||
EXPECT_NEAR(roots[0], 1., 1e-8);
|
||||
EXPECT_NEAR(roots[1], 3., 1e-8);
|
||||
EXPECT_NEAR(roots[2], 2., 1e-8);
|
||||
}
|
||||
}
|
||||
|
||||
TEST(Core_SolvePoly, regression_5599)
|
||||
{
|
||||
// x^4 - x^2 = 0, roots: 1, -1, 0, 0
|
||||
|
Loading…
Reference in New Issue
Block a user