mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Update C++ MobileNet-SSD object detection sample
This commit is contained in:
parent
22576f4dfe
commit
d0580df339
@ -13,7 +13,6 @@ using namespace std;
|
||||
|
||||
const size_t inWidth = 300;
|
||||
const size_t inHeight = 300;
|
||||
const float WHRatio = inWidth / (float)inHeight;
|
||||
const float inScaleFactor = 0.007843f;
|
||||
const float meanVal = 127.5;
|
||||
const char* classNames[] = {"background",
|
||||
@ -23,13 +22,6 @@ const char* classNames[] = {"background",
|
||||
"motorbike", "person", "pottedplant",
|
||||
"sheep", "sofa", "train", "tvmonitor"};
|
||||
|
||||
const char* about = "This sample uses MobileNet Single-Shot Detector "
|
||||
"(https://arxiv.org/abs/1704.04861) "
|
||||
"to detect objects on camera/video/image.\n"
|
||||
".caffemodel model's file is available here: "
|
||||
"https://github.com/chuanqi305/MobileNet-SSD\n"
|
||||
"Default network is 300x300 and 20-classes VOC.\n";
|
||||
|
||||
const char* params
|
||||
= "{ help | false | print usage }"
|
||||
"{ proto | MobileNetSSD_deploy.prototxt | model configuration }"
|
||||
@ -44,16 +36,22 @@ const char* params
|
||||
int main(int argc, char** argv)
|
||||
{
|
||||
CommandLineParser parser(argc, argv, params);
|
||||
parser.about("This sample uses MobileNet Single-Shot Detector "
|
||||
"(https://arxiv.org/abs/1704.04861) "
|
||||
"to detect objects on camera/video/image.\n"
|
||||
".caffemodel model's file is available here: "
|
||||
"https://github.com/chuanqi305/MobileNet-SSD\n"
|
||||
"Default network is 300x300 and 20-classes VOC.\n");
|
||||
|
||||
if (parser.get<bool>("help"))
|
||||
if (parser.get<bool>("help") || argc == 1)
|
||||
{
|
||||
cout << about << endl;
|
||||
parser.printMessage();
|
||||
return 0;
|
||||
}
|
||||
|
||||
String modelConfiguration = parser.get<string>("proto");
|
||||
String modelBinary = parser.get<string>("model");
|
||||
CV_Assert(!modelConfiguration.empty() && !modelBinary.empty());
|
||||
|
||||
//! [Initialize network]
|
||||
dnn::Net net = readNetFromCaffe(modelConfiguration, modelBinary);
|
||||
@ -75,7 +73,7 @@ int main(int argc, char** argv)
|
||||
}
|
||||
|
||||
VideoCapture cap;
|
||||
if (parser.get<String>("video").empty())
|
||||
if (!parser.has("video"))
|
||||
{
|
||||
int cameraDevice = parser.get<int>("camera_device");
|
||||
cap = VideoCapture(cameraDevice);
|
||||
@ -95,32 +93,16 @@ int main(int argc, char** argv)
|
||||
}
|
||||
}
|
||||
|
||||
Size inVideoSize;
|
||||
inVideoSize = Size((int) cap.get(CV_CAP_PROP_FRAME_WIDTH), //Acquire input size
|
||||
(int) cap.get(CV_CAP_PROP_FRAME_HEIGHT));
|
||||
|
||||
Size cropSize;
|
||||
if (inVideoSize.width / (float)inVideoSize.height > WHRatio)
|
||||
{
|
||||
cropSize = Size(static_cast<int>(inVideoSize.height * WHRatio),
|
||||
inVideoSize.height);
|
||||
}
|
||||
else
|
||||
{
|
||||
cropSize = Size(inVideoSize.width,
|
||||
static_cast<int>(inVideoSize.width / WHRatio));
|
||||
}
|
||||
|
||||
Rect crop(Point((inVideoSize.width - cropSize.width) / 2,
|
||||
(inVideoSize.height - cropSize.height) / 2),
|
||||
cropSize);
|
||||
//Acquire input size
|
||||
Size inVideoSize((int) cap.get(CV_CAP_PROP_FRAME_WIDTH),
|
||||
(int) cap.get(CV_CAP_PROP_FRAME_HEIGHT));
|
||||
|
||||
double fps = cap.get(CV_CAP_PROP_FPS);
|
||||
int fourcc = static_cast<int>(cap.get(CV_CAP_PROP_FOURCC));
|
||||
VideoWriter outputVideo;
|
||||
outputVideo.open(parser.get<String>("out") ,
|
||||
(fourcc != 0 ? fourcc : VideoWriter::fourcc('M','J','P','G')),
|
||||
(fps != 0 ? fps : 10.0), cropSize, true);
|
||||
(fps != 0 ? fps : 10.0), inVideoSize, true);
|
||||
|
||||
for(;;)
|
||||
{
|
||||
@ -138,15 +120,17 @@ int main(int argc, char** argv)
|
||||
|
||||
//! [Prepare blob]
|
||||
Mat inputBlob = blobFromImage(frame, inScaleFactor,
|
||||
Size(inWidth, inHeight), meanVal, false); //Convert Mat to batch of images
|
||||
Size(inWidth, inHeight),
|
||||
Scalar(meanVal, meanVal, meanVal),
|
||||
false, false); //Convert Mat to batch of images
|
||||
//! [Prepare blob]
|
||||
|
||||
//! [Set input blob]
|
||||
net.setInput(inputBlob, "data"); //set the network input
|
||||
net.setInput(inputBlob); //set the network input
|
||||
//! [Set input blob]
|
||||
|
||||
//! [Make forward pass]
|
||||
Mat detection = net.forward("detection_out"); //compute output
|
||||
Mat detection = net.forward(); //compute output
|
||||
//! [Make forward pass]
|
||||
|
||||
vector<double> layersTimings;
|
||||
@ -155,13 +139,10 @@ int main(int argc, char** argv)
|
||||
|
||||
Mat detectionMat(detection.size[2], detection.size[3], CV_32F, detection.ptr<float>());
|
||||
|
||||
frame = frame(crop);
|
||||
|
||||
ostringstream ss;
|
||||
if (!outputVideo.isOpened())
|
||||
{
|
||||
ss << "FPS: " << 1000/time << " ; time: " << time << " ms";
|
||||
putText(frame, ss.str(), Point(20,20), 0, 0.5, Scalar(0,0,255));
|
||||
putText(frame, format("FPS: %.2f ; time: %.2f ms", 1000.f/time, time),
|
||||
Point(20,20), 0, 0.5, Scalar(0,0,255));
|
||||
}
|
||||
else
|
||||
cout << "Inference time, ms: " << time << endl;
|
||||
@ -175,27 +156,20 @@ int main(int argc, char** argv)
|
||||
{
|
||||
size_t objectClass = (size_t)(detectionMat.at<float>(i, 1));
|
||||
|
||||
int xLeftBottom = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols);
|
||||
int yLeftBottom = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows);
|
||||
int xRightTop = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols);
|
||||
int yRightTop = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows);
|
||||
int left = static_cast<int>(detectionMat.at<float>(i, 3) * frame.cols);
|
||||
int top = static_cast<int>(detectionMat.at<float>(i, 4) * frame.rows);
|
||||
int right = static_cast<int>(detectionMat.at<float>(i, 5) * frame.cols);
|
||||
int bottom = static_cast<int>(detectionMat.at<float>(i, 6) * frame.rows);
|
||||
|
||||
ss.str("");
|
||||
ss << confidence;
|
||||
String conf(ss.str());
|
||||
|
||||
Rect object((int)xLeftBottom, (int)yLeftBottom,
|
||||
(int)(xRightTop - xLeftBottom),
|
||||
(int)(yRightTop - yLeftBottom));
|
||||
|
||||
rectangle(frame, object, Scalar(0, 255, 0));
|
||||
String label = String(classNames[objectClass]) + ": " + conf;
|
||||
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 255, 0));
|
||||
String label = format("%s: %.2f", classNames[objectClass], confidence);
|
||||
int baseLine = 0;
|
||||
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
|
||||
rectangle(frame, Rect(Point(xLeftBottom, yLeftBottom - labelSize.height),
|
||||
Size(labelSize.width, labelSize.height + baseLine)),
|
||||
top = max(top, labelSize.height);
|
||||
rectangle(frame, Point(left, top - labelSize.height),
|
||||
Point(left + labelSize.width, top + baseLine),
|
||||
Scalar(255, 255, 255), CV_FILLED);
|
||||
putText(frame, label, Point(xLeftBottom, yLeftBottom),
|
||||
putText(frame, label, Point(left, top),
|
||||
FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0,0,0));
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user