mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
add an "squares" sample for ocl module
This commit is contained in:
parent
19462c871d
commit
d363d5589c
179
samples/ocl/squares.cpp
Normal file
179
samples/ocl/squares.cpp
Normal file
@ -0,0 +1,179 @@
|
||||
// The "Square Detector" program.
|
||||
// It loads several images sequentially and tries to find squares in
|
||||
// each image
|
||||
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/imgproc/imgproc.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/ocl/ocl.hpp"
|
||||
|
||||
#include <iostream>
|
||||
#include <math.h>
|
||||
#include <string.h>
|
||||
|
||||
using namespace cv;
|
||||
using namespace std;
|
||||
|
||||
void help()
|
||||
{
|
||||
cout <<
|
||||
"\nA program using OCL module pyramid scaling, Canny, dilate functions; cpu contours, contour simpification and\n"
|
||||
"memory storage (it's got it all folks) to find\n"
|
||||
"squares in a list of images pic1-6.png\n"
|
||||
"Returns sequence of squares detected on the image.\n"
|
||||
"the sequence is stored in the specified memory storage\n"
|
||||
"Call:\n"
|
||||
"./squares\n"
|
||||
"Using OpenCV version %s\n" << CV_VERSION << "\n" << endl;
|
||||
}
|
||||
|
||||
|
||||
int thresh = 50, N = 11;
|
||||
const char* wndname = "OpenCL Square Detection Demo";
|
||||
|
||||
// helper function:
|
||||
// finds a cosine of angle between vectors
|
||||
// from pt0->pt1 and from pt0->pt2
|
||||
double angle( Point pt1, Point pt2, Point pt0 )
|
||||
{
|
||||
double dx1 = pt1.x - pt0.x;
|
||||
double dy1 = pt1.y - pt0.y;
|
||||
double dx2 = pt2.x - pt0.x;
|
||||
double dy2 = pt2.y - pt0.y;
|
||||
return (dx1*dx2 + dy1*dy2)/sqrt((dx1*dx1 + dy1*dy1)*(dx2*dx2 + dy2*dy2) + 1e-10);
|
||||
}
|
||||
|
||||
// returns sequence of squares detected on the image.
|
||||
// the sequence is stored in the specified memory storage
|
||||
void findSquares( const Mat& image, vector<vector<Point> >& squares )
|
||||
{
|
||||
squares.clear();
|
||||
|
||||
Mat pyr, timg, gray0(image.size(), CV_8U), gray;
|
||||
cv::ocl::oclMat pyr_ocl, timg_ocl, gray0_ocl(gray0), gray_ocl;
|
||||
|
||||
// down-scale and upscale the image to filter out the noise
|
||||
ocl::pyrDown(ocl::oclMat(image), pyr_ocl);
|
||||
ocl::pyrUp(pyr_ocl, timg_ocl);
|
||||
timg = Mat(timg_ocl);
|
||||
|
||||
vector<vector<Point> > contours;
|
||||
|
||||
// find squares in every color plane of the image
|
||||
for( int c = 0; c < 3; c++ )
|
||||
{
|
||||
int ch[] = {c, 0};
|
||||
mixChannels(&timg, 1, &gray0, 1, ch, 1);
|
||||
|
||||
// try several threshold levels
|
||||
for( int l = 0; l < N; l++ )
|
||||
{
|
||||
// hack: use Canny instead of zero threshold level.
|
||||
// Canny helps to catch squares with gradient shading
|
||||
if( l == 0 )
|
||||
{
|
||||
// do canny on OpenCL device
|
||||
// apply Canny. Take the upper threshold from slider
|
||||
// and set the lower to 0 (which forces edges merging)
|
||||
cv::ocl::Canny(gray0_ocl, gray_ocl, 0, thresh, 5);
|
||||
// dilate canny output to remove potential
|
||||
// holes between edge segments
|
||||
ocl::dilate(gray0_ocl, gray_ocl, Mat(), Point(-1,-1));
|
||||
gray = Mat(gray_ocl);
|
||||
}
|
||||
else
|
||||
{
|
||||
// apply threshold if l!=0:
|
||||
// tgray(x,y) = gray(x,y) < (l+1)*255/N ? 255 : 0
|
||||
gray = gray0 >= (l+1)*255/N;
|
||||
}
|
||||
|
||||
// find contours and store them all as a list
|
||||
findContours(gray, contours, CV_RETR_LIST, CV_CHAIN_APPROX_SIMPLE);
|
||||
|
||||
vector<Point> approx;
|
||||
|
||||
// test each contour
|
||||
for( size_t i = 0; i < contours.size(); i++ )
|
||||
{
|
||||
// approximate contour with accuracy proportional
|
||||
// to the contour perimeter
|
||||
approxPolyDP(Mat(contours[i]), approx, arcLength(Mat(contours[i]), true)*0.02, true);
|
||||
|
||||
// square contours should have 4 vertices after approximation
|
||||
// relatively large area (to filter out noisy contours)
|
||||
// and be convex.
|
||||
// Note: absolute value of an area is used because
|
||||
// area may be positive or negative - in accordance with the
|
||||
// contour orientation
|
||||
if( approx.size() == 4 &&
|
||||
fabs(contourArea(Mat(approx))) > 1000 &&
|
||||
isContourConvex(Mat(approx)) )
|
||||
{
|
||||
double maxCosine = 0;
|
||||
|
||||
for( int j = 2; j < 5; j++ )
|
||||
{
|
||||
// find the maximum cosine of the angle between joint edges
|
||||
double cosine = fabs(angle(approx[j%4], approx[j-2], approx[j-1]));
|
||||
maxCosine = MAX(maxCosine, cosine);
|
||||
}
|
||||
|
||||
// if cosines of all angles are small
|
||||
// (all angles are ~90 degree) then write quandrange
|
||||
// vertices to resultant sequence
|
||||
if( maxCosine < 0.3 )
|
||||
squares.push_back(approx);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// the function draws all the squares in the image
|
||||
void drawSquares( Mat& image, const vector<vector<Point> >& squares )
|
||||
{
|
||||
for( size_t i = 0; i < squares.size(); i++ )
|
||||
{
|
||||
const Point* p = &squares[i][0];
|
||||
int n = (int)squares[i].size();
|
||||
polylines(image, &p, &n, 1, true, Scalar(0,255,0), 3, CV_AA);
|
||||
}
|
||||
|
||||
imshow(wndname, image);
|
||||
}
|
||||
|
||||
|
||||
int main(int /*argc*/, char** /*argv*/)
|
||||
{
|
||||
|
||||
//ocl::setBinpath("F:/kernel_bin");
|
||||
vector<ocl::Info> info;
|
||||
CV_Assert(ocl::getDevice(info));
|
||||
|
||||
static const char* names[] = { "pic1.png", "pic2.png", "pic3.png",
|
||||
"pic4.png", "pic5.png", "pic6.png", 0 };
|
||||
help();
|
||||
namedWindow( wndname, 1 );
|
||||
vector<vector<Point> > squares;
|
||||
|
||||
for( int i = 0; names[i] != 0; i++ )
|
||||
{
|
||||
Mat image = imread(names[i], 1);
|
||||
if( image.empty() )
|
||||
{
|
||||
cout << "Couldn't load " << names[i] << endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
findSquares(image, squares);
|
||||
drawSquares(image, squares);
|
||||
|
||||
int c = waitKey();
|
||||
if( (char)c == 27 )
|
||||
break;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
Loading…
Reference in New Issue
Block a user