mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Merge pull request #3233 from niebles:master
This commit is contained in:
commit
d1fba0686e
@ -129,16 +129,16 @@ public:
|
||||
//! updates the predicted state from the measurement
|
||||
CV_WRAP const Mat& correct( const Mat& measurement );
|
||||
|
||||
Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
|
||||
Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
|
||||
Mat transitionMatrix; //!< state transition matrix (A)
|
||||
Mat controlMatrix; //!< control matrix (B) (not used if there is no control)
|
||||
Mat measurementMatrix; //!< measurement matrix (H)
|
||||
Mat processNoiseCov; //!< process noise covariance matrix (Q)
|
||||
Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
|
||||
Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
|
||||
Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
|
||||
Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
|
||||
CV_PROP_RW Mat statePre; //!< predicted state (x'(k)): x(k)=A*x(k-1)+B*u(k)
|
||||
CV_PROP_RW Mat statePost; //!< corrected state (x(k)): x(k)=x'(k)+K(k)*(z(k)-H*x'(k))
|
||||
CV_PROP_RW Mat transitionMatrix; //!< state transition matrix (A)
|
||||
CV_PROP_RW Mat controlMatrix; //!< control matrix (B) (not used if there is no control)
|
||||
CV_PROP_RW Mat measurementMatrix; //!< measurement matrix (H)
|
||||
CV_PROP_RW Mat processNoiseCov; //!< process noise covariance matrix (Q)
|
||||
CV_PROP_RW Mat measurementNoiseCov;//!< measurement noise covariance matrix (R)
|
||||
CV_PROP_RW Mat errorCovPre; //!< priori error estimate covariance matrix (P'(k)): P'(k)=A*P(k-1)*At + Q)*/
|
||||
CV_PROP_RW Mat gain; //!< Kalman gain matrix (K(k)): K(k)=P'(k)*Ht*inv(H*P'(k)*Ht+R)
|
||||
CV_PROP_RW Mat errorCovPost; //!< posteriori error estimate covariance matrix (P(k)): P(k)=(I-K(k)*H)*P'(k)
|
||||
|
||||
// temporary matrices
|
||||
Mat temp1;
|
||||
|
89
samples/python2/kalman.py
Executable file
89
samples/python2/kalman.py
Executable file
@ -0,0 +1,89 @@
|
||||
#!/usr/bin/python
|
||||
"""
|
||||
Tracking of rotating point.
|
||||
Rotation speed is constant.
|
||||
Both state and measurements vectors are 1D (a point angle),
|
||||
Measurement is the real point angle + gaussian noise.
|
||||
The real and the estimated points are connected with yellow line segment,
|
||||
the real and the measured points are connected with red line segment.
|
||||
(if Kalman filter works correctly,
|
||||
the yellow segment should be shorter than the red one).
|
||||
Pressing any key (except ESC) will reset the tracking with a different speed.
|
||||
Pressing ESC will stop the program.
|
||||
"""
|
||||
import cv2
|
||||
from math import cos, sin
|
||||
import numpy as np
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
img_height = 500
|
||||
img_width = 500
|
||||
kalman = cv2.KalmanFilter(2, 1, 0)
|
||||
|
||||
code = -1L
|
||||
|
||||
cv2.namedWindow("Kalman")
|
||||
|
||||
while True:
|
||||
state = 0.1 * np.random.randn(2, 1)
|
||||
|
||||
kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]])
|
||||
kalman.measurementMatrix = 1. * np.ones((1, 2))
|
||||
kalman.processNoiseCov = 1e-5 * np.eye(2)
|
||||
kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1))
|
||||
kalman.errorCovPost = 1. * np.ones((2, 2))
|
||||
kalman.statePost = 0.1 * np.random.randn(2, 1)
|
||||
|
||||
while True:
|
||||
def calc_point(angle):
|
||||
return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int),
|
||||
np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int))
|
||||
|
||||
state_angle = state[0, 0]
|
||||
state_pt = calc_point(state_angle)
|
||||
|
||||
prediction = kalman.predict()
|
||||
predict_angle = prediction[0, 0]
|
||||
predict_pt = calc_point(predict_angle)
|
||||
|
||||
measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)
|
||||
|
||||
# generate measurement
|
||||
measurement = np.dot(kalman.measurementMatrix, state) + measurement
|
||||
|
||||
measurement_angle = measurement[0, 0]
|
||||
measurement_pt = calc_point(measurement_angle)
|
||||
|
||||
# plot points
|
||||
def draw_cross(center, color, d):
|
||||
cv2.line(img,
|
||||
(center[0] - d, center[1] - d), (center[0] + d, center[1] + d),
|
||||
color, 1, cv2.LINE_AA, 0)
|
||||
cv2.line(img,
|
||||
(center[0] + d, center[1] - d), (center[0] - d, center[1] + d),
|
||||
color, 1, cv2.LINE_AA, 0)
|
||||
|
||||
img = np.zeros((img_height, img_width, 3), np.uint8)
|
||||
draw_cross(np.int32(state_pt), (255, 255, 255), 3)
|
||||
draw_cross(np.int32(measurement_pt), (0, 0, 255), 3)
|
||||
draw_cross(np.int32(predict_pt), (0, 255, 0), 3)
|
||||
|
||||
cv2.line(img, state_pt, measurement_pt, (0, 0, 255), 3, cv2.LINE_AA, 0)
|
||||
cv2.line(img, state_pt, predict_pt, (0, 255, 255), 3, cv2.LINE_AA, 0)
|
||||
|
||||
kalman.correct(measurement)
|
||||
|
||||
process_noise = kalman.processNoiseCov * np.random.randn(2, 1)
|
||||
state = np.dot(kalman.transitionMatrix, state) + process_noise
|
||||
|
||||
cv2.imshow("Kalman", img)
|
||||
|
||||
code = cv2.waitKey(100) % 0x100
|
||||
if code != -1:
|
||||
break
|
||||
|
||||
if code in [27, ord('q'), ord('Q')]:
|
||||
break
|
||||
|
||||
cv2.destroyWindow("Kalman")
|
Loading…
Reference in New Issue
Block a user