Move cv::Matx and cv::Vec to separate header

This commit is contained in:
Andrey Kamaev 2013-03-27 15:54:04 +04:00
parent 5e7ab8baf3
commit d2192c0759
6 changed files with 556 additions and 381 deletions

View File

@ -53,6 +53,9 @@
#ifdef __cplusplus
#include "opencv2/core/cvstd.hpp"
#include "opencv2/core/base.hpp"
#include "opencv2/core/traits.hpp"
#include "opencv2/core/matx.hpp"
#include "opencv2/core/types.hpp"
#ifndef SKIP_INCLUDES
@ -72,45 +75,13 @@
*/
namespace cv {
template<typename _Tp> class CV_EXPORTS Size_;
template<typename _Tp> class CV_EXPORTS Point_;
template<typename _Tp> class CV_EXPORTS Rect_;
template<typename _Tp, int cn> class CV_EXPORTS Vec;
template<typename _Tp, int m, int n> class CV_EXPORTS Matx;
class Mat;
class SparseMat;
typedef Mat MatND;
namespace ogl {
class Buffer;
class Texture2D;
class Arrays;
}
namespace gpu {
class GpuMat;
}
class CV_EXPORTS MatExpr;
class CV_EXPORTS MatOp_Base;
class CV_EXPORTS MatArg;
class CV_EXPORTS MatConstIterator;
template<typename _Tp> class CV_EXPORTS Mat_;
template<typename _Tp> class CV_EXPORTS MatIterator_;
template<typename _Tp> class CV_EXPORTS MatConstIterator_;
template<typename _Tp> class CV_EXPORTS MatCommaInitializer_;
// matrix decomposition types
enum { DECOMP_LU=0, DECOMP_SVD=1, DECOMP_EIG=2, DECOMP_CHOLESKY=3, DECOMP_QR=4, DECOMP_NORMAL=16 };
enum { NORM_INF=1, NORM_L1=2, NORM_L2=4, NORM_L2SQR=5, NORM_HAMMING=6, NORM_HAMMING2=7, NORM_TYPE_MASK=7, NORM_RELATIVE=8, NORM_MINMAX=32 };
enum { CMP_EQ=0, CMP_GT=1, CMP_GE=2, CMP_LT=3, CMP_LE=4, CMP_NE=5 };
enum { GEMM_1_T=1, GEMM_2_T=2, GEMM_3_T=4 };
enum { DFT_INVERSE=1, DFT_SCALE=2, DFT_ROWS=4, DFT_COMPLEX_OUTPUT=16, DFT_REAL_OUTPUT=32,
DCT_INVERSE = DFT_INVERSE, DCT_ROWS=DFT_ROWS };
/*!
The standard OpenCV exception class.
Instances of the class are thrown by various functions and methods in the case of critical errors.
@ -239,298 +210,9 @@ public:
void destroy(pointer p) { p->~_Tp(); }
};
/////////////////////// Vec (used as element of multi-channel images /////////////////////
////////////////////////////// Small Matrix ///////////////////////////
/*!
A short numerical vector.
This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements)
on which you can perform basic arithmetical operations, access individual elements using [] operator etc.
The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc.,
which elements are dynamically allocated in the heap.
The template takes 2 parameters:
-# _Tp element type
-# cn the number of elements
In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.
*/
struct CV_EXPORTS Matx_AddOp {};
struct CV_EXPORTS Matx_SubOp {};
struct CV_EXPORTS Matx_ScaleOp {};
struct CV_EXPORTS Matx_MulOp {};
struct CV_EXPORTS Matx_MatMulOp {};
struct CV_EXPORTS Matx_TOp {};
template<typename _Tp, int m, int n> class CV_EXPORTS Matx
{
public:
typedef _Tp value_type;
typedef Matx<_Tp, (m < n ? m : n), 1> diag_type;
typedef Matx<_Tp, m, n> mat_type;
enum { depth = DataDepth<_Tp>::value, rows = m, cols = n, channels = rows*cols,
type = CV_MAKETYPE(depth, channels) };
//! default constructor
Matx();
Matx(_Tp v0); //!< 1x1 matrix
Matx(_Tp v0, _Tp v1); //!< 1x2 or 2x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2); //!< 1x3 or 3x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 1x4, 2x2 or 4x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 1x5 or 5x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 1x6, 2x3, 3x2 or 6x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 1x7 or 7x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 1x8, 2x4, 4x2 or 8x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 1x9, 3x3 or 9x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 1x10, 2x5 or 5x2 or 10x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
_Tp v4, _Tp v5, _Tp v6, _Tp v7,
_Tp v8, _Tp v9, _Tp v10, _Tp v11); //!< 1x12, 2x6, 3x4, 4x3, 6x2 or 12x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
_Tp v4, _Tp v5, _Tp v6, _Tp v7,
_Tp v8, _Tp v9, _Tp v10, _Tp v11,
_Tp v12, _Tp v13, _Tp v14, _Tp v15); //!< 1x16, 4x4 or 16x1 matrix
explicit Matx(const _Tp* vals); //!< initialize from a plain array
static Matx all(_Tp alpha);
static Matx zeros();
static Matx ones();
static Matx eye();
static Matx diag(const diag_type& d);
static Matx randu(_Tp a, _Tp b);
static Matx randn(_Tp a, _Tp b);
//! dot product computed with the default precision
_Tp dot(const Matx<_Tp, m, n>& v) const;
//! dot product computed in double-precision arithmetics
double ddot(const Matx<_Tp, m, n>& v) const;
//! convertion to another data type
template<typename T2> operator Matx<T2, m, n>() const;
//! change the matrix shape
template<int m1, int n1> Matx<_Tp, m1, n1> reshape() const;
//! extract part of the matrix
template<int m1, int n1> Matx<_Tp, m1, n1> get_minor(int i, int j) const;
//! extract the matrix row
Matx<_Tp, 1, n> row(int i) const;
//! extract the matrix column
Matx<_Tp, m, 1> col(int i) const;
//! extract the matrix diagonal
diag_type diag() const;
//! transpose the matrix
Matx<_Tp, n, m> t() const;
//! invert matrix the matrix
Matx<_Tp, n, m> inv(int method=DECOMP_LU) const;
//! solve linear system
template<int l> Matx<_Tp, n, l> solve(const Matx<_Tp, m, l>& rhs, int flags=DECOMP_LU) const;
Vec<_Tp, n> solve(const Vec<_Tp, m>& rhs, int method) const;
//! multiply two matrices element-wise
Matx<_Tp, m, n> mul(const Matx<_Tp, m, n>& a) const;
//! element access
const _Tp& operator ()(int i, int j) const;
_Tp& operator ()(int i, int j);
//! 1D element access
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp);
template<typename _T2> Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp);
template<int l> Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp);
Matx(const Matx<_Tp, n, m>& a, Matx_TOp);
_Tp val[m*n]; //< matrix elements
};
typedef Matx<float, 1, 2> Matx12f;
typedef Matx<double, 1, 2> Matx12d;
typedef Matx<float, 1, 3> Matx13f;
typedef Matx<double, 1, 3> Matx13d;
typedef Matx<float, 1, 4> Matx14f;
typedef Matx<double, 1, 4> Matx14d;
typedef Matx<float, 1, 6> Matx16f;
typedef Matx<double, 1, 6> Matx16d;
typedef Matx<float, 2, 1> Matx21f;
typedef Matx<double, 2, 1> Matx21d;
typedef Matx<float, 3, 1> Matx31f;
typedef Matx<double, 3, 1> Matx31d;
typedef Matx<float, 4, 1> Matx41f;
typedef Matx<double, 4, 1> Matx41d;
typedef Matx<float, 6, 1> Matx61f;
typedef Matx<double, 6, 1> Matx61d;
typedef Matx<float, 2, 2> Matx22f;
typedef Matx<double, 2, 2> Matx22d;
typedef Matx<float, 2, 3> Matx23f;
typedef Matx<double, 2, 3> Matx23d;
typedef Matx<float, 3, 2> Matx32f;
typedef Matx<double, 3, 2> Matx32d;
typedef Matx<float, 3, 3> Matx33f;
typedef Matx<double, 3, 3> Matx33d;
typedef Matx<float, 3, 4> Matx34f;
typedef Matx<double, 3, 4> Matx34d;
typedef Matx<float, 4, 3> Matx43f;
typedef Matx<double, 4, 3> Matx43d;
typedef Matx<float, 4, 4> Matx44f;
typedef Matx<double, 4, 4> Matx44d;
typedef Matx<float, 6, 6> Matx66f;
typedef Matx<double, 6, 6> Matx66d;
/*!
A short numerical vector.
This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements)
on which you can perform basic arithmetical operations, access individual elements using [] operator etc.
The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc.,
which elements are dynamically allocated in the heap.
The template takes 2 parameters:
-# _Tp element type
-# cn the number of elements
In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.
*/
template<typename _Tp, int cn> class CV_EXPORTS Vec : public Matx<_Tp, cn, 1>
{
public:
typedef _Tp value_type;
enum { depth = DataDepth<_Tp>::value, channels = cn, type = CV_MAKETYPE(depth, channels) };
//! default constructor
Vec();
Vec(_Tp v0); //!< 1-element vector constructor
Vec(_Tp v0, _Tp v1); //!< 2-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2); //!< 3-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 4-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 5-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 6-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 7-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 8-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 9-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 10-element vector constructor
explicit Vec(const _Tp* values);
Vec(const Vec<_Tp, cn>& v);
static Vec all(_Tp alpha);
//! per-element multiplication
Vec mul(const Vec<_Tp, cn>& v) const;
//! conjugation (makes sense for complex numbers and quaternions)
Vec conj() const;
/*!
cross product of the two 3D vectors.
For other dimensionalities the exception is raised
*/
Vec cross(const Vec& v) const;
//! convertion to another data type
template<typename T2> operator Vec<T2, cn>() const;
/*! element access */
const _Tp& operator [](int i) const;
_Tp& operator[](int i);
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp);
template<typename _T2> Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp);
};
/* \typedef
Shorter aliases for the most popular specializations of Vec<T,n>
*/
typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;
typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;
typedef Vec<ushort, 2> Vec2w;
typedef Vec<ushort, 3> Vec3w;
typedef Vec<ushort, 4> Vec4w;
typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<int, 6> Vec6i;
typedef Vec<int, 8> Vec8i;
typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;
typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;
CV_EXPORTS void scalarToRawData(const Scalar& s, void* buf, int type, int unroll_to=0);
/////////////////////////////// DataType ////////////////////////////////
template<typename _Tp, int m, int n> class DataType<Matx<_Tp, m, n> >
{
public:
typedef Matx<_Tp, m, n> value_type;
typedef Matx<typename DataType<_Tp>::work_type, m, n> work_type;
typedef _Tp channel_type;
typedef value_type vec_type;
enum { generic_type = 0, depth = DataDepth<channel_type>::value, channels = m*n,
fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
type = CV_MAKETYPE(depth, channels) };
};
template<typename _Tp, int cn> class DataType<Vec<_Tp, cn> >
{
public:
typedef Vec<_Tp, cn> value_type;
typedef Vec<typename DataType<_Tp>::work_type, cn> work_type;
typedef _Tp channel_type;
typedef value_type vec_type;
enum { generic_type = 0, depth = DataDepth<channel_type>::value, channels = cn,
fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
type = CV_MAKETYPE(depth, channels) };
};
//////////////////// generic_type ref-counting pointer class for C/C++ objects ////////////////////////
/*!

View File

@ -0,0 +1,187 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CORE_BASE_HPP__
#define __OPENCV_CORE_BASE_HPP__
#include "opencv2/core/cvdef.h"
namespace cv
{
// matrix decomposition types
enum { DECOMP_LU = 0,
DECOMP_SVD = 1,
DECOMP_EIG = 2,
DECOMP_CHOLESKY = 3,
DECOMP_QR = 4,
DECOMP_NORMAL = 16
};
// norm types
enum { NORM_INF = 1,
NORM_L1 = 2,
NORM_L2 = 4,
NORM_L2SQR = 5,
NORM_HAMMING = 6,
NORM_HAMMING2 = 7,
NORM_TYPE_MASK = 7,
NORM_RELATIVE = 8,
NORM_MINMAX = 32
};
// comparison types
enum { CMP_EQ = 0,
CMP_GT = 1,
CMP_GE = 2,
CMP_LT = 3,
CMP_LE = 4,
CMP_NE = 5
};
enum { GEMM_1_T = 1,
GEMM_2_T = 2,
GEMM_3_T = 4
};
enum { DFT_INVERSE = 1,
DFT_SCALE = 2,
DFT_ROWS = 4,
DFT_COMPLEX_OUTPUT = 16,
DFT_REAL_OUTPUT = 32,
DCT_INVERSE = DFT_INVERSE,
DCT_ROWS = DFT_ROWS
};
/////////////// saturate_cast (used in image & signal processing) ///////////////////
template<typename _Tp> static inline _Tp saturate_cast(uchar v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(schar v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(ushort v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(short v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(unsigned v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(int v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(float v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(double v) { return _Tp(v); }
template<> inline uchar saturate_cast<uchar>(schar v) { return (uchar)std::max((int)v, 0); }
template<> inline uchar saturate_cast<uchar>(ushort v) { return (uchar)std::min((unsigned)v, (unsigned)UCHAR_MAX); }
template<> inline uchar saturate_cast<uchar>(int v) { return (uchar)((unsigned)v <= UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); }
template<> inline uchar saturate_cast<uchar>(short v) { return saturate_cast<uchar>((int)v); }
template<> inline uchar saturate_cast<uchar>(unsigned v) { return (uchar)std::min(v, (unsigned)UCHAR_MAX); }
template<> inline uchar saturate_cast<uchar>(float v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
template<> inline uchar saturate_cast<uchar>(double v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
template<> inline schar saturate_cast<schar>(uchar v) { return (schar)std::min((int)v, SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(ushort v) { return (schar)std::min((unsigned)v, (unsigned)SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(int v) { return (schar)((unsigned)(v-SCHAR_MIN) <= (unsigned)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); }
template<> inline schar saturate_cast<schar>(short v) { return saturate_cast<schar>((int)v); }
template<> inline schar saturate_cast<schar>(unsigned v) { return (schar)std::min(v, (unsigned)SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(float v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
template<> inline schar saturate_cast<schar>(double v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
template<> inline ushort saturate_cast<ushort>(schar v) { return (ushort)std::max((int)v, 0); }
template<> inline ushort saturate_cast<ushort>(short v) { return (ushort)std::max((int)v, 0); }
template<> inline ushort saturate_cast<ushort>(int v) { return (ushort)((unsigned)v <= (unsigned)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); }
template<> inline ushort saturate_cast<ushort>(unsigned v) { return (ushort)std::min(v, (unsigned)USHRT_MAX); }
template<> inline ushort saturate_cast<ushort>(float v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
template<> inline ushort saturate_cast<ushort>(double v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
template<> inline short saturate_cast<short>(ushort v) { return (short)std::min((int)v, SHRT_MAX); }
template<> inline short saturate_cast<short>(int v) { return (short)((unsigned)(v - SHRT_MIN) <= (unsigned)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); }
template<> inline short saturate_cast<short>(unsigned v) { return (short)std::min(v, (unsigned)SHRT_MAX); }
template<> inline short saturate_cast<short>(float v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
template<> inline short saturate_cast<short>(double v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
template<> inline int saturate_cast<int>(float v) { return cvRound(v); }
template<> inline int saturate_cast<int>(double v) { return cvRound(v); }
// we intentionally do not clip negative numbers, to make -1 become 0xffffffff etc.
template<> inline unsigned saturate_cast<unsigned>(float v) { return cvRound(v); }
template<> inline unsigned saturate_cast<unsigned>(double v) { return cvRound(v); }
////////////////// forward declarations for important OpenCV types //////////////////
template<typename _Tp, int cn> class CV_EXPORTS Vec;
template<typename _Tp, int m, int n> class CV_EXPORTS Matx;
template<typename _Tp> class CV_EXPORTS Complex;
template<typename _Tp> class CV_EXPORTS Point_;
template<typename _Tp> class CV_EXPORTS Point3_;
template<typename _Tp> class CV_EXPORTS Size_;
template<typename _Tp> class CV_EXPORTS Rect_;
template<typename _Tp> class CV_EXPORTS Scalar_;
class CV_EXPORTS RotatedRect;
class CV_EXPORTS Range;
class CV_EXPORTS TermCriteria;
class CV_EXPORTS KeyPoint;
class CV_EXPORTS DMatch;
class CV_EXPORTS Mat;
class CV_EXPORTS SparseMat;
typedef Mat MatND;
template<typename _Tp> class CV_EXPORTS Mat_;
template<typename _Tp> class CV_EXPORTS MatIterator_;
template<typename _Tp> class CV_EXPORTS MatConstIterator_;
namespace ogl
{
class CV_EXPORTS Buffer;
class CV_EXPORTS Texture2D;
class CV_EXPORTS Arrays;
}
namespace gpu
{
class CV_EXPORTS GpuMat;
}
} // cv
#endif //__OPENCV_CORE_BASE_HPP__

View File

@ -0,0 +1,362 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CORE_MATX_HPP__
#define __OPENCV_CORE_MATX_HPP__
#include "opencv2/core/cvdef.h"
#include "opencv2/core/base.hpp"
#include "opencv2/core/traits.hpp"
namespace cv
{
////////////////////////////// Small Matrix ///////////////////////////
/*!
A short numerical vector.
This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements)
on which you can perform basic arithmetical operations, access individual elements using [] operator etc.
The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc.,
which elements are dynamically allocated in the heap.
The template takes 2 parameters:
-# _Tp element type
-# cn the number of elements
In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.
*/
struct CV_EXPORTS Matx_AddOp {};
struct CV_EXPORTS Matx_SubOp {};
struct CV_EXPORTS Matx_ScaleOp {};
struct CV_EXPORTS Matx_MulOp {};
struct CV_EXPORTS Matx_MatMulOp {};
struct CV_EXPORTS Matx_TOp {};
template<typename _Tp, int m, int n> class CV_EXPORTS Matx
{
public:
typedef _Tp value_type;
typedef Matx<_Tp, (m < n ? m : n), 1> diag_type;
typedef Matx<_Tp, m, n> mat_type;
enum { depth = DataType<_Tp>::depth,
rows = m,
cols = n,
channels = rows*cols,
type = CV_MAKETYPE(depth, channels)
};
//! default constructor
Matx();
Matx(_Tp v0); //!< 1x1 matrix
Matx(_Tp v0, _Tp v1); //!< 1x2 or 2x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2); //!< 1x3 or 3x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 1x4, 2x2 or 4x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 1x5 or 5x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 1x6, 2x3, 3x2 or 6x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 1x7 or 7x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 1x8, 2x4, 4x2 or 8x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 1x9, 3x3 or 9x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 1x10, 2x5 or 5x2 or 10x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
_Tp v4, _Tp v5, _Tp v6, _Tp v7,
_Tp v8, _Tp v9, _Tp v10, _Tp v11); //!< 1x12, 2x6, 3x4, 4x3, 6x2 or 12x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
_Tp v4, _Tp v5, _Tp v6, _Tp v7,
_Tp v8, _Tp v9, _Tp v10, _Tp v11,
_Tp v12, _Tp v13, _Tp v14, _Tp v15); //!< 1x16, 4x4 or 16x1 matrix
explicit Matx(const _Tp* vals); //!< initialize from a plain array
static Matx all(_Tp alpha);
static Matx zeros();
static Matx ones();
static Matx eye();
static Matx diag(const diag_type& d);
static Matx randu(_Tp a, _Tp b);
static Matx randn(_Tp a, _Tp b);
//! dot product computed with the default precision
_Tp dot(const Matx<_Tp, m, n>& v) const;
//! dot product computed in double-precision arithmetics
double ddot(const Matx<_Tp, m, n>& v) const;
//! convertion to another data type
template<typename T2> operator Matx<T2, m, n>() const;
//! change the matrix shape
template<int m1, int n1> Matx<_Tp, m1, n1> reshape() const;
//! extract part of the matrix
template<int m1, int n1> Matx<_Tp, m1, n1> get_minor(int i, int j) const;
//! extract the matrix row
Matx<_Tp, 1, n> row(int i) const;
//! extract the matrix column
Matx<_Tp, m, 1> col(int i) const;
//! extract the matrix diagonal
diag_type diag() const;
//! transpose the matrix
Matx<_Tp, n, m> t() const;
//! invert matrix the matrix
Matx<_Tp, n, m> inv(int method=DECOMP_LU) const;
//! solve linear system
template<int l> Matx<_Tp, n, l> solve(const Matx<_Tp, m, l>& rhs, int flags=DECOMP_LU) const;
Vec<_Tp, n> solve(const Vec<_Tp, m>& rhs, int method) const;
//! multiply two matrices element-wise
Matx<_Tp, m, n> mul(const Matx<_Tp, m, n>& a) const;
//! element access
const _Tp& operator ()(int i, int j) const;
_Tp& operator ()(int i, int j);
//! 1D element access
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp);
template<typename _T2> Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp);
template<int l> Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp);
Matx(const Matx<_Tp, n, m>& a, Matx_TOp);
_Tp val[m*n]; //< matrix elements
};
/*!
\typedef
*/
typedef Matx<float, 1, 2> Matx12f;
typedef Matx<double, 1, 2> Matx12d;
typedef Matx<float, 1, 3> Matx13f;
typedef Matx<double, 1, 3> Matx13d;
typedef Matx<float, 1, 4> Matx14f;
typedef Matx<double, 1, 4> Matx14d;
typedef Matx<float, 1, 6> Matx16f;
typedef Matx<double, 1, 6> Matx16d;
typedef Matx<float, 2, 1> Matx21f;
typedef Matx<double, 2, 1> Matx21d;
typedef Matx<float, 3, 1> Matx31f;
typedef Matx<double, 3, 1> Matx31d;
typedef Matx<float, 4, 1> Matx41f;
typedef Matx<double, 4, 1> Matx41d;
typedef Matx<float, 6, 1> Matx61f;
typedef Matx<double, 6, 1> Matx61d;
typedef Matx<float, 2, 2> Matx22f;
typedef Matx<double, 2, 2> Matx22d;
typedef Matx<float, 2, 3> Matx23f;
typedef Matx<double, 2, 3> Matx23d;
typedef Matx<float, 3, 2> Matx32f;
typedef Matx<double, 3, 2> Matx32d;
typedef Matx<float, 3, 3> Matx33f;
typedef Matx<double, 3, 3> Matx33d;
typedef Matx<float, 3, 4> Matx34f;
typedef Matx<double, 3, 4> Matx34d;
typedef Matx<float, 4, 3> Matx43f;
typedef Matx<double, 4, 3> Matx43d;
typedef Matx<float, 4, 4> Matx44f;
typedef Matx<double, 4, 4> Matx44d;
typedef Matx<float, 6, 6> Matx66f;
typedef Matx<double, 6, 6> Matx66d;
/*!
traits
*/
template<typename _Tp, int m, int n> class DataType< Matx<_Tp, m, n> >
{
public:
typedef Matx<_Tp, m, n> value_type;
typedef Matx<typename DataType<_Tp>::work_type, m, n> work_type;
typedef _Tp channel_type;
typedef value_type vec_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = m * n,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
};
};
/////////////////////// Vec (used as element of multi-channel images /////////////////////
/*!
A short numerical vector.
This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements)
on which you can perform basic arithmetical operations, access individual elements using [] operator etc.
The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc.,
which elements are dynamically allocated in the heap.
The template takes 2 parameters:
-# _Tp element type
-# cn the number of elements
In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.
*/
template<typename _Tp, int cn> class CV_EXPORTS Vec : public Matx<_Tp, cn, 1>
{
public:
typedef _Tp value_type;
enum { depth = Matx<_Tp, cn, 1>::depth,
channels = cn,
type = CV_MAKETYPE(depth, channels)
};
//! default constructor
Vec();
Vec(_Tp v0); //!< 1-element vector constructor
Vec(_Tp v0, _Tp v1); //!< 2-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2); //!< 3-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 4-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 5-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 6-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 7-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 8-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 9-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 10-element vector constructor
explicit Vec(const _Tp* values);
Vec(const Vec<_Tp, cn>& v);
static Vec all(_Tp alpha);
//! per-element multiplication
Vec mul(const Vec<_Tp, cn>& v) const;
//! conjugation (makes sense for complex numbers and quaternions)
Vec conj() const;
/*!
cross product of the two 3D vectors.
For other dimensionalities the exception is raised
*/
Vec cross(const Vec& v) const;
//! convertion to another data type
template<typename T2> operator Vec<T2, cn>() const;
/*! element access */
const _Tp& operator [](int i) const;
_Tp& operator[](int i);
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp);
template<typename _T2> Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp);
};
/* \typedef
Shorter aliases for the most popular specializations of Vec<T,n>
*/
typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;
typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;
typedef Vec<ushort, 2> Vec2w;
typedef Vec<ushort, 3> Vec3w;
typedef Vec<ushort, 4> Vec4w;
typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<int, 6> Vec6i;
typedef Vec<int, 8> Vec8i;
typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;
typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;
/*!
traits
*/
template<typename _Tp, int cn> class DataType< Vec<_Tp, cn> >
{
public:
typedef Vec<_Tp, cn> value_type;
typedef Vec<typename DataType<_Tp>::work_type, cn> work_type;
typedef _Tp channel_type;
typedef value_type vec_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = cn,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
};
};
} // cv
#endif // __OPENCV_CORE_MATX_HPP__

View File

@ -45,7 +45,6 @@
#define __OPENCV_CORE_TRAITS_HPP__
#include "opencv2/core/cvdef.h"
#include "opencv2/core/cvstd.hpp"
namespace cv
{

View File

@ -53,67 +53,10 @@
#include "opencv2/core/cvdef.h"
#include "opencv2/core/cvstd.hpp"
#include "opencv2/core/traits.hpp"
#include "opencv2/core/matx.hpp"
namespace cv
{
template<typename _Tp> class CV_EXPORTS Size_;
template<typename _Tp> class CV_EXPORTS Point_;
template<typename _Tp> class CV_EXPORTS Rect_;
template<typename _Tp, int cn> class CV_EXPORTS Vec;
//template<typename _Tp, int m, int n> class CV_EXPORTS Matx;
/////////////// saturate_cast (used in image & signal processing) ///////////////////
template<typename _Tp> static inline _Tp saturate_cast(uchar v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(schar v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(ushort v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(short v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(unsigned v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(int v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(float v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(double v) { return _Tp(v); }
template<> inline uchar saturate_cast<uchar>(schar v) { return (uchar)std::max((int)v, 0); }
template<> inline uchar saturate_cast<uchar>(ushort v) { return (uchar)std::min((unsigned)v, (unsigned)UCHAR_MAX); }
template<> inline uchar saturate_cast<uchar>(int v) { return (uchar)((unsigned)v <= UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); }
template<> inline uchar saturate_cast<uchar>(short v) { return saturate_cast<uchar>((int)v); }
template<> inline uchar saturate_cast<uchar>(unsigned v) { return (uchar)std::min(v, (unsigned)UCHAR_MAX); }
template<> inline uchar saturate_cast<uchar>(float v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
template<> inline uchar saturate_cast<uchar>(double v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
template<> inline schar saturate_cast<schar>(uchar v) { return (schar)std::min((int)v, SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(ushort v) { return (schar)std::min((unsigned)v, (unsigned)SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(int v) { return (schar)((unsigned)(v-SCHAR_MIN) <= (unsigned)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); }
template<> inline schar saturate_cast<schar>(short v) { return saturate_cast<schar>((int)v); }
template<> inline schar saturate_cast<schar>(unsigned v) { return (schar)std::min(v, (unsigned)SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(float v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
template<> inline schar saturate_cast<schar>(double v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
template<> inline ushort saturate_cast<ushort>(schar v) { return (ushort)std::max((int)v, 0); }
template<> inline ushort saturate_cast<ushort>(short v) { return (ushort)std::max((int)v, 0); }
template<> inline ushort saturate_cast<ushort>(int v) { return (ushort)((unsigned)v <= (unsigned)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); }
template<> inline ushort saturate_cast<ushort>(unsigned v) { return (ushort)std::min(v, (unsigned)USHRT_MAX); }
template<> inline ushort saturate_cast<ushort>(float v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
template<> inline ushort saturate_cast<ushort>(double v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
template<> inline short saturate_cast<short>(ushort v) { return (short)std::min((int)v, SHRT_MAX); }
template<> inline short saturate_cast<short>(int v) { return (short)((unsigned)(v - SHRT_MIN) <= (unsigned)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); }
template<> inline short saturate_cast<short>(unsigned v) { return (short)std::min(v, (unsigned)SHRT_MAX); }
template<> inline short saturate_cast<short>(float v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
template<> inline short saturate_cast<short>(double v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
template<> inline int saturate_cast<int>(float v) { return cvRound(v); }
template<> inline int saturate_cast<int>(double v) { return cvRound(v); }
// we intentionally do not clip negative numbers, to make -1 become 0xffffffff etc.
template<> inline unsigned saturate_cast<unsigned>(float v) { return cvRound(v); }
template<> inline unsigned saturate_cast<unsigned>(double v) { return cvRound(v); }
//////////////////////////////// Complex //////////////////////////////
@ -667,8 +610,9 @@ inline KeyPoint::KeyPoint(float x, float y, float _size, float _angle, float _re
/*
* Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors.
*/
struct CV_EXPORTS_W_SIMPLE DMatch
class CV_EXPORTS_W_SIMPLE DMatch
{
public:
CV_WRAP DMatch();
CV_WRAP DMatch(int _queryIdx, int _trainIdx, float _distance);
CV_WRAP DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance);

View File

@ -1,3 +1,4 @@
include/opencv2/core/base.hpp
include/opencv2/core.hpp
include/opencv2/core/utility.hpp
../java/generator/src/cpp/core_manual.hpp