Move cv::Matx and cv::Vec to separate header

This commit is contained in:
Andrey Kamaev 2013-03-27 15:54:04 +04:00
parent 5e7ab8baf3
commit d2192c0759
6 changed files with 556 additions and 381 deletions

View File

@ -53,6 +53,9 @@
#ifdef __cplusplus #ifdef __cplusplus
#include "opencv2/core/cvstd.hpp" #include "opencv2/core/cvstd.hpp"
#include "opencv2/core/base.hpp"
#include "opencv2/core/traits.hpp"
#include "opencv2/core/matx.hpp"
#include "opencv2/core/types.hpp" #include "opencv2/core/types.hpp"
#ifndef SKIP_INCLUDES #ifndef SKIP_INCLUDES
@ -72,45 +75,13 @@
*/ */
namespace cv { namespace cv {
template<typename _Tp> class CV_EXPORTS Size_;
template<typename _Tp> class CV_EXPORTS Point_;
template<typename _Tp> class CV_EXPORTS Rect_;
template<typename _Tp, int cn> class CV_EXPORTS Vec;
template<typename _Tp, int m, int n> class CV_EXPORTS Matx;
class Mat;
class SparseMat;
typedef Mat MatND;
namespace ogl {
class Buffer;
class Texture2D;
class Arrays;
}
namespace gpu {
class GpuMat;
}
class CV_EXPORTS MatExpr; class CV_EXPORTS MatExpr;
class CV_EXPORTS MatOp_Base; class CV_EXPORTS MatOp_Base;
class CV_EXPORTS MatArg; class CV_EXPORTS MatArg;
class CV_EXPORTS MatConstIterator; class CV_EXPORTS MatConstIterator;
template<typename _Tp> class CV_EXPORTS Mat_;
template<typename _Tp> class CV_EXPORTS MatIterator_;
template<typename _Tp> class CV_EXPORTS MatConstIterator_;
template<typename _Tp> class CV_EXPORTS MatCommaInitializer_; template<typename _Tp> class CV_EXPORTS MatCommaInitializer_;
// matrix decomposition types
enum { DECOMP_LU=0, DECOMP_SVD=1, DECOMP_EIG=2, DECOMP_CHOLESKY=3, DECOMP_QR=4, DECOMP_NORMAL=16 };
enum { NORM_INF=1, NORM_L1=2, NORM_L2=4, NORM_L2SQR=5, NORM_HAMMING=6, NORM_HAMMING2=7, NORM_TYPE_MASK=7, NORM_RELATIVE=8, NORM_MINMAX=32 };
enum { CMP_EQ=0, CMP_GT=1, CMP_GE=2, CMP_LT=3, CMP_LE=4, CMP_NE=5 };
enum { GEMM_1_T=1, GEMM_2_T=2, GEMM_3_T=4 };
enum { DFT_INVERSE=1, DFT_SCALE=2, DFT_ROWS=4, DFT_COMPLEX_OUTPUT=16, DFT_REAL_OUTPUT=32,
DCT_INVERSE = DFT_INVERSE, DCT_ROWS=DFT_ROWS };
/*! /*!
The standard OpenCV exception class. The standard OpenCV exception class.
Instances of the class are thrown by various functions and methods in the case of critical errors. Instances of the class are thrown by various functions and methods in the case of critical errors.
@ -239,298 +210,9 @@ public:
void destroy(pointer p) { p->~_Tp(); } void destroy(pointer p) { p->~_Tp(); }
}; };
/////////////////////// Vec (used as element of multi-channel images /////////////////////
////////////////////////////// Small Matrix ///////////////////////////
/*!
A short numerical vector.
This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements)
on which you can perform basic arithmetical operations, access individual elements using [] operator etc.
The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc.,
which elements are dynamically allocated in the heap.
The template takes 2 parameters:
-# _Tp element type
-# cn the number of elements
In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.
*/
struct CV_EXPORTS Matx_AddOp {};
struct CV_EXPORTS Matx_SubOp {};
struct CV_EXPORTS Matx_ScaleOp {};
struct CV_EXPORTS Matx_MulOp {};
struct CV_EXPORTS Matx_MatMulOp {};
struct CV_EXPORTS Matx_TOp {};
template<typename _Tp, int m, int n> class CV_EXPORTS Matx
{
public:
typedef _Tp value_type;
typedef Matx<_Tp, (m < n ? m : n), 1> diag_type;
typedef Matx<_Tp, m, n> mat_type;
enum { depth = DataDepth<_Tp>::value, rows = m, cols = n, channels = rows*cols,
type = CV_MAKETYPE(depth, channels) };
//! default constructor
Matx();
Matx(_Tp v0); //!< 1x1 matrix
Matx(_Tp v0, _Tp v1); //!< 1x2 or 2x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2); //!< 1x3 or 3x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 1x4, 2x2 or 4x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 1x5 or 5x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 1x6, 2x3, 3x2 or 6x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 1x7 or 7x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 1x8, 2x4, 4x2 or 8x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 1x9, 3x3 or 9x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 1x10, 2x5 or 5x2 or 10x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
_Tp v4, _Tp v5, _Tp v6, _Tp v7,
_Tp v8, _Tp v9, _Tp v10, _Tp v11); //!< 1x12, 2x6, 3x4, 4x3, 6x2 or 12x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
_Tp v4, _Tp v5, _Tp v6, _Tp v7,
_Tp v8, _Tp v9, _Tp v10, _Tp v11,
_Tp v12, _Tp v13, _Tp v14, _Tp v15); //!< 1x16, 4x4 or 16x1 matrix
explicit Matx(const _Tp* vals); //!< initialize from a plain array
static Matx all(_Tp alpha);
static Matx zeros();
static Matx ones();
static Matx eye();
static Matx diag(const diag_type& d);
static Matx randu(_Tp a, _Tp b);
static Matx randn(_Tp a, _Tp b);
//! dot product computed with the default precision
_Tp dot(const Matx<_Tp, m, n>& v) const;
//! dot product computed in double-precision arithmetics
double ddot(const Matx<_Tp, m, n>& v) const;
//! convertion to another data type
template<typename T2> operator Matx<T2, m, n>() const;
//! change the matrix shape
template<int m1, int n1> Matx<_Tp, m1, n1> reshape() const;
//! extract part of the matrix
template<int m1, int n1> Matx<_Tp, m1, n1> get_minor(int i, int j) const;
//! extract the matrix row
Matx<_Tp, 1, n> row(int i) const;
//! extract the matrix column
Matx<_Tp, m, 1> col(int i) const;
//! extract the matrix diagonal
diag_type diag() const;
//! transpose the matrix
Matx<_Tp, n, m> t() const;
//! invert matrix the matrix
Matx<_Tp, n, m> inv(int method=DECOMP_LU) const;
//! solve linear system
template<int l> Matx<_Tp, n, l> solve(const Matx<_Tp, m, l>& rhs, int flags=DECOMP_LU) const;
Vec<_Tp, n> solve(const Vec<_Tp, m>& rhs, int method) const;
//! multiply two matrices element-wise
Matx<_Tp, m, n> mul(const Matx<_Tp, m, n>& a) const;
//! element access
const _Tp& operator ()(int i, int j) const;
_Tp& operator ()(int i, int j);
//! 1D element access
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp);
template<typename _T2> Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp);
template<int l> Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp);
Matx(const Matx<_Tp, n, m>& a, Matx_TOp);
_Tp val[m*n]; //< matrix elements
};
typedef Matx<float, 1, 2> Matx12f;
typedef Matx<double, 1, 2> Matx12d;
typedef Matx<float, 1, 3> Matx13f;
typedef Matx<double, 1, 3> Matx13d;
typedef Matx<float, 1, 4> Matx14f;
typedef Matx<double, 1, 4> Matx14d;
typedef Matx<float, 1, 6> Matx16f;
typedef Matx<double, 1, 6> Matx16d;
typedef Matx<float, 2, 1> Matx21f;
typedef Matx<double, 2, 1> Matx21d;
typedef Matx<float, 3, 1> Matx31f;
typedef Matx<double, 3, 1> Matx31d;
typedef Matx<float, 4, 1> Matx41f;
typedef Matx<double, 4, 1> Matx41d;
typedef Matx<float, 6, 1> Matx61f;
typedef Matx<double, 6, 1> Matx61d;
typedef Matx<float, 2, 2> Matx22f;
typedef Matx<double, 2, 2> Matx22d;
typedef Matx<float, 2, 3> Matx23f;
typedef Matx<double, 2, 3> Matx23d;
typedef Matx<float, 3, 2> Matx32f;
typedef Matx<double, 3, 2> Matx32d;
typedef Matx<float, 3, 3> Matx33f;
typedef Matx<double, 3, 3> Matx33d;
typedef Matx<float, 3, 4> Matx34f;
typedef Matx<double, 3, 4> Matx34d;
typedef Matx<float, 4, 3> Matx43f;
typedef Matx<double, 4, 3> Matx43d;
typedef Matx<float, 4, 4> Matx44f;
typedef Matx<double, 4, 4> Matx44d;
typedef Matx<float, 6, 6> Matx66f;
typedef Matx<double, 6, 6> Matx66d;
/*!
A short numerical vector.
This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements)
on which you can perform basic arithmetical operations, access individual elements using [] operator etc.
The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc.,
which elements are dynamically allocated in the heap.
The template takes 2 parameters:
-# _Tp element type
-# cn the number of elements
In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.
*/
template<typename _Tp, int cn> class CV_EXPORTS Vec : public Matx<_Tp, cn, 1>
{
public:
typedef _Tp value_type;
enum { depth = DataDepth<_Tp>::value, channels = cn, type = CV_MAKETYPE(depth, channels) };
//! default constructor
Vec();
Vec(_Tp v0); //!< 1-element vector constructor
Vec(_Tp v0, _Tp v1); //!< 2-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2); //!< 3-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 4-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 5-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 6-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 7-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 8-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 9-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 10-element vector constructor
explicit Vec(const _Tp* values);
Vec(const Vec<_Tp, cn>& v);
static Vec all(_Tp alpha);
//! per-element multiplication
Vec mul(const Vec<_Tp, cn>& v) const;
//! conjugation (makes sense for complex numbers and quaternions)
Vec conj() const;
/*!
cross product of the two 3D vectors.
For other dimensionalities the exception is raised
*/
Vec cross(const Vec& v) const;
//! convertion to another data type
template<typename T2> operator Vec<T2, cn>() const;
/*! element access */
const _Tp& operator [](int i) const;
_Tp& operator[](int i);
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp);
template<typename _T2> Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp);
};
/* \typedef
Shorter aliases for the most popular specializations of Vec<T,n>
*/
typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;
typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;
typedef Vec<ushort, 2> Vec2w;
typedef Vec<ushort, 3> Vec3w;
typedef Vec<ushort, 4> Vec4w;
typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<int, 6> Vec6i;
typedef Vec<int, 8> Vec8i;
typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;
typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;
CV_EXPORTS void scalarToRawData(const Scalar& s, void* buf, int type, int unroll_to=0); CV_EXPORTS void scalarToRawData(const Scalar& s, void* buf, int type, int unroll_to=0);
/////////////////////////////// DataType ////////////////////////////////
template<typename _Tp, int m, int n> class DataType<Matx<_Tp, m, n> >
{
public:
typedef Matx<_Tp, m, n> value_type;
typedef Matx<typename DataType<_Tp>::work_type, m, n> work_type;
typedef _Tp channel_type;
typedef value_type vec_type;
enum { generic_type = 0, depth = DataDepth<channel_type>::value, channels = m*n,
fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
type = CV_MAKETYPE(depth, channels) };
};
template<typename _Tp, int cn> class DataType<Vec<_Tp, cn> >
{
public:
typedef Vec<_Tp, cn> value_type;
typedef Vec<typename DataType<_Tp>::work_type, cn> work_type;
typedef _Tp channel_type;
typedef value_type vec_type;
enum { generic_type = 0, depth = DataDepth<channel_type>::value, channels = cn,
fmt = ((channels-1)<<8) + DataDepth<channel_type>::fmt,
type = CV_MAKETYPE(depth, channels) };
};
//////////////////// generic_type ref-counting pointer class for C/C++ objects //////////////////////// //////////////////// generic_type ref-counting pointer class for C/C++ objects ////////////////////////
/*! /*!

View File

@ -0,0 +1,187 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CORE_BASE_HPP__
#define __OPENCV_CORE_BASE_HPP__
#include "opencv2/core/cvdef.h"
namespace cv
{
// matrix decomposition types
enum { DECOMP_LU = 0,
DECOMP_SVD = 1,
DECOMP_EIG = 2,
DECOMP_CHOLESKY = 3,
DECOMP_QR = 4,
DECOMP_NORMAL = 16
};
// norm types
enum { NORM_INF = 1,
NORM_L1 = 2,
NORM_L2 = 4,
NORM_L2SQR = 5,
NORM_HAMMING = 6,
NORM_HAMMING2 = 7,
NORM_TYPE_MASK = 7,
NORM_RELATIVE = 8,
NORM_MINMAX = 32
};
// comparison types
enum { CMP_EQ = 0,
CMP_GT = 1,
CMP_GE = 2,
CMP_LT = 3,
CMP_LE = 4,
CMP_NE = 5
};
enum { GEMM_1_T = 1,
GEMM_2_T = 2,
GEMM_3_T = 4
};
enum { DFT_INVERSE = 1,
DFT_SCALE = 2,
DFT_ROWS = 4,
DFT_COMPLEX_OUTPUT = 16,
DFT_REAL_OUTPUT = 32,
DCT_INVERSE = DFT_INVERSE,
DCT_ROWS = DFT_ROWS
};
/////////////// saturate_cast (used in image & signal processing) ///////////////////
template<typename _Tp> static inline _Tp saturate_cast(uchar v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(schar v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(ushort v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(short v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(unsigned v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(int v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(float v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(double v) { return _Tp(v); }
template<> inline uchar saturate_cast<uchar>(schar v) { return (uchar)std::max((int)v, 0); }
template<> inline uchar saturate_cast<uchar>(ushort v) { return (uchar)std::min((unsigned)v, (unsigned)UCHAR_MAX); }
template<> inline uchar saturate_cast<uchar>(int v) { return (uchar)((unsigned)v <= UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); }
template<> inline uchar saturate_cast<uchar>(short v) { return saturate_cast<uchar>((int)v); }
template<> inline uchar saturate_cast<uchar>(unsigned v) { return (uchar)std::min(v, (unsigned)UCHAR_MAX); }
template<> inline uchar saturate_cast<uchar>(float v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
template<> inline uchar saturate_cast<uchar>(double v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
template<> inline schar saturate_cast<schar>(uchar v) { return (schar)std::min((int)v, SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(ushort v) { return (schar)std::min((unsigned)v, (unsigned)SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(int v) { return (schar)((unsigned)(v-SCHAR_MIN) <= (unsigned)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); }
template<> inline schar saturate_cast<schar>(short v) { return saturate_cast<schar>((int)v); }
template<> inline schar saturate_cast<schar>(unsigned v) { return (schar)std::min(v, (unsigned)SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(float v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
template<> inline schar saturate_cast<schar>(double v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
template<> inline ushort saturate_cast<ushort>(schar v) { return (ushort)std::max((int)v, 0); }
template<> inline ushort saturate_cast<ushort>(short v) { return (ushort)std::max((int)v, 0); }
template<> inline ushort saturate_cast<ushort>(int v) { return (ushort)((unsigned)v <= (unsigned)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); }
template<> inline ushort saturate_cast<ushort>(unsigned v) { return (ushort)std::min(v, (unsigned)USHRT_MAX); }
template<> inline ushort saturate_cast<ushort>(float v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
template<> inline ushort saturate_cast<ushort>(double v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
template<> inline short saturate_cast<short>(ushort v) { return (short)std::min((int)v, SHRT_MAX); }
template<> inline short saturate_cast<short>(int v) { return (short)((unsigned)(v - SHRT_MIN) <= (unsigned)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); }
template<> inline short saturate_cast<short>(unsigned v) { return (short)std::min(v, (unsigned)SHRT_MAX); }
template<> inline short saturate_cast<short>(float v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
template<> inline short saturate_cast<short>(double v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
template<> inline int saturate_cast<int>(float v) { return cvRound(v); }
template<> inline int saturate_cast<int>(double v) { return cvRound(v); }
// we intentionally do not clip negative numbers, to make -1 become 0xffffffff etc.
template<> inline unsigned saturate_cast<unsigned>(float v) { return cvRound(v); }
template<> inline unsigned saturate_cast<unsigned>(double v) { return cvRound(v); }
////////////////// forward declarations for important OpenCV types //////////////////
template<typename _Tp, int cn> class CV_EXPORTS Vec;
template<typename _Tp, int m, int n> class CV_EXPORTS Matx;
template<typename _Tp> class CV_EXPORTS Complex;
template<typename _Tp> class CV_EXPORTS Point_;
template<typename _Tp> class CV_EXPORTS Point3_;
template<typename _Tp> class CV_EXPORTS Size_;
template<typename _Tp> class CV_EXPORTS Rect_;
template<typename _Tp> class CV_EXPORTS Scalar_;
class CV_EXPORTS RotatedRect;
class CV_EXPORTS Range;
class CV_EXPORTS TermCriteria;
class CV_EXPORTS KeyPoint;
class CV_EXPORTS DMatch;
class CV_EXPORTS Mat;
class CV_EXPORTS SparseMat;
typedef Mat MatND;
template<typename _Tp> class CV_EXPORTS Mat_;
template<typename _Tp> class CV_EXPORTS MatIterator_;
template<typename _Tp> class CV_EXPORTS MatConstIterator_;
namespace ogl
{
class CV_EXPORTS Buffer;
class CV_EXPORTS Texture2D;
class CV_EXPORTS Arrays;
}
namespace gpu
{
class CV_EXPORTS GpuMat;
}
} // cv
#endif //__OPENCV_CORE_BASE_HPP__

View File

@ -0,0 +1,362 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef __OPENCV_CORE_MATX_HPP__
#define __OPENCV_CORE_MATX_HPP__
#include "opencv2/core/cvdef.h"
#include "opencv2/core/base.hpp"
#include "opencv2/core/traits.hpp"
namespace cv
{
////////////////////////////// Small Matrix ///////////////////////////
/*!
A short numerical vector.
This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements)
on which you can perform basic arithmetical operations, access individual elements using [] operator etc.
The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc.,
which elements are dynamically allocated in the heap.
The template takes 2 parameters:
-# _Tp element type
-# cn the number of elements
In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.
*/
struct CV_EXPORTS Matx_AddOp {};
struct CV_EXPORTS Matx_SubOp {};
struct CV_EXPORTS Matx_ScaleOp {};
struct CV_EXPORTS Matx_MulOp {};
struct CV_EXPORTS Matx_MatMulOp {};
struct CV_EXPORTS Matx_TOp {};
template<typename _Tp, int m, int n> class CV_EXPORTS Matx
{
public:
typedef _Tp value_type;
typedef Matx<_Tp, (m < n ? m : n), 1> diag_type;
typedef Matx<_Tp, m, n> mat_type;
enum { depth = DataType<_Tp>::depth,
rows = m,
cols = n,
channels = rows*cols,
type = CV_MAKETYPE(depth, channels)
};
//! default constructor
Matx();
Matx(_Tp v0); //!< 1x1 matrix
Matx(_Tp v0, _Tp v1); //!< 1x2 or 2x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2); //!< 1x3 or 3x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 1x4, 2x2 or 4x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 1x5 or 5x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 1x6, 2x3, 3x2 or 6x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 1x7 or 7x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 1x8, 2x4, 4x2 or 8x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 1x9, 3x3 or 9x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 1x10, 2x5 or 5x2 or 10x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
_Tp v4, _Tp v5, _Tp v6, _Tp v7,
_Tp v8, _Tp v9, _Tp v10, _Tp v11); //!< 1x12, 2x6, 3x4, 4x3, 6x2 or 12x1 matrix
Matx(_Tp v0, _Tp v1, _Tp v2, _Tp v3,
_Tp v4, _Tp v5, _Tp v6, _Tp v7,
_Tp v8, _Tp v9, _Tp v10, _Tp v11,
_Tp v12, _Tp v13, _Tp v14, _Tp v15); //!< 1x16, 4x4 or 16x1 matrix
explicit Matx(const _Tp* vals); //!< initialize from a plain array
static Matx all(_Tp alpha);
static Matx zeros();
static Matx ones();
static Matx eye();
static Matx diag(const diag_type& d);
static Matx randu(_Tp a, _Tp b);
static Matx randn(_Tp a, _Tp b);
//! dot product computed with the default precision
_Tp dot(const Matx<_Tp, m, n>& v) const;
//! dot product computed in double-precision arithmetics
double ddot(const Matx<_Tp, m, n>& v) const;
//! convertion to another data type
template<typename T2> operator Matx<T2, m, n>() const;
//! change the matrix shape
template<int m1, int n1> Matx<_Tp, m1, n1> reshape() const;
//! extract part of the matrix
template<int m1, int n1> Matx<_Tp, m1, n1> get_minor(int i, int j) const;
//! extract the matrix row
Matx<_Tp, 1, n> row(int i) const;
//! extract the matrix column
Matx<_Tp, m, 1> col(int i) const;
//! extract the matrix diagonal
diag_type diag() const;
//! transpose the matrix
Matx<_Tp, n, m> t() const;
//! invert matrix the matrix
Matx<_Tp, n, m> inv(int method=DECOMP_LU) const;
//! solve linear system
template<int l> Matx<_Tp, n, l> solve(const Matx<_Tp, m, l>& rhs, int flags=DECOMP_LU) const;
Vec<_Tp, n> solve(const Vec<_Tp, m>& rhs, int method) const;
//! multiply two matrices element-wise
Matx<_Tp, m, n> mul(const Matx<_Tp, m, n>& a) const;
//! element access
const _Tp& operator ()(int i, int j) const;
_Tp& operator ()(int i, int j);
//! 1D element access
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_AddOp);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_SubOp);
template<typename _T2> Matx(const Matx<_Tp, m, n>& a, _T2 alpha, Matx_ScaleOp);
Matx(const Matx<_Tp, m, n>& a, const Matx<_Tp, m, n>& b, Matx_MulOp);
template<int l> Matx(const Matx<_Tp, m, l>& a, const Matx<_Tp, l, n>& b, Matx_MatMulOp);
Matx(const Matx<_Tp, n, m>& a, Matx_TOp);
_Tp val[m*n]; //< matrix elements
};
/*!
\typedef
*/
typedef Matx<float, 1, 2> Matx12f;
typedef Matx<double, 1, 2> Matx12d;
typedef Matx<float, 1, 3> Matx13f;
typedef Matx<double, 1, 3> Matx13d;
typedef Matx<float, 1, 4> Matx14f;
typedef Matx<double, 1, 4> Matx14d;
typedef Matx<float, 1, 6> Matx16f;
typedef Matx<double, 1, 6> Matx16d;
typedef Matx<float, 2, 1> Matx21f;
typedef Matx<double, 2, 1> Matx21d;
typedef Matx<float, 3, 1> Matx31f;
typedef Matx<double, 3, 1> Matx31d;
typedef Matx<float, 4, 1> Matx41f;
typedef Matx<double, 4, 1> Matx41d;
typedef Matx<float, 6, 1> Matx61f;
typedef Matx<double, 6, 1> Matx61d;
typedef Matx<float, 2, 2> Matx22f;
typedef Matx<double, 2, 2> Matx22d;
typedef Matx<float, 2, 3> Matx23f;
typedef Matx<double, 2, 3> Matx23d;
typedef Matx<float, 3, 2> Matx32f;
typedef Matx<double, 3, 2> Matx32d;
typedef Matx<float, 3, 3> Matx33f;
typedef Matx<double, 3, 3> Matx33d;
typedef Matx<float, 3, 4> Matx34f;
typedef Matx<double, 3, 4> Matx34d;
typedef Matx<float, 4, 3> Matx43f;
typedef Matx<double, 4, 3> Matx43d;
typedef Matx<float, 4, 4> Matx44f;
typedef Matx<double, 4, 4> Matx44d;
typedef Matx<float, 6, 6> Matx66f;
typedef Matx<double, 6, 6> Matx66d;
/*!
traits
*/
template<typename _Tp, int m, int n> class DataType< Matx<_Tp, m, n> >
{
public:
typedef Matx<_Tp, m, n> value_type;
typedef Matx<typename DataType<_Tp>::work_type, m, n> work_type;
typedef _Tp channel_type;
typedef value_type vec_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = m * n,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
};
};
/////////////////////// Vec (used as element of multi-channel images /////////////////////
/*!
A short numerical vector.
This template class represents short numerical vectors (of 1, 2, 3, 4 ... elements)
on which you can perform basic arithmetical operations, access individual elements using [] operator etc.
The vectors are allocated on stack, as opposite to std::valarray, std::vector, cv::Mat etc.,
which elements are dynamically allocated in the heap.
The template takes 2 parameters:
-# _Tp element type
-# cn the number of elements
In addition to the universal notation like Vec<float, 3>, you can use shorter aliases
for the most popular specialized variants of Vec, e.g. Vec3f ~ Vec<float, 3>.
*/
template<typename _Tp, int cn> class CV_EXPORTS Vec : public Matx<_Tp, cn, 1>
{
public:
typedef _Tp value_type;
enum { depth = Matx<_Tp, cn, 1>::depth,
channels = cn,
type = CV_MAKETYPE(depth, channels)
};
//! default constructor
Vec();
Vec(_Tp v0); //!< 1-element vector constructor
Vec(_Tp v0, _Tp v1); //!< 2-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2); //!< 3-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3); //!< 4-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4); //!< 5-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5); //!< 6-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6); //!< 7-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7); //!< 8-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8); //!< 9-element vector constructor
Vec(_Tp v0, _Tp v1, _Tp v2, _Tp v3, _Tp v4, _Tp v5, _Tp v6, _Tp v7, _Tp v8, _Tp v9); //!< 10-element vector constructor
explicit Vec(const _Tp* values);
Vec(const Vec<_Tp, cn>& v);
static Vec all(_Tp alpha);
//! per-element multiplication
Vec mul(const Vec<_Tp, cn>& v) const;
//! conjugation (makes sense for complex numbers and quaternions)
Vec conj() const;
/*!
cross product of the two 3D vectors.
For other dimensionalities the exception is raised
*/
Vec cross(const Vec& v) const;
//! convertion to another data type
template<typename T2> operator Vec<T2, cn>() const;
/*! element access */
const _Tp& operator [](int i) const;
_Tp& operator[](int i);
const _Tp& operator ()(int i) const;
_Tp& operator ()(int i);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_AddOp);
Vec(const Matx<_Tp, cn, 1>& a, const Matx<_Tp, cn, 1>& b, Matx_SubOp);
template<typename _T2> Vec(const Matx<_Tp, cn, 1>& a, _T2 alpha, Matx_ScaleOp);
};
/* \typedef
Shorter aliases for the most popular specializations of Vec<T,n>
*/
typedef Vec<uchar, 2> Vec2b;
typedef Vec<uchar, 3> Vec3b;
typedef Vec<uchar, 4> Vec4b;
typedef Vec<short, 2> Vec2s;
typedef Vec<short, 3> Vec3s;
typedef Vec<short, 4> Vec4s;
typedef Vec<ushort, 2> Vec2w;
typedef Vec<ushort, 3> Vec3w;
typedef Vec<ushort, 4> Vec4w;
typedef Vec<int, 2> Vec2i;
typedef Vec<int, 3> Vec3i;
typedef Vec<int, 4> Vec4i;
typedef Vec<int, 6> Vec6i;
typedef Vec<int, 8> Vec8i;
typedef Vec<float, 2> Vec2f;
typedef Vec<float, 3> Vec3f;
typedef Vec<float, 4> Vec4f;
typedef Vec<float, 6> Vec6f;
typedef Vec<double, 2> Vec2d;
typedef Vec<double, 3> Vec3d;
typedef Vec<double, 4> Vec4d;
typedef Vec<double, 6> Vec6d;
/*!
traits
*/
template<typename _Tp, int cn> class DataType< Vec<_Tp, cn> >
{
public:
typedef Vec<_Tp, cn> value_type;
typedef Vec<typename DataType<_Tp>::work_type, cn> work_type;
typedef _Tp channel_type;
typedef value_type vec_type;
enum { generic_type = 0,
depth = DataType<channel_type>::depth,
channels = cn,
fmt = DataType<channel_type>::fmt + ((channels - 1) << 8),
type = CV_MAKETYPE(depth, channels)
};
};
} // cv
#endif // __OPENCV_CORE_MATX_HPP__

View File

@ -45,7 +45,6 @@
#define __OPENCV_CORE_TRAITS_HPP__ #define __OPENCV_CORE_TRAITS_HPP__
#include "opencv2/core/cvdef.h" #include "opencv2/core/cvdef.h"
#include "opencv2/core/cvstd.hpp"
namespace cv namespace cv
{ {

View File

@ -53,67 +53,10 @@
#include "opencv2/core/cvdef.h" #include "opencv2/core/cvdef.h"
#include "opencv2/core/cvstd.hpp" #include "opencv2/core/cvstd.hpp"
#include "opencv2/core/traits.hpp" #include "opencv2/core/matx.hpp"
namespace cv namespace cv
{ {
template<typename _Tp> class CV_EXPORTS Size_;
template<typename _Tp> class CV_EXPORTS Point_;
template<typename _Tp> class CV_EXPORTS Rect_;
template<typename _Tp, int cn> class CV_EXPORTS Vec;
//template<typename _Tp, int m, int n> class CV_EXPORTS Matx;
/////////////// saturate_cast (used in image & signal processing) ///////////////////
template<typename _Tp> static inline _Tp saturate_cast(uchar v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(schar v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(ushort v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(short v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(unsigned v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(int v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(float v) { return _Tp(v); }
template<typename _Tp> static inline _Tp saturate_cast(double v) { return _Tp(v); }
template<> inline uchar saturate_cast<uchar>(schar v) { return (uchar)std::max((int)v, 0); }
template<> inline uchar saturate_cast<uchar>(ushort v) { return (uchar)std::min((unsigned)v, (unsigned)UCHAR_MAX); }
template<> inline uchar saturate_cast<uchar>(int v) { return (uchar)((unsigned)v <= UCHAR_MAX ? v : v > 0 ? UCHAR_MAX : 0); }
template<> inline uchar saturate_cast<uchar>(short v) { return saturate_cast<uchar>((int)v); }
template<> inline uchar saturate_cast<uchar>(unsigned v) { return (uchar)std::min(v, (unsigned)UCHAR_MAX); }
template<> inline uchar saturate_cast<uchar>(float v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
template<> inline uchar saturate_cast<uchar>(double v) { int iv = cvRound(v); return saturate_cast<uchar>(iv); }
template<> inline schar saturate_cast<schar>(uchar v) { return (schar)std::min((int)v, SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(ushort v) { return (schar)std::min((unsigned)v, (unsigned)SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(int v) { return (schar)((unsigned)(v-SCHAR_MIN) <= (unsigned)UCHAR_MAX ? v : v > 0 ? SCHAR_MAX : SCHAR_MIN); }
template<> inline schar saturate_cast<schar>(short v) { return saturate_cast<schar>((int)v); }
template<> inline schar saturate_cast<schar>(unsigned v) { return (schar)std::min(v, (unsigned)SCHAR_MAX); }
template<> inline schar saturate_cast<schar>(float v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
template<> inline schar saturate_cast<schar>(double v) { int iv = cvRound(v); return saturate_cast<schar>(iv); }
template<> inline ushort saturate_cast<ushort>(schar v) { return (ushort)std::max((int)v, 0); }
template<> inline ushort saturate_cast<ushort>(short v) { return (ushort)std::max((int)v, 0); }
template<> inline ushort saturate_cast<ushort>(int v) { return (ushort)((unsigned)v <= (unsigned)USHRT_MAX ? v : v > 0 ? USHRT_MAX : 0); }
template<> inline ushort saturate_cast<ushort>(unsigned v) { return (ushort)std::min(v, (unsigned)USHRT_MAX); }
template<> inline ushort saturate_cast<ushort>(float v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
template<> inline ushort saturate_cast<ushort>(double v) { int iv = cvRound(v); return saturate_cast<ushort>(iv); }
template<> inline short saturate_cast<short>(ushort v) { return (short)std::min((int)v, SHRT_MAX); }
template<> inline short saturate_cast<short>(int v) { return (short)((unsigned)(v - SHRT_MIN) <= (unsigned)USHRT_MAX ? v : v > 0 ? SHRT_MAX : SHRT_MIN); }
template<> inline short saturate_cast<short>(unsigned v) { return (short)std::min(v, (unsigned)SHRT_MAX); }
template<> inline short saturate_cast<short>(float v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
template<> inline short saturate_cast<short>(double v) { int iv = cvRound(v); return saturate_cast<short>(iv); }
template<> inline int saturate_cast<int>(float v) { return cvRound(v); }
template<> inline int saturate_cast<int>(double v) { return cvRound(v); }
// we intentionally do not clip negative numbers, to make -1 become 0xffffffff etc.
template<> inline unsigned saturate_cast<unsigned>(float v) { return cvRound(v); }
template<> inline unsigned saturate_cast<unsigned>(double v) { return cvRound(v); }
//////////////////////////////// Complex ////////////////////////////// //////////////////////////////// Complex //////////////////////////////
@ -667,8 +610,9 @@ inline KeyPoint::KeyPoint(float x, float y, float _size, float _angle, float _re
/* /*
* Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors. * Struct for matching: query descriptor index, train descriptor index, train image index and distance between descriptors.
*/ */
struct CV_EXPORTS_W_SIMPLE DMatch class CV_EXPORTS_W_SIMPLE DMatch
{ {
public:
CV_WRAP DMatch(); CV_WRAP DMatch();
CV_WRAP DMatch(int _queryIdx, int _trainIdx, float _distance); CV_WRAP DMatch(int _queryIdx, int _trainIdx, float _distance);
CV_WRAP DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance); CV_WRAP DMatch(int _queryIdx, int _trainIdx, int _imgIdx, float _distance);

View File

@ -1,3 +1,4 @@
include/opencv2/core/base.hpp
include/opencv2/core.hpp include/opencv2/core.hpp
include/opencv2/core/utility.hpp include/opencv2/core/utility.hpp
../java/generator/src/cpp/core_manual.hpp ../java/generator/src/cpp/core_manual.hpp