Prototype OCL version of gaussian blur with integer arithmetic

This commit is contained in:
Alexander Karsakov 2014-03-28 21:46:03 +04:00
parent 6f5800e7df
commit d17142b83d
3 changed files with 283 additions and 1 deletions

View File

@ -0,0 +1,189 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2014, Intel Corporation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
///////////////////////////////////////////////////////////////////////////////////////////////////
/////////////////////////////////Macro for border type////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////////////////////////////
#ifdef BORDER_CONSTANT
// CCCCCC|abcdefgh|CCCCCCC
#define EXTRAPOLATE(x, maxV)
#elif defined BORDER_REPLICATE
// aaaaaa|abcdefgh|hhhhhhh
#define EXTRAPOLATE(x, maxV) \
{ \
(x) = max(min((x), (maxV) - 1), 0); \
}
#elif defined BORDER_WRAP
// cdefgh|abcdefgh|abcdefg
#define EXTRAPOLATE(x, maxV) \
{ \
(x) = ( (x) + (maxV) ) % (maxV); \
}
#elif defined BORDER_REFLECT
// fedcba|abcdefgh|hgfedcb
#define EXTRAPOLATE(x, maxV) \
{ \
(x) = min(((maxV)-1)*2-(x)+1, max((x),-(x)-1) ); \
}
#elif defined BORDER_REFLECT_101 || defined BORDER_REFLECT101
// gfedcb|abcdefgh|gfedcba
#define EXTRAPOLATE(x, maxV) \
{ \
(x) = min(((maxV)-1)*2-(x), max((x),-(x)) ); \
}
#else
#error No extrapolation method
#endif
#if CN != 3
#define loadpix(addr) *(__global const srcT *)(addr)
#define storepix(val, addr) *(__global dstT *)(addr) = val
#define SRCSIZE (int)sizeof(srcT)
#define DSTSIZE (int)sizeof(dstT)
#else
#define loadpix(addr) vload3(0, (__global const srcT1 *)(addr))
#define storepix(val, addr) vstore3(val, 0, (__global dstT1 *)(addr))
#define SRCSIZE (int)sizeof(srcT1)*3
#define DSTSIZE (int)sizeof(dstT1)*3
#endif
#define SRC(_x,_y) convertToWT(loadpix(Src + mad24(_y, src_step, SRCSIZE * _x)))
#ifdef BORDER_CONSTANT
// CCCCCC|abcdefgh|CCCCCCC
#define ELEM(_x,_y,r_edge,t_edge,const_v) (_x)<0 | (_x) >= (r_edge) | (_y)<0 | (_y) >= (t_edge) ? (const_v) : SRC((_x),(_y))
#else
#define ELEM(_x,_y,r_edge,t_edge,const_v) SRC((_x),(_y))
#endif
#define noconvert
// horizontal and vertical filter kernels
// should be defined on host during compile time to avoid overhead
#define DIG(a) a,
__constant int mat_kernelX[] = { KERNEL_MATRIX_X };
__constant int mat_kernelY[] = { KERNEL_MATRIX_Y };
__kernel void gaussian_blur_8u(__global uchar* Src, int src_step, int srcOffsetX, int srcOffsetY, int height, int width,
__global uchar* Dst, int dst_step, int dst_offset, int dst_rows, int dst_cols)
{
// RADIUSX, RADIUSY are filter dimensions
// BLK_X, BLK_Y are local wrogroup sizes
// all these should be defined on host during compile time
// first lsmem array for source pixels used in first pass,
// second lsmemDy for storing first pass results
__local WT lsmem[BLK_Y + 2 * RADIUSY][BLK_X + 2 * RADIUSX];
__local WT lsmemDy[BLK_Y][BLK_X + 2 * RADIUSX];
// get local and global ids - used as image and local memory array indexes
int lix = get_local_id(0);
int liy = get_local_id(1);
int x = get_global_id(0);
int y = get_global_id(1);
// calculate pixel position in source image taking image offset into account
int srcX = x + srcOffsetX - RADIUSX;
int srcY = y + srcOffsetY - RADIUSY;
int xb = srcX;
int yb = srcY;
// extrapolate coordinates, if needed
// and read my own source pixel into local memory
// with account for extra border pixels, which will be read by starting workitems
int clocY = liy;
int cSrcY = srcY;
do
{
int yb = cSrcY;
EXTRAPOLATE(yb, (height));
int clocX = lix;
int cSrcX = srcX;
do
{
int xb = cSrcX;
EXTRAPOLATE(xb,(width));
lsmem[clocY][clocX] = ELEM(xb, yb, (width), (height), 0 );
clocX += BLK_X;
cSrcX += BLK_X;
}
while(clocX < BLK_X+(RADIUSX*2));
clocY += BLK_Y;
cSrcY += BLK_Y;
}
while (clocY < BLK_Y+(RADIUSY*2));
barrier(CLK_LOCAL_MEM_FENCE);
// do vertical filter pass
// and store intermediate results to second local memory array
int i, clocX = lix;
WT sum = 0;
do
{
sum = 0;
for (i=0; i<=2*RADIUSY; i++)
sum = mad(lsmem[liy+i][clocX], mat_kernelY[i], sum);
lsmemDy[liy][clocX] = sum;
clocX += BLK_X;
}
while(clocX < BLK_X+(RADIUSX*2));
barrier(CLK_LOCAL_MEM_FENCE);
// if this pixel happened to be out of image borders because of global size rounding,
// then just return
if( x >= dst_cols || y >=dst_rows )
return;
// do second horizontal filter pass
// and calculate final result
sum = 0;
for (i=0; i<=2*RADIUSX; i++)
sum = mad(lsmemDy[liy][lix+i], mat_kernelX[i], sum);
sum = sum >> (GAUSSIAN_COEF_BITS * 2);
//store result into destination image
storepix(convertToDstT(sum), Dst + mad24(y, dst_step, mad24(x, DSTSIZE, dst_offset)));
}

View File

@ -42,6 +42,7 @@
#include "precomp.hpp" #include "precomp.hpp"
#include "opencl_kernels.hpp" #include "opencl_kernels.hpp"
#include <iostream>
/* /*
* This file includes the code, contributed by Simon Perreault * This file includes the code, contributed by Simon Perreault
@ -1069,6 +1070,73 @@ static void createGaussianKernels( Mat & kx, Mat & ky, int type, Size ksize,
ky = getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F) ); ky = getGaussianKernel( ksize.height, sigma2, std::max(depth, CV_32F) );
} }
#define GAUSSIAN_COEF_BITS 11
static bool GaussianBlur_8u(InputArray _src, OutputArray _dst, Size ksize,
double sigma1, double sigma2,
int borderType)
{
int type = _src.type();
Mat kx, ky;
createGaussianKernels(kx, ky, CV_64F, ksize, sigma1, sigma2);
Mat kx_8u, ky_8u;
int scale_coef = 1 << GAUSSIAN_COEF_BITS;
kx.convertTo(kx_8u, CV_32S, scale_coef);
ky.convertTo(ky_8u, CV_32S, scale_coef);
kx_8u.reshape(1, 1);
ky_8u.reshape(1, 1);
Size size = _src.size(), wholeSize;
Point origin;
int stype = _src.type(), sdepth = CV_MAT_DEPTH(stype), cn = CV_MAT_CN(stype),
esz = CV_ELEM_SIZE(stype), wdepth = CV_32S,
ddepth = sdepth;
size_t src_step = _src.step(), src_offset = _src.offset();
if ((src_offset % src_step) % esz != 0 || !(borderType == BORDER_CONSTANT || borderType == BORDER_REPLICATE ||
borderType == BORDER_REFLECT || borderType == BORDER_WRAP ||
borderType == BORDER_REFLECT_101))
return false;
size_t lt2[2] = { 16, 16 };
size_t gt2[2] = { lt2[0] * (1 + (size.width - 1) / lt2[0]), lt2[1] * (1 + (size.height - 1) / lt2[1]) };
char cvt[2][40];
const char * const borderMap[] = { "BORDER_CONSTANT", "BORDER_REPLICATE", "BORDER_REFLECT", "BORDER_WRAP",
"BORDER_REFLECT_101" };
String opts = cv::format("-D BLK_X=%d -D BLK_Y=%d -D RADIUSX=%d -D RADIUSY=%d%s%s"
" -D srcT=%s -D convertToWT=%s -D WT=%s -D dstT=%s -D convertToDstT=%s"
" -D %s -D srcT1=%s -D dstT1=%s -D CN=%d -D GAUSSIAN_COEF_BITS=%d", (int)lt2[0], (int)lt2[1],
kx.rows / 2, kx.rows / 2,
ocl::kernelToStr(kx_8u, CV_32S, "KERNEL_MATRIX_X").c_str(),
ocl::kernelToStr(ky_8u, CV_32S, "KERNEL_MATRIX_Y").c_str(),
ocl::typeToStr(stype), ocl::convertTypeStr(sdepth, wdepth, cn, cvt[0]),
ocl::typeToStr(CV_MAKE_TYPE(wdepth, cn)), ocl::typeToStr(stype),
ocl::convertTypeStr(wdepth, ddepth, cn, cvt[1]), borderMap[borderType],
ocl::typeToStr(sdepth), ocl::typeToStr(ddepth), cn, GAUSSIAN_COEF_BITS);
ocl::Kernel k("gaussian_blur_8u", ocl::imgproc::gaussian_blur_8u_oclsrc, opts);
if (k.empty())
return false;
UMat src = _src.getUMat();
_dst.create(size, stype);
UMat dst = _dst.getUMat();
int src_offset_x = static_cast<int>((src_offset % src_step) / esz);
int src_offset_y = static_cast<int>(src_offset / src_step);
src.locateROI(wholeSize, origin);
k.args(ocl::KernelArg::PtrReadOnly(src), (int)src_step, src_offset_x, src_offset_y,
wholeSize.height, wholeSize.width, ocl::KernelArg::WriteOnly(dst));
return k.run(2, gt2, lt2, false);
}
} }
cv::Ptr<cv::FilterEngine> cv::createGaussianFilter( int type, Size ksize, cv::Ptr<cv::FilterEngine> cv::createGaussianFilter( int type, Size ksize,
@ -1082,6 +1150,8 @@ cv::Ptr<cv::FilterEngine> cv::createGaussianFilter( int type, Size ksize,
} }
void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize, void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
double sigma1, double sigma2, double sigma1, double sigma2,
int borderType ) int borderType )
@ -1126,6 +1196,13 @@ void cv::GaussianBlur( InputArray _src, OutputArray _dst, Size ksize,
} }
#endif #endif
if (type == CV_8U)
{
CV_OCL_RUN_(_dst.isUMat() && _src.dims() <= 2 &&
(!(borderType & BORDER_ISOLATED) || _src.offset() == 0),
GaussianBlur_8u(_src, _dst, ksize, sigma1, sigma2, borderType))
}
Mat kx, ky; Mat kx, ky;
createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2); createGaussianKernels(kx, ky, type, ksize, sigma1, sigma2);
sepFilter2D(_src, _dst, CV_MAT_DEPTH(type), kx, ky, Point(-1,-1), 0, borderType ); sepFilter2D(_src, _dst, CV_MAT_DEPTH(type), kx, ky, Point(-1,-1), 0, borderType );

View File

@ -219,7 +219,23 @@ OCL_TEST_P(GaussianBlurTest, Mat)
OCL_OFF(cv::GaussianBlur(src_roi, dst_roi, Size(ksize, ksize), sigma1, sigma2, borderType)); OCL_OFF(cv::GaussianBlur(src_roi, dst_roi, Size(ksize, ksize), sigma1, sigma2, borderType));
OCL_ON(cv::GaussianBlur(usrc_roi, udst_roi, Size(ksize, ksize), sigma1, sigma2, borderType)); OCL_ON(cv::GaussianBlur(usrc_roi, udst_roi, Size(ksize, ksize), sigma1, sigma2, borderType));
Near(CV_MAT_DEPTH(type) == CV_8U ? 3 : 5e-5, false);
if (checkNorm2(dst_roi, udst_roi) > 2 && CV_MAT_DEPTH(type) == CV_8U)
{
Mat udst = udst_roi.getMat(ACCESS_READ);
Mat diff;
absdiff(dst_roi, udst, diff);
int nonZero = countNonZero(diff);
double max;
Point maxn;
minMaxLoc(diff, (double*)0, &max, (Point*) 0, &maxn);
uchar a = dst_roi.at<uchar>(maxn);
uchar b = udst.at<uchar>(maxn);
}
Near(CV_MAT_DEPTH(type) == CV_8U ? 2 : 5e-5, false);
} }
} }