diff --git a/modules/core/include/opencv2/core/base.hpp b/modules/core/include/opencv2/core/base.hpp index 2e8e5d5e86..0342ebde52 100644 --- a/modules/core/include/opencv2/core/base.hpp +++ b/modules/core/include/opencv2/core/base.hpp @@ -444,7 +444,13 @@ for example: */ #define CV_Error_( code, args ) cv::error( code, cv::format args, CV_Func, __FILE__, __LINE__ ) -#define CV_Assert_1( expr ) if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ) +/** @brief Checks a condition at runtime and throws exception if it fails + +The macros CV_Assert (and CV_DbgAssert(expr)) evaluate the specified expression. If it is 0, the macros +raise an error (see cv::error). The macro CV_Assert checks the condition in both Debug and Release +configurations while CV_DbgAssert is only retained in the Debug configuration. +*/ +#define CV_Assert( expr ) do { if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ); } while(0) //! @cond IGNORED #define CV__ErrorNoReturn( code, msg ) cv::errorNoReturn( code, msg, CV_Func, __FILE__, __LINE__ ) @@ -454,8 +460,8 @@ for example: #define CV_Error CV__ErrorNoReturn #undef CV_Error_ #define CV_Error_ CV__ErrorNoReturn_ -#undef CV_Assert_1 -#define CV_Assert_1( expr ) if(!!(expr)) ; else cv::errorNoReturn( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ) +#undef CV_Assert +#define CV_Assert( expr ) do { if(!!(expr)) ; else cv::errorNoReturn( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ); } while(0) #else // backward compatibility #define CV_ErrorNoReturn CV__ErrorNoReturn @@ -465,6 +471,13 @@ for example: #endif // CV_STATIC_ANALYSIS +//! @cond IGNORED + +#ifdef OPENCV_FORCE_MULTIARG_ASSERT_CHECK +#define CV_Assert_1( expr ) do { if(!!(expr)) ; else cv::error( cv::Error::StsAssert, #expr, CV_Func, __FILE__, __LINE__ ); } while(0) +#else +#define CV_Assert_1 CV_Assert +#endif #define CV_Assert_2( expr1, expr2 ) CV_Assert_1(expr1); CV_Assert_1(expr2) #define CV_Assert_3( expr1, expr2, expr3 ) CV_Assert_2(expr1, expr2); CV_Assert_1(expr3) #define CV_Assert_4( expr1, expr2, expr3, expr4 ) CV_Assert_3(expr1, expr2, expr3); CV_Assert_1(expr4) @@ -475,21 +488,18 @@ for example: #define CV_Assert_9( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ) CV_Assert_8(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8 ); CV_Assert_1(expr9) #define CV_Assert_10( expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9, expr10 ) CV_Assert_9(expr1, expr2, expr3, expr4, expr5, expr6, expr7, expr8, expr9 ); CV_Assert_1(expr10) -#define CV_VA_NUM_ARGS_HELPER(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N -#define CV_VA_NUM_ARGS(...) CV_VA_NUM_ARGS_HELPER(__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) +#define CV_Assert_N(...) do { __CV_CAT(CV_Assert_, __CV_VA_NUM_ARGS(__VA_ARGS__)) (__VA_ARGS__); } while(0) -/** @brief Checks a condition at runtime and throws exception if it fails +#ifdef OPENCV_FORCE_MULTIARG_ASSERT_CHECK +#undef CV_Assert +#define CV_Assert CV_Assert_N +#endif +//! @endcond -The macros CV_Assert (and CV_DbgAssert(expr)) evaluate the specified expression. If it is 0, the macros -raise an error (see cv::error). The macro CV_Assert checks the condition in both Debug and Release -configurations while CV_DbgAssert is only retained in the Debug configuration. -*/ -#define CV_Assert(...) do { CVAUX_CONCAT(CV_Assert_, CV_VA_NUM_ARGS(__VA_ARGS__)) (__VA_ARGS__); } while(0) - -/** replaced with CV_Assert(expr) in Debug configuration */ #if defined _DEBUG || defined CV_STATIC_ANALYSIS # define CV_DbgAssert(expr) CV_Assert(expr) #else +/** replaced with CV_Assert(expr) in Debug configuration */ # define CV_DbgAssert(expr) #endif diff --git a/modules/core/include/opencv2/core/cvdef.h b/modules/core/include/opencv2/core/cvdef.h index 2a3e4420d7..c0f76d1654 100644 --- a/modules/core/include/opencv2/core/cvdef.h +++ b/modules/core/include/opencv2/core/cvdef.h @@ -79,6 +79,8 @@ namespace cv { namespace debug_build_guard { } using namespace debug_build_guard #define __CV_CAT(x, y) __CV_CAT_(x, y) #endif +#define __CV_VA_NUM_ARGS_HELPER(_1, _2, _3, _4, _5, _6, _7, _8, _9, _10, N, ...) N +#define __CV_VA_NUM_ARGS(...) __CV_VA_NUM_ARGS_HELPER(__VA_ARGS__, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0) // undef problematic defines sometimes defined by system headers (windows.h in particular) #undef small diff --git a/modules/core/src/matmul.cpp b/modules/core/src/matmul.cpp index 7f624b5f76..83607c7184 100644 --- a/modules/core/src/matmul.cpp +++ b/modules/core/src/matmul.cpp @@ -796,7 +796,7 @@ static bool ocl_gemm( InputArray matA, InputArray matB, double alpha, int depth = matA.depth(), cn = matA.channels(); int type = CV_MAKETYPE(depth, cn); - CV_Assert( type == matB.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); + CV_Assert_N( type == matB.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); const ocl::Device & dev = ocl::Device::getDefault(); bool doubleSupport = dev.doubleFPConfig() > 0; @@ -1555,7 +1555,7 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha, Size a_size = A.size(), d_size; int len = 0, type = A.type(); - CV_Assert( type == B.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); + CV_Assert_N( type == B.type(), (type == CV_32FC1 || type == CV_64FC1 || type == CV_32FC2 || type == CV_64FC2) ); switch( flags & (GEMM_1_T|GEMM_2_T) ) { @@ -1583,7 +1583,7 @@ void cv::gemm( InputArray matA, InputArray matB, double alpha, if( !C.empty() ) { - CV_Assert( C.type() == type, + CV_Assert_N( C.type() == type, (((flags&GEMM_3_T) == 0 && C.rows == d_size.height && C.cols == d_size.width) || ((flags&GEMM_3_T) != 0 && C.rows == d_size.width && C.cols == d_size.height))); } @@ -2457,7 +2457,7 @@ void cv::calcCovarMatrix( const Mat* data, int nsamples, Mat& covar, Mat& _mean, { CV_INSTRUMENT_REGION() - CV_Assert( data, nsamples > 0 ); + CV_Assert_N( data, nsamples > 0 ); Size size = data[0].size(); int sz = size.width * size.height, esz = (int)data[0].elemSize(); int type = data[0].type(); @@ -2480,7 +2480,7 @@ void cv::calcCovarMatrix( const Mat* data, int nsamples, Mat& covar, Mat& _mean, for( int i = 0; i < nsamples; i++ ) { - CV_Assert( data[i].size() == size, data[i].type() == type ); + CV_Assert_N( data[i].size() == size, data[i].type() == type ); if( data[i].isContinuous() ) memcpy( _data.ptr(i), data[i].ptr(), sz*esz ); else @@ -2516,7 +2516,7 @@ void cv::calcCovarMatrix( InputArray _src, OutputArray _covar, InputOutputArray int i = 0; for(std::vector::iterator each = src.begin(); each != src.end(); ++each, ++i ) { - CV_Assert( (*each).size() == size, (*each).type() == type ); + CV_Assert_N( (*each).size() == size, (*each).type() == type ); Mat dataRow(size.height, size.width, type, _data.ptr(i)); (*each).copyTo(dataRow); } @@ -2595,7 +2595,7 @@ double cv::Mahalanobis( InputArray _v1, InputArray _v2, InputArray _icovar ) AutoBuffer buf(len); double result = 0; - CV_Assert( type == v2.type(), type == icovar.type(), + CV_Assert_N( type == v2.type(), type == icovar.type(), sz == v2.size(), len == icovar.rows && len == icovar.cols ); sz.width *= v1.channels(); @@ -2888,7 +2888,7 @@ void cv::mulTransposed( InputArray _src, OutputArray _dst, bool ata, if( !delta.empty() ) { - CV_Assert( delta.channels() == 1, + CV_Assert_N( delta.channels() == 1, (delta.rows == src.rows || delta.rows == 1), (delta.cols == src.cols || delta.cols == 1)); if( delta.type() != dtype ) @@ -3291,7 +3291,7 @@ double Mat::dot(InputArray _mat) const Mat mat = _mat.getMat(); int cn = channels(); DotProdFunc func = getDotProdFunc(depth()); - CV_Assert( mat.type() == type(), mat.size == size, func != 0 ); + CV_Assert_N( mat.type() == type(), mat.size == size, func != 0 ); if( isContinuous() && mat.isContinuous() ) { @@ -3327,7 +3327,7 @@ CV_IMPL void cvGEMM( const CvArr* Aarr, const CvArr* Barr, double alpha, if( Carr ) C = cv::cvarrToMat(Carr); - CV_Assert( (D.rows == ((flags & CV_GEMM_A_T) == 0 ? A.rows : A.cols)), + CV_Assert_N( (D.rows == ((flags & CV_GEMM_A_T) == 0 ? A.rows : A.cols)), (D.cols == ((flags & CV_GEMM_B_T) == 0 ? B.cols : B.rows)), D.type() == A.type() ); @@ -3350,7 +3350,7 @@ cvTransform( const CvArr* srcarr, CvArr* dstarr, m = _m; } - CV_Assert( dst.depth() == src.depth(), dst.channels() == m.rows ); + CV_Assert_N( dst.depth() == src.depth(), dst.channels() == m.rows ); cv::transform( src, dst, m ); } @@ -3360,7 +3360,7 @@ cvPerspectiveTransform( const CvArr* srcarr, CvArr* dstarr, const CvMat* mat ) { cv::Mat m = cv::cvarrToMat(mat), src = cv::cvarrToMat(srcarr), dst = cv::cvarrToMat(dstarr); - CV_Assert( dst.type() == src.type(), dst.channels() == m.rows-1 ); + CV_Assert_N( dst.type() == src.type(), dst.channels() == m.rows-1 ); cv::perspectiveTransform( src, dst, m ); } @@ -3370,7 +3370,7 @@ CV_IMPL void cvScaleAdd( const CvArr* srcarr1, CvScalar scale, { cv::Mat src1 = cv::cvarrToMat(srcarr1), dst = cv::cvarrToMat(dstarr); - CV_Assert( src1.size == dst.size, src1.type() == dst.type() ); + CV_Assert_N( src1.size == dst.size, src1.type() == dst.type() ); cv::scaleAdd( src1, scale.val[0], cv::cvarrToMat(srcarr2), dst ); } @@ -3380,7 +3380,7 @@ cvCalcCovarMatrix( const CvArr** vecarr, int count, CvArr* covarr, CvArr* avgarr, int flags ) { cv::Mat cov0 = cv::cvarrToMat(covarr), cov = cov0, mean0, mean; - CV_Assert( vecarr != 0, count >= 1 ); + CV_Assert_N( vecarr != 0, count >= 1 ); if( avgarr ) mean = mean0 = cv::cvarrToMat(avgarr); @@ -3460,7 +3460,7 @@ cvCalcPCA( const CvArr* data_arr, CvArr* avg_arr, CvArr* eigenvals, CvArr* eigen int ecount0 = evals0.cols + evals0.rows - 1; int ecount = evals.cols + evals.rows - 1; - CV_Assert( (evals0.cols == 1 || evals0.rows == 1), + CV_Assert_N( (evals0.cols == 1 || evals0.rows == 1), ecount0 <= ecount, evects0.cols == evects.cols, evects0.rows == ecount0 ); @@ -3491,12 +3491,12 @@ cvProjectPCA( const CvArr* data_arr, const CvArr* avg_arr, int n; if( mean.rows == 1 ) { - CV_Assert(dst.cols <= evects.rows, dst.rows == data.rows); + CV_Assert_N(dst.cols <= evects.rows, dst.rows == data.rows); n = dst.cols; } else { - CV_Assert(dst.rows <= evects.rows, dst.cols == data.cols); + CV_Assert_N(dst.rows <= evects.rows, dst.cols == data.cols); n = dst.rows; } pca.eigenvectors = evects.rowRange(0, n); @@ -3522,12 +3522,12 @@ cvBackProjectPCA( const CvArr* proj_arr, const CvArr* avg_arr, int n; if( mean.rows == 1 ) { - CV_Assert(data.cols <= evects.rows, dst.rows == data.rows); + CV_Assert_N(data.cols <= evects.rows, dst.rows == data.rows); n = data.cols; } else { - CV_Assert(data.rows <= evects.rows, dst.cols == data.cols); + CV_Assert_N(data.rows <= evects.rows, dst.cols == data.cols); n = data.rows; } pca.eigenvectors = evects.rowRange(0, n); diff --git a/modules/dnn/include/opencv2/dnn/shape_utils.hpp b/modules/dnn/include/opencv2/dnn/shape_utils.hpp index 64811d8184..b0ed3afc54 100644 --- a/modules/dnn/include/opencv2/dnn/shape_utils.hpp +++ b/modules/dnn/include/opencv2/dnn/shape_utils.hpp @@ -209,7 +209,7 @@ inline Range clamp(const Range& r, int axisSize) { Range clamped(std::max(r.start, 0), r.end > 0 ? std::min(r.end, axisSize) : axisSize + r.end + 1); - CV_Assert(clamped.start < clamped.end, clamped.end <= axisSize); + CV_Assert_N(clamped.start < clamped.end, clamped.end <= axisSize); return clamped; } diff --git a/modules/dnn/src/caffe/caffe_importer.cpp b/modules/dnn/src/caffe/caffe_importer.cpp index 59f47eef1a..24e918d7dc 100644 --- a/modules/dnn/src/caffe/caffe_importer.cpp +++ b/modules/dnn/src/caffe/caffe_importer.cpp @@ -359,7 +359,7 @@ public: { if (!layerParams.get("use_global_stats", true)) { - CV_Assert(layer.bottom_size() == 1, layer.top_size() == 1); + CV_Assert_N(layer.bottom_size() == 1, layer.top_size() == 1); LayerParams mvnParams; mvnParams.set("eps", layerParams.get("eps", 1e-5)); diff --git a/modules/dnn/src/dnn.cpp b/modules/dnn/src/dnn.cpp index 43ad3d6d42..d8815a5f08 100644 --- a/modules/dnn/src/dnn.cpp +++ b/modules/dnn/src/dnn.cpp @@ -134,7 +134,7 @@ void blobFromImages(InputArrayOfArrays images_, OutputArray blob_, double scalef if (ddepth == CV_8U) { CV_CheckEQ(scalefactor, 1.0, "Scaling is not supported for CV_8U blob depth"); - CV_Assert(mean_ == Scalar(), "Mean subtraction is not supported for CV_8U blob depth"); + CV_Assert(mean_ == Scalar() && "Mean subtraction is not supported for CV_8U blob depth"); } std::vector images; @@ -451,8 +451,8 @@ struct DataLayer : public Layer { double scale = scaleFactors[i]; Scalar& mean = means[i]; - CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4, - outputs[i].type() == CV_32F); + CV_Assert(mean == Scalar() || inputsData[i].size[1] <= 4); + CV_CheckTypeEQ(outputs[i].type(), CV_32FC1, ""); bool singleMean = true; for (int j = 1; j < std::min(4, inputsData[i].size[1]) && singleMean; ++j) @@ -569,7 +569,7 @@ struct DataLayer : public Layer void finalize(const std::vector&, std::vector& outputs) CV_OVERRIDE { - CV_Assert(outputs.size() == scaleFactors.size(), outputs.size() == means.size(), + CV_Assert_N(outputs.size() == scaleFactors.size(), outputs.size() == means.size(), inputsData.size() == outputs.size()); skip = true; for (int i = 0; skip && i < inputsData.size(); ++i) @@ -1237,7 +1237,7 @@ struct Net::Impl void initHalideBackend() { CV_TRACE_FUNCTION(); - CV_Assert(preferableBackend == DNN_BACKEND_HALIDE, haveHalide()); + CV_Assert_N(preferableBackend == DNN_BACKEND_HALIDE, haveHalide()); // Iterator to current layer. MapIdToLayerData::iterator it = layers.begin(); @@ -1330,7 +1330,7 @@ struct Net::Impl void initInfEngineBackend() { CV_TRACE_FUNCTION(); - CV_Assert(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE, haveInfEngine()); + CV_Assert_N(preferableBackend == DNN_BACKEND_INFERENCE_ENGINE, haveInfEngine()); #ifdef HAVE_INF_ENGINE MapIdToLayerData::iterator it; Ptr net; @@ -1827,7 +1827,7 @@ struct Net::Impl // To prevent memory collisions (i.e. when input of // [conv] and output of [eltwise] is the same blob) // we allocate a new blob. - CV_Assert(ld.outputBlobs.size() == 1, ld.outputBlobsWrappers.size() == 1); + CV_Assert_N(ld.outputBlobs.size() == 1, ld.outputBlobsWrappers.size() == 1); ld.outputBlobs[0] = ld.outputBlobs[0].clone(); ld.outputBlobsWrappers[0] = wrap(ld.outputBlobs[0]); @@ -1984,7 +1984,7 @@ struct Net::Impl } // Layers that refer old input Mat will refer to the // new data but the same Mat object. - CV_Assert(curr_output.data == output_slice.data, oldPtr == &curr_output); + CV_Assert_N(curr_output.data == output_slice.data, oldPtr == &curr_output); } ld.skip = true; printf_(("\toptimized out Concat layer %s\n", concatLayer->name.c_str())); diff --git a/modules/dnn/src/layers/batch_norm_layer.cpp b/modules/dnn/src/layers/batch_norm_layer.cpp index 1ced532fdc..c3a54c127d 100644 --- a/modules/dnn/src/layers/batch_norm_layer.cpp +++ b/modules/dnn/src/layers/batch_norm_layer.cpp @@ -48,7 +48,7 @@ public: float varMeanScale = 1.f; if (!hasWeights && !hasBias && blobs.size() > 2 && useGlobalStats) { - CV_Assert(blobs.size() == 3, blobs[2].type() == CV_32F); + CV_Assert(blobs.size() == 3); CV_CheckTypeEQ(blobs[2].type(), CV_32FC1, ""); varMeanScale = blobs[2].at(0); if (varMeanScale != 0) varMeanScale = 1/varMeanScale; diff --git a/modules/dnn/src/layers/convolution_layer.cpp b/modules/dnn/src/layers/convolution_layer.cpp index 08760ab49a..02f5ac8d60 100644 --- a/modules/dnn/src/layers/convolution_layer.cpp +++ b/modules/dnn/src/layers/convolution_layer.cpp @@ -349,8 +349,8 @@ public: // (conv(I) + b1 ) * w + b2 // means to replace convolution's weights to [w*conv(I)] and bias to [b1 * w + b2] const int outCn = weightsMat.size[0]; - CV_Assert(!weightsMat.empty(), biasvec.size() == outCn + 2, - w.empty() || outCn == w.total(), b.empty() || outCn == b.total()); + CV_Assert_N(!weightsMat.empty(), biasvec.size() == outCn + 2, + w.empty() || outCn == w.total(), b.empty() || outCn == b.total()); if (!w.empty()) { @@ -512,13 +512,14 @@ public: Size kernel, Size pad, Size stride, Size dilation, const ActivationLayer* activ, int ngroups, int nstripes ) { - CV_Assert( input.dims == 4 && output.dims == 4, + CV_Assert_N( + input.dims == 4 && output.dims == 4, input.size[0] == output.size[0], weights.rows == output.size[1], weights.cols == (input.size[1]/ngroups)*kernel.width*kernel.height, input.type() == output.type(), input.type() == weights.type(), - input.type() == CV_32F, + input.type() == CV_32FC1, input.isContinuous(), output.isContinuous(), biasvec.size() == (size_t)output.size[1]+2); @@ -1009,8 +1010,8 @@ public: name.c_str(), inputs[0]->size[0], inputs[0]->size[1], inputs[0]->size[2], inputs[0]->size[3], kernel.width, kernel.height, pad.width, pad.height, stride.width, stride.height, dilation.width, dilation.height);*/ - CV_Assert(inputs.size() == (size_t)1, inputs[0]->size[1] % blobs[0].size[1] == 0, - outputs.size() == 1, inputs[0]->data != outputs[0].data); + CV_Assert_N(inputs.size() == (size_t)1, inputs[0]->size[1] % blobs[0].size[1] == 0, + outputs.size() == 1, inputs[0]->data != outputs[0].data); int ngroups = inputs[0]->size[1]/blobs[0].size[1]; CV_Assert(outputs[0].size[1] % ngroups == 0); diff --git a/modules/dnn/src/layers/crop_and_resize_layer.cpp b/modules/dnn/src/layers/crop_and_resize_layer.cpp index ad2280f30c..f3aa7a8453 100644 --- a/modules/dnn/src/layers/crop_and_resize_layer.cpp +++ b/modules/dnn/src/layers/crop_and_resize_layer.cpp @@ -14,7 +14,7 @@ class CropAndResizeLayerImpl CV_FINAL : public CropAndResizeLayer public: CropAndResizeLayerImpl(const LayerParams& params) { - CV_Assert(params.has("width"), params.has("height")); + CV_Assert_N(params.has("width"), params.has("height")); outWidth = params.get("width"); outHeight = params.get("height"); } @@ -24,7 +24,7 @@ public: std::vector &outputs, std::vector &internals) const CV_OVERRIDE { - CV_Assert(inputs.size() == 2, inputs[0].size() == 4); + CV_Assert_N(inputs.size() == 2, inputs[0].size() == 4); if (inputs[0][0] != 1) CV_Error(Error::StsNotImplemented, ""); outputs.resize(1, MatShape(4)); @@ -56,7 +56,7 @@ public: const int inpWidth = inp.size[3]; const int inpSpatialSize = inpHeight * inpWidth; const int outSpatialSize = outHeight * outWidth; - CV_Assert(inp.isContinuous(), out.isContinuous()); + CV_Assert_N(inp.isContinuous(), out.isContinuous()); for (int b = 0; b < boxes.rows; ++b) { diff --git a/modules/dnn/src/layers/eltwise_layer.cpp b/modules/dnn/src/layers/eltwise_layer.cpp index 3a2c0ddb3f..567d598416 100644 --- a/modules/dnn/src/layers/eltwise_layer.cpp +++ b/modules/dnn/src/layers/eltwise_layer.cpp @@ -139,7 +139,7 @@ public: const std::vector& coeffs, EltwiseOp op, const ActivationLayer* activ, int nstripes) { - CV_Assert(1 < dst.dims && dst.dims <= 4, dst.type() == CV_32F, dst.isContinuous()); + CV_Check(dst.dims, 1 < dst.dims && dst.dims <= 4, ""); CV_CheckTypeEQ(dst.type(), CV_32FC1, ""); CV_Assert(dst.isContinuous()); CV_Assert(coeffs.empty() || coeffs.size() == (size_t)nsrcs); for( int i = 0; i > nsrcs; i++ ) diff --git a/modules/dnn/src/layers/padding_layer.cpp b/modules/dnn/src/layers/padding_layer.cpp index 266d887cd8..af58c78f55 100644 --- a/modules/dnn/src/layers/padding_layer.cpp +++ b/modules/dnn/src/layers/padding_layer.cpp @@ -38,7 +38,7 @@ public: { paddings[i].first = paddingsParam.get(i * 2); // Pad before. paddings[i].second = paddingsParam.get(i * 2 + 1); // Pad after. - CV_Assert(paddings[i].first >= 0, paddings[i].second >= 0); + CV_Assert_N(paddings[i].first >= 0, paddings[i].second >= 0); } } @@ -127,8 +127,8 @@ public: const int padBottom = outHeight - dstRanges[2].end; const int padLeft = dstRanges[3].start; const int padRight = outWidth - dstRanges[3].end; - CV_Assert(padTop < inpHeight, padBottom < inpHeight, - padLeft < inpWidth, padRight < inpWidth); + CV_CheckLT(padTop, inpHeight, ""); CV_CheckLT(padBottom, inpHeight, ""); + CV_CheckLT(padLeft, inpWidth, ""); CV_CheckLT(padRight, inpWidth, ""); for (size_t n = 0; n < inputs[0]->size[0]; ++n) { diff --git a/modules/dnn/src/layers/pooling_layer.cpp b/modules/dnn/src/layers/pooling_layer.cpp index 4e0fea21d8..573565d025 100644 --- a/modules/dnn/src/layers/pooling_layer.cpp +++ b/modules/dnn/src/layers/pooling_layer.cpp @@ -216,15 +216,15 @@ public: switch (type) { case MAX: - CV_Assert(inputs.size() == 1, outputs.size() == 2); + CV_Assert_N(inputs.size() == 1, outputs.size() == 2); maxPooling(*inputs[0], outputs[0], outputs[1]); break; case AVE: - CV_Assert(inputs.size() == 1, outputs.size() == 1); + CV_Assert_N(inputs.size() == 1, outputs.size() == 1); avePooling(*inputs[0], outputs[0]); break; case ROI: case PSROI: - CV_Assert(inputs.size() == 2, outputs.size() == 1); + CV_Assert_N(inputs.size() == 2, outputs.size() == 1); roiPooling(*inputs[0], *inputs[1], outputs[0]); break; default: @@ -311,7 +311,8 @@ public: Size stride, Size pad, bool avePoolPaddedArea, int poolingType, float spatialScale, bool computeMaxIdx, int nstripes) { - CV_Assert(src.isContinuous(), dst.isContinuous(), + CV_Assert_N( + src.isContinuous(), dst.isContinuous(), src.type() == CV_32F, src.type() == dst.type(), src.dims == 4, dst.dims == 4, ((poolingType == ROI || poolingType == PSROI) && dst.size[0] ==rois.size[0] || src.size[0] == dst.size[0]), diff --git a/modules/dnn/src/layers/prior_box_layer.cpp b/modules/dnn/src/layers/prior_box_layer.cpp index 1e41585672..c1690f996f 100644 --- a/modules/dnn/src/layers/prior_box_layer.cpp +++ b/modules/dnn/src/layers/prior_box_layer.cpp @@ -254,7 +254,7 @@ public: } if (params.has("offset_h") || params.has("offset_w")) { - CV_Assert(!params.has("offset"), params.has("offset_h"), params.has("offset_w")); + CV_Assert_N(!params.has("offset"), params.has("offset_h"), params.has("offset_w")); getParams("offset_h", params, &_offsetsY); getParams("offset_w", params, &_offsetsX); CV_Assert(_offsetsX.size() == _offsetsY.size()); @@ -299,7 +299,8 @@ public: void finalize(const std::vector &inputs, std::vector &outputs) CV_OVERRIDE { - CV_Assert(inputs.size() > 1, inputs[0]->dims == 4, inputs[1]->dims == 4); + CV_CheckGT(inputs.size(), (size_t)1, ""); + CV_CheckEQ(inputs[0]->dims, 4, ""); CV_CheckEQ(inputs[1]->dims, 4, ""); int layerWidth = inputs[0]->size[3]; int layerHeight = inputs[0]->size[2]; diff --git a/modules/dnn/src/layers/reshape_layer.cpp b/modules/dnn/src/layers/reshape_layer.cpp index fdd33751f3..69814c0839 100644 --- a/modules/dnn/src/layers/reshape_layer.cpp +++ b/modules/dnn/src/layers/reshape_layer.cpp @@ -197,7 +197,7 @@ public: } else { - CV_Assert(inputs.size() == 2, total(inputs[0]) == total(inputs[1])); + CV_Assert_N(inputs.size() == 2, total(inputs[0]) == total(inputs[1])); outputs.assign(1, inputs[1]); } return true; diff --git a/modules/dnn/src/layers/resize_layer.cpp b/modules/dnn/src/layers/resize_layer.cpp index 78362da778..5ec5d40e54 100644 --- a/modules/dnn/src/layers/resize_layer.cpp +++ b/modules/dnn/src/layers/resize_layer.cpp @@ -43,7 +43,7 @@ public: std::vector &outputs, std::vector &internals) const CV_OVERRIDE { - CV_Assert(inputs.size() == 1, inputs[0].size() == 4); + CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4); outputs.resize(1, inputs[0]); outputs[0][2] = outHeight > 0 ? outHeight : (outputs[0][2] * zoomFactorHeight); outputs[0][3] = outWidth > 0 ? outWidth : (outputs[0][3] * zoomFactorWidth); @@ -106,7 +106,7 @@ public: const int inpSpatialSize = inpHeight * inpWidth; const int outSpatialSize = outHeight * outWidth; const int numPlanes = inp.size[0] * inp.size[1]; - CV_Assert(inp.isContinuous(), out.isContinuous()); + CV_Assert_N(inp.isContinuous(), out.isContinuous()); Mat inpPlanes = inp.reshape(1, numPlanes * inpHeight); Mat outPlanes = out.reshape(1, numPlanes * outHeight); @@ -184,7 +184,7 @@ public: std::vector &outputs, std::vector &internals) const CV_OVERRIDE { - CV_Assert(inputs.size() == 1, inputs[0].size() == 4); + CV_Assert_N(inputs.size() == 1, inputs[0].size() == 4); outputs.resize(1, inputs[0]); outputs[0][2] = outHeight > 0 ? outHeight : (1 + zoomFactorHeight * (outputs[0][2] - 1)); outputs[0][3] = outWidth > 0 ? outWidth : (1 + zoomFactorWidth * (outputs[0][3] - 1)); diff --git a/modules/dnn/src/layers/scale_layer.cpp b/modules/dnn/src/layers/scale_layer.cpp index 3b53805e1e..9ab005ce20 100644 --- a/modules/dnn/src/layers/scale_layer.cpp +++ b/modules/dnn/src/layers/scale_layer.cpp @@ -64,7 +64,7 @@ public: { CV_TRACE_FUNCTION(); CV_TRACE_ARG_VALUE(name, "name", name.c_str()); - CV_Assert(outputs.size() == 1, !blobs.empty() || inputs.size() == 2); + CV_Assert_N(outputs.size() == 1, !blobs.empty() || inputs.size() == 2); Mat &inpBlob = *inputs[0]; Mat &outBlob = outputs[0]; @@ -76,7 +76,9 @@ public: weights = weights.reshape(1, 1); MatShape inpShape = shape(inpBlob); const int numWeights = !weights.empty() ? weights.total() : bias.total(); - CV_Assert(numWeights != 0, !hasWeights || !hasBias || weights.total() == bias.total()); + CV_Assert(numWeights != 0); + if (hasWeights && hasBias) + CV_CheckEQ(weights.total(), bias.total(), "Incompatible weights/bias blobs"); int endAxis; for (endAxis = axis + 1; endAxis <= inpBlob.dims; ++endAxis) @@ -84,9 +86,9 @@ public: if (total(inpShape, axis, endAxis) == numWeights) break; } - CV_Assert(total(inpShape, axis, endAxis) == numWeights, - !hasBias || numWeights == bias.total(), - inpBlob.type() == CV_32F && outBlob.type() == CV_32F); + CV_Assert(total(inpShape, axis, endAxis) == numWeights); + CV_Assert(!hasBias || numWeights == bias.total()); + CV_CheckTypeEQ(inpBlob.type(), CV_32FC1, ""); CV_CheckTypeEQ(outBlob.type(), CV_32FC1, ""); int numSlices = total(inpShape, 0, axis); float* inpData = (float*)inpBlob.data; diff --git a/modules/dnn/src/nms.cpp b/modules/dnn/src/nms.cpp index 62bda79c15..051a9cbd28 100644 --- a/modules/dnn/src/nms.cpp +++ b/modules/dnn/src/nms.cpp @@ -25,7 +25,7 @@ void NMSBoxes(const std::vector& bboxes, const std::vector& scores, const float score_threshold, const float nms_threshold, std::vector& indices, const float eta, const int top_k) { - CV_Assert(bboxes.size() == scores.size(), score_threshold >= 0, + CV_Assert_N(bboxes.size() == scores.size(), score_threshold >= 0, nms_threshold >= 0, eta > 0); NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rectOverlap); } @@ -46,7 +46,7 @@ void NMSBoxes(const std::vector& bboxes, const std::vector& const float score_threshold, const float nms_threshold, std::vector& indices, const float eta, const int top_k) { - CV_Assert(bboxes.size() == scores.size(), score_threshold >= 0, + CV_Assert_N(bboxes.size() == scores.size(), score_threshold >= 0, nms_threshold >= 0, eta > 0); NMSFast_(bboxes, scores, score_threshold, nms_threshold, eta, top_k, indices, rotatedRectIOU); } diff --git a/modules/dnn/src/tensorflow/tf_graph_simplifier.cpp b/modules/dnn/src/tensorflow/tf_graph_simplifier.cpp index 241b8af790..a766d2a024 100644 --- a/modules/dnn/src/tensorflow/tf_graph_simplifier.cpp +++ b/modules/dnn/src/tensorflow/tf_graph_simplifier.cpp @@ -221,7 +221,7 @@ public: std::vector& inputNodes) CV_OVERRIDE { Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor()); - CV_Assert(epsMat.total() == 1, epsMat.type() == CV_32FC1); + CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, ""); fusedNode->mutable_input()->RemoveLast(); fusedNode->clear_attr(); @@ -256,7 +256,7 @@ public: std::vector& inputNodes) CV_OVERRIDE { Mat epsMat = getTensorContent(inputNodes.back()->attr().at("value").tensor()); - CV_Assert(epsMat.total() == 1, epsMat.type() == CV_32FC1); + CV_CheckEQ(epsMat.total(), (size_t)1, ""); CV_CheckTypeEQ(epsMat.type(), CV_32FC1, ""); fusedNode->mutable_input()->RemoveLast(); fusedNode->clear_attr(); @@ -593,7 +593,7 @@ public: std::vector& inputNodes) CV_OVERRIDE { Mat factorsMat = getTensorContent(inputNodes[1]->attr().at("value").tensor()); - CV_Assert(factorsMat.total() == 2, factorsMat.type() == CV_32SC1); + CV_CheckEQ(factorsMat.total(), (size_t)2, ""); CV_CheckTypeEQ(factorsMat.type(), CV_32SC1, ""); // Height scale factor tensorflow::TensorProto* factorY = inputNodes[1]->mutable_attr()->at("value").mutable_tensor(); diff --git a/modules/dnn/src/tensorflow/tf_importer.cpp b/modules/dnn/src/tensorflow/tf_importer.cpp index 98fb41ff94..97701a1826 100644 --- a/modules/dnn/src/tensorflow/tf_importer.cpp +++ b/modules/dnn/src/tensorflow/tf_importer.cpp @@ -545,8 +545,8 @@ const tensorflow::TensorProto& TFImporter::getConstBlob(const tensorflow::NodeDe } else { - CV_Assert(nodeIdx < netTxt.node_size(), - netTxt.node(nodeIdx).name() == kernel_inp.name); + CV_Assert_N(nodeIdx < netTxt.node_size(), + netTxt.node(nodeIdx).name() == kernel_inp.name); return netTxt.node(nodeIdx).attr().at("value").tensor(); } } @@ -587,8 +587,8 @@ static void addConstNodes(tensorflow::GraphDef& net, std::map& cons Mat qMin = getTensorContent(net.node(minId).attr().at("value").tensor()); Mat qMax = getTensorContent(net.node(maxId).attr().at("value").tensor()); - CV_Assert(qMin.total() == 1, qMin.type() == CV_32FC1, - qMax.total() == 1, qMax.type() == CV_32FC1); + CV_Assert_N(qMin.total() == 1, qMin.type() == CV_32FC1, + qMax.total() == 1, qMax.type() == CV_32FC1); Mat content = getTensorContent(*tensor); @@ -1295,8 +1295,9 @@ void TFImporter::populateNet(Net dstNet) CV_Assert(layer.input_size() == 3); Mat begins = getTensorContent(getConstBlob(layer, value_id, 1)); Mat sizes = getTensorContent(getConstBlob(layer, value_id, 2)); - CV_Assert(!begins.empty(), !sizes.empty(), begins.type() == CV_32SC1, - sizes.type() == CV_32SC1); + CV_Assert_N(!begins.empty(), !sizes.empty()); + CV_CheckTypeEQ(begins.type(), CV_32SC1, ""); + CV_CheckTypeEQ(sizes.type(), CV_32SC1, ""); if (begins.total() == 4 && getDataLayout(name, data_layouts) == DATA_LAYOUT_NHWC) { @@ -1665,7 +1666,7 @@ void TFImporter::populateNet(Net dstNet) if (layer.input_size() == 2) { Mat outSize = getTensorContent(getConstBlob(layer, value_id, 1)); - CV_Assert(outSize.type() == CV_32SC1, outSize.total() == 2); + CV_CheckTypeEQ(outSize.type(), CV_32SC1, ""); CV_CheckEQ(outSize.total(), (size_t)2, ""); layerParams.set("height", outSize.at(0, 0)); layerParams.set("width", outSize.at(0, 1)); } @@ -1673,8 +1674,8 @@ void TFImporter::populateNet(Net dstNet) { Mat factorHeight = getTensorContent(getConstBlob(layer, value_id, 1)); Mat factorWidth = getTensorContent(getConstBlob(layer, value_id, 2)); - CV_Assert(factorHeight.type() == CV_32SC1, factorHeight.total() == 1, - factorWidth.type() == CV_32SC1, factorWidth.total() == 1); + CV_CheckTypeEQ(factorHeight.type(), CV_32SC1, ""); CV_CheckEQ(factorHeight.total(), (size_t)1, ""); + CV_CheckTypeEQ(factorWidth.type(), CV_32SC1, ""); CV_CheckEQ(factorWidth.total(), (size_t)1, ""); layerParams.set("zoom_factor_x", factorWidth.at(0)); layerParams.set("zoom_factor_y", factorHeight.at(0)); } @@ -1772,7 +1773,7 @@ void TFImporter::populateNet(Net dstNet) CV_Assert(layer.input_size() == 3); Mat cropSize = getTensorContent(getConstBlob(layer, value_id, 2)); - CV_Assert(cropSize.type() == CV_32SC1, cropSize.total() == 2); + CV_CheckTypeEQ(cropSize.type(), CV_32SC1, ""); CV_CheckEQ(cropSize.total(), (size_t)2, ""); layerParams.set("height", cropSize.at(0)); layerParams.set("width", cropSize.at(1)); @@ -1826,8 +1827,8 @@ void TFImporter::populateNet(Net dstNet) Mat minValue = getTensorContent(getConstBlob(layer, value_id, 1)); Mat maxValue = getTensorContent(getConstBlob(layer, value_id, 2)); - CV_Assert(minValue.total() == 1, minValue.type() == CV_32F, - maxValue.total() == 1, maxValue.type() == CV_32F); + CV_CheckEQ(minValue.total(), (size_t)1, ""); CV_CheckTypeEQ(minValue.type(), CV_32FC1, ""); + CV_CheckEQ(maxValue.total(), (size_t)1, ""); CV_CheckTypeEQ(maxValue.type(), CV_32FC1, ""); layerParams.set("min_value", minValue.at(0)); layerParams.set("max_value", maxValue.at(0)); diff --git a/modules/dnn/src/torch/torch_importer.cpp b/modules/dnn/src/torch/torch_importer.cpp index 52bc0ce8a3..2338c73d96 100644 --- a/modules/dnn/src/torch/torch_importer.cpp +++ b/modules/dnn/src/torch/torch_importer.cpp @@ -896,8 +896,8 @@ struct TorchImporter else if (nnName == "SpatialZeroPadding" || nnName == "SpatialReflectionPadding") { readTorchTable(scalarParams, tensorParams); - CV_Assert(scalarParams.has("pad_l"), scalarParams.has("pad_r"), - scalarParams.has("pad_t"), scalarParams.has("pad_b")); + CV_Assert_N(scalarParams.has("pad_l"), scalarParams.has("pad_r"), + scalarParams.has("pad_t"), scalarParams.has("pad_b")); int padTop = scalarParams.get("pad_t"); int padLeft = scalarParams.get("pad_l"); int padRight = scalarParams.get("pad_r"); diff --git a/modules/dnn/test/test_layers.cpp b/modules/dnn/test/test_layers.cpp index 77a326417c..93840fa20f 100644 --- a/modules/dnn/test/test_layers.cpp +++ b/modules/dnn/test/test_layers.cpp @@ -814,7 +814,7 @@ TEST_P(Layer_Test_DWconv_Prelu, Accuracy) const int group = 3; //outChannels=group when group>1 const int num_output = get<1>(GetParam()); const int kernel_depth = num_input/group; - CV_Assert(num_output >= group, num_output % group == 0, num_input % group == 0); + CV_Assert_N(num_output >= group, num_output % group == 0, num_input % group == 0); Net net; //layer 1: dwconv diff --git a/modules/highgui/src/window_w32.cpp b/modules/highgui/src/window_w32.cpp index 945b2e6e78..c6db001932 100644 --- a/modules/highgui/src/window_w32.cpp +++ b/modules/highgui/src/window_w32.cpp @@ -1500,7 +1500,7 @@ MainWindowProc( HWND hwnd, UINT uMsg, WPARAM wParam, LPARAM lParam ) rgn = CreateRectRgn(0, 0, wrc.right, wrc.bottom); rgn1 = CreateRectRgn(cr.left, cr.top, cr.right, cr.bottom); rgn2 = CreateRectRgn(tr.left, tr.top, tr.right, tr.bottom); - CV_Assert(rgn != 0, rgn1 != 0, rgn2 != 0); + CV_Assert_N(rgn != 0, rgn1 != 0, rgn2 != 0); ret = CombineRgn(rgn, rgn, rgn1, RGN_DIFF); ret = CombineRgn(rgn, rgn, rgn2, RGN_DIFF); diff --git a/samples/dnn/classification.cpp b/samples/dnn/classification.cpp index 7f8aa74b83..42bdc20dd2 100644 --- a/samples/dnn/classification.cpp +++ b/samples/dnn/classification.cpp @@ -49,7 +49,6 @@ int main(int argc, char** argv) float scale = parser.get("scale"); Scalar mean = parser.get("mean"); bool swapRB = parser.get("rgb"); - CV_Assert(parser.has("width"), parser.has("height")); int inpWidth = parser.get("width"); int inpHeight = parser.get("height"); String model = parser.get("model"); @@ -72,7 +71,13 @@ int main(int argc, char** argv) } } - CV_Assert(parser.has("model")); + if (!parser.check()) + { + parser.printErrors(); + return 1; + } + CV_Assert(!model.empty()); + //! [Read and initialize network] Net net = readNet(model, config, framework); net.setPreferableBackend(backendId); diff --git a/samples/dnn/custom_layers.hpp b/samples/dnn/custom_layers.hpp index a18bb9a5cf..8a3d5d88c1 100644 --- a/samples/dnn/custom_layers.hpp +++ b/samples/dnn/custom_layers.hpp @@ -108,7 +108,7 @@ public: } else { - CV_Assert(blobs.size() == 2, blobs[0].total() == 1, blobs[1].total() == 1); + CV_Assert(blobs.size() == 2); CV_Assert(blobs[0].total() == 1); CV_Assert(blobs[1].total() == 1); factorHeight = blobs[0].at(0, 0); factorWidth = blobs[1].at(0, 0); outHeight = outWidth = 0; diff --git a/samples/dnn/segmentation.cpp b/samples/dnn/segmentation.cpp index ce2147acd6..70e8d7b5b4 100644 --- a/samples/dnn/segmentation.cpp +++ b/samples/dnn/segmentation.cpp @@ -57,7 +57,6 @@ int main(int argc, char** argv) float scale = parser.get("scale"); Scalar mean = parser.get("mean"); bool swapRB = parser.get("rgb"); - CV_Assert(parser.has("width"), parser.has("height")); int inpWidth = parser.get("width"); int inpHeight = parser.get("height"); String model = parser.get("model"); @@ -99,7 +98,13 @@ int main(int argc, char** argv) } } - CV_Assert(parser.has("model")); + if (!parser.check()) + { + parser.printErrors(); + return 1; + } + + CV_Assert(!model.empty()); //! [Read and initialize network] Net net = readNet(model, config, framework); net.setPreferableBackend(backendId); diff --git a/samples/dnn/text_detection.cpp b/samples/dnn/text_detection.cpp index f69d13f124..e7b0f237d3 100644 --- a/samples/dnn/text_detection.cpp +++ b/samples/dnn/text_detection.cpp @@ -33,9 +33,16 @@ int main(int argc, char** argv) float nmsThreshold = parser.get("nms"); int inpWidth = parser.get("width"); int inpHeight = parser.get("height"); - CV_Assert(parser.has("model")); String model = parser.get("model"); + if (!parser.check()) + { + parser.printErrors(); + return 1; + } + + CV_Assert(!model.empty()); + // Load network. Net net = readNet(model); @@ -113,9 +120,9 @@ void decode(const Mat& scores, const Mat& geometry, float scoreThresh, std::vector& detections, std::vector& confidences) { detections.clear(); - CV_Assert(scores.dims == 4, geometry.dims == 4, scores.size[0] == 1, - geometry.size[0] == 1, scores.size[1] == 1, geometry.size[1] == 5, - scores.size[2] == geometry.size[2], scores.size[3] == geometry.size[3]); + CV_Assert(scores.dims == 4); CV_Assert(geometry.dims == 4); CV_Assert(scores.size[0] == 1); + CV_Assert(geometry.size[0] == 1); CV_Assert(scores.size[1] == 1); CV_Assert(geometry.size[1] == 5); + CV_Assert(scores.size[2] == geometry.size[2]); CV_Assert(scores.size[3] == geometry.size[3]); const int height = scores.size[2]; const int width = scores.size[3];