mirror of
https://github.com/opencv/opencv.git
synced 2025-08-06 06:26:29 +08:00
Merge pull request #25917 from Abdurrahheem:ash/reduce-parser-fix
Fix Reduce layer for cosnt inputs #25917 ### Pull Request Readiness Checklist This PR adds support for const inputs for reducing the layer. Particularly, it fixes the following case. The test model and data are located in [1194](https://github.com/opencv/opencv_extra/pull/1194) <img width="190" alt="image" src="https://github.com/user-attachments/assets/45a90f0a-b798-4529-bece-24c7bfc9e7ba"> See details at https://github.com/opencv/opencv/wiki/How_to_contribute#making-a-good-pull-request - [x] I agree to contribute to the project under Apache 2 License. - [x] To the best of my knowledge, the proposed patch is not based on a code under GPL or another license that is incompatible with OpenCV - [x] The PR is proposed to the proper branch - [x] There is a reference to the original bug report and related work - [x] There is accuracy test, performance test and test data in opencv_extra repository, if applicable Patch to opencv_extra has the same branch name. - [x] The feature is well documented and sample code can be built with the project CMake
This commit is contained in:
parent
fc9208cff5
commit
d05047ae41
@ -1168,6 +1168,7 @@ void ONNXImporter::parseGlobalPool(LayerParams &layerParams, const opencv_onnx::
|
|||||||
|
|
||||||
void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
|
void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::NodeProto& node_proto)
|
||||||
{
|
{
|
||||||
|
layerParams.type = "Reduce";
|
||||||
const auto& op_type = node_proto.op_type();
|
const auto& op_type = node_proto.op_type();
|
||||||
String reduce_type;
|
String reduce_type;
|
||||||
if (op_type == "ReduceMax")
|
if (op_type == "ReduceMax")
|
||||||
@ -1209,9 +1210,16 @@ void ONNXImporter::parseReduce(LayerParams& layerParams, const opencv_onnx::Node
|
|||||||
for (int i = 0; i < num_axes; ++i)
|
for (int i = 0; i < num_axes; ++i)
|
||||||
axes[i] = mat_axes.at<int>(i);
|
axes[i] = mat_axes.at<int>(i);
|
||||||
layerParams.set("axes", DictValue::arrayInt(&axes[0], num_axes));
|
layerParams.set("axes", DictValue::arrayInt(&axes[0], num_axes));
|
||||||
|
if (constBlobs.find(node_proto.input(0)) != constBlobs.end()){
|
||||||
|
std::vector<Mat> inputs, output;
|
||||||
|
inputs.push_back(getBlob(node_proto, 0));
|
||||||
|
runLayer(layerParams, inputs, output);
|
||||||
|
CV_Assert(output.size() == 1);
|
||||||
|
addConstant(node_proto.output(0), output[0]);
|
||||||
|
return;
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
layerParams.type = "Reduce";
|
|
||||||
addLayer(layerParams, node_proto);
|
addLayer(layerParams, node_proto);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1550,6 +1550,10 @@ TEST_P(Test_ONNX_layers, Einsum_const_inputs) {
|
|||||||
testONNXModels("einsum_const_inputs", npy, 0, 0, false, false, 1);
|
testONNXModels("einsum_const_inputs", npy, 0, 0, false, false, 1);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
TEST_P(Test_ONNX_layers, ReduceSum_Consts){
|
||||||
|
testONNXModels("reducesum_consts");
|
||||||
|
}
|
||||||
|
|
||||||
TEST_P(Test_ONNX_layers, Pad2d_Unfused)
|
TEST_P(Test_ONNX_layers, Pad2d_Unfused)
|
||||||
{
|
{
|
||||||
testONNXModels("ReflectionPad2d");
|
testONNXModels("ReflectionPad2d");
|
||||||
|
Loading…
Reference in New Issue
Block a user