mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 20:50:25 +08:00
Merge pull request #21420 from lukasalexanderweber:4.x
Introduce Cropping to OpenCV Stitching Tool * Introduced Cropping * integrate https://github.com/opencv/opencv/pull/21413/ * fixed failing subsetter tests * updated stuff
This commit is contained in:
parent
a92cba8484
commit
d37bcbdc92
@ -26,8 +26,8 @@ class Blender:
|
||||
|
||||
elif self.blender_type == "multiband":
|
||||
self.blender = cv.detail_MultiBandBlender()
|
||||
self.blender.setNumBands((np.log(blend_width) /
|
||||
np.log(2.) - 1.).astype(np.int))
|
||||
self.blender.setNumBands(int((np.log(blend_width) /
|
||||
np.log(2.) - 1.)))
|
||||
|
||||
elif self.blender_type == "feather":
|
||||
self.blender = cv.detail_FeatherBlender()
|
||||
@ -45,4 +45,12 @@ class Blender:
|
||||
result_mask = None
|
||||
result, result_mask = self.blender.blend(result, result_mask)
|
||||
result = cv.convertScaleAbs(result)
|
||||
return result
|
||||
return result, result_mask
|
||||
|
||||
@classmethod
|
||||
def create_panorama(cls, imgs, masks, corners, sizes):
|
||||
blender = cls("no")
|
||||
blender.prepare(corners, sizes)
|
||||
for img, mask, corner in zip(imgs, masks, corners):
|
||||
blender.feed(img, mask, corner)
|
||||
return blender.blend()
|
||||
|
149
apps/opencv_stitching_tool/opencv_stitching/cropper.py
Normal file
149
apps/opencv_stitching_tool/opencv_stitching/cropper.py
Normal file
@ -0,0 +1,149 @@
|
||||
from collections import namedtuple
|
||||
import cv2 as cv
|
||||
|
||||
from .blender import Blender
|
||||
from .stitching_error import StitchingError
|
||||
|
||||
|
||||
class Rectangle(namedtuple('Rectangle', 'x y width height')):
|
||||
__slots__ = ()
|
||||
|
||||
@property
|
||||
def area(self):
|
||||
return self.width * self.height
|
||||
|
||||
@property
|
||||
def corner(self):
|
||||
return (self.x, self.y)
|
||||
|
||||
@property
|
||||
def size(self):
|
||||
return (self.width, self.height)
|
||||
|
||||
@property
|
||||
def x2(self):
|
||||
return self.x + self.width
|
||||
|
||||
@property
|
||||
def y2(self):
|
||||
return self.y + self.height
|
||||
|
||||
def times(self, x):
|
||||
return Rectangle(*(int(round(i*x)) for i in self))
|
||||
|
||||
def draw_on(self, img, color=(0, 0, 255), size=1):
|
||||
if len(img.shape) == 2:
|
||||
img = cv.cvtColor(img, cv.COLOR_GRAY2RGB)
|
||||
start_point = (self.x, self.y)
|
||||
end_point = (self.x2-1, self.y2-1)
|
||||
cv.rectangle(img, start_point, end_point, color, size)
|
||||
return img
|
||||
|
||||
|
||||
class Cropper:
|
||||
|
||||
DEFAULT_CROP = False
|
||||
|
||||
def __init__(self, crop=DEFAULT_CROP):
|
||||
self.do_crop = crop
|
||||
self.overlapping_rectangles = []
|
||||
self.cropping_rectangles = []
|
||||
|
||||
def prepare(self, imgs, masks, corners, sizes):
|
||||
if self.do_crop:
|
||||
mask = self.estimate_panorama_mask(imgs, masks, corners, sizes)
|
||||
self.compile_numba_functionality()
|
||||
lir = self.estimate_largest_interior_rectangle(mask)
|
||||
corners = self.get_zero_center_corners(corners)
|
||||
rectangles = self.get_rectangles(corners, sizes)
|
||||
self.overlapping_rectangles = self.get_overlaps(
|
||||
rectangles, lir)
|
||||
self.intersection_rectangles = self.get_intersections(
|
||||
rectangles, self.overlapping_rectangles)
|
||||
|
||||
def crop_images(self, imgs, aspect=1):
|
||||
for idx, img in enumerate(imgs):
|
||||
yield self.crop_img(img, idx, aspect)
|
||||
|
||||
def crop_img(self, img, idx, aspect=1):
|
||||
if self.do_crop:
|
||||
intersection_rect = self.intersection_rectangles[idx]
|
||||
scaled_intersection_rect = intersection_rect.times(aspect)
|
||||
cropped_img = self.crop_rectangle(img, scaled_intersection_rect)
|
||||
return cropped_img
|
||||
return img
|
||||
|
||||
def crop_rois(self, corners, sizes, aspect=1):
|
||||
if self.do_crop:
|
||||
scaled_overlaps = \
|
||||
[r.times(aspect) for r in self.overlapping_rectangles]
|
||||
cropped_corners = [r.corner for r in scaled_overlaps]
|
||||
cropped_corners = self.get_zero_center_corners(cropped_corners)
|
||||
cropped_sizes = [r.size for r in scaled_overlaps]
|
||||
return cropped_corners, cropped_sizes
|
||||
return corners, sizes
|
||||
|
||||
@staticmethod
|
||||
def estimate_panorama_mask(imgs, masks, corners, sizes):
|
||||
_, mask = Blender.create_panorama(imgs, masks, corners, sizes)
|
||||
return mask
|
||||
|
||||
def compile_numba_functionality(self):
|
||||
# numba functionality is only imported if cropping
|
||||
# is explicitely desired
|
||||
try:
|
||||
import numba
|
||||
except ModuleNotFoundError:
|
||||
raise StitchingError("Numba is needed for cropping but not installed")
|
||||
from .largest_interior_rectangle import largest_interior_rectangle
|
||||
self.largest_interior_rectangle = largest_interior_rectangle
|
||||
|
||||
def estimate_largest_interior_rectangle(self, mask):
|
||||
lir = self.largest_interior_rectangle(mask)
|
||||
lir = Rectangle(*lir)
|
||||
return lir
|
||||
|
||||
@staticmethod
|
||||
def get_zero_center_corners(corners):
|
||||
min_corner_x = min([corner[0] for corner in corners])
|
||||
min_corner_y = min([corner[1] for corner in corners])
|
||||
return [(x - min_corner_x, y - min_corner_y) for x, y in corners]
|
||||
|
||||
@staticmethod
|
||||
def get_rectangles(corners, sizes):
|
||||
rectangles = []
|
||||
for corner, size in zip(corners, sizes):
|
||||
rectangle = Rectangle(*corner, *size)
|
||||
rectangles.append(rectangle)
|
||||
return rectangles
|
||||
|
||||
@staticmethod
|
||||
def get_overlaps(rectangles, lir):
|
||||
return [Cropper.get_overlap(r, lir) for r in rectangles]
|
||||
|
||||
@staticmethod
|
||||
def get_overlap(rectangle1, rectangle2):
|
||||
x1 = max(rectangle1.x, rectangle2.x)
|
||||
y1 = max(rectangle1.y, rectangle2.y)
|
||||
x2 = min(rectangle1.x2, rectangle2.x2)
|
||||
y2 = min(rectangle1.y2, rectangle2.y2)
|
||||
if x2 < x1 or y2 < y1:
|
||||
raise StitchingError("Rectangles do not overlap!")
|
||||
return Rectangle(x1, y1, x2-x1, y2-y1)
|
||||
|
||||
@staticmethod
|
||||
def get_intersections(rectangles, overlapping_rectangles):
|
||||
return [Cropper.get_intersection(r, overlap_r) for r, overlap_r
|
||||
in zip(rectangles, overlapping_rectangles)]
|
||||
|
||||
@staticmethod
|
||||
def get_intersection(rectangle, overlapping_rectangle):
|
||||
x = abs(overlapping_rectangle.x - rectangle.x)
|
||||
y = abs(overlapping_rectangle.y - rectangle.y)
|
||||
width = overlapping_rectangle.width
|
||||
height = overlapping_rectangle.height
|
||||
return Rectangle(x, y, width, height)
|
||||
|
||||
@staticmethod
|
||||
def crop_rectangle(img, rectangle):
|
||||
return img[rectangle.y:rectangle.y2, rectangle.x:rectangle.x2]
|
@ -19,10 +19,10 @@ class FeatureMatcher:
|
||||
self.matcher = cv.detail_AffineBestOf2NearestMatcher(**kwargs)
|
||||
elif range_width == -1:
|
||||
"""https://docs.opencv.org/4.x/d4/d26/classcv_1_1detail_1_1BestOf2NearestMatcher.html""" # noqa
|
||||
self.matcher = cv.detail.BestOf2NearestMatcher_create(**kwargs)
|
||||
self.matcher = cv.detail_BestOf2NearestMatcher(**kwargs)
|
||||
else:
|
||||
"""https://docs.opencv.org/4.x/d8/d72/classcv_1_1detail_1_1BestOf2NearestRangeMatcher.html""" # noqa
|
||||
self.matcher = cv.detail.BestOf2NearestRangeMatcher_create(
|
||||
self.matcher = cv.detail_BestOf2NearestRangeMatcher(
|
||||
range_width, **kwargs
|
||||
)
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
import cv2 as cv
|
||||
|
||||
from .megapix_downscaler import MegapixDownscaler
|
||||
from .megapix_scaler import MegapixDownscaler
|
||||
from .stitching_error import StitchingError
|
||||
|
||||
class ImageHandler:
|
||||
@ -35,7 +35,7 @@ class ImageHandler:
|
||||
|
||||
def resize_to_low_resolution(self, medium_imgs=None):
|
||||
if medium_imgs and self.scales_set:
|
||||
return self.resize_medium_to_low(medium_imgs)
|
||||
return self.resize_imgs_by_scaler(medium_imgs, self.low_scaler)
|
||||
return self.read_and_resize_imgs(self.low_scaler)
|
||||
|
||||
def resize_to_final_resolution(self):
|
||||
@ -45,9 +45,9 @@ class ImageHandler:
|
||||
for img, size in self.input_images():
|
||||
yield self.resize_img_by_scaler(scaler, size, img)
|
||||
|
||||
def resize_medium_to_low(self, medium_imgs):
|
||||
def resize_imgs_by_scaler(self, medium_imgs, scaler):
|
||||
for img, size in zip(medium_imgs, self.img_sizes):
|
||||
yield self.resize_img_by_scaler(self.low_scaler, size, img)
|
||||
yield self.resize_img_by_scaler(scaler, size, img)
|
||||
|
||||
@staticmethod
|
||||
def resize_img_by_scaler(scaler, size, img):
|
||||
@ -92,3 +92,14 @@ class ImageHandler:
|
||||
|
||||
def get_final_to_low_ratio(self):
|
||||
return self.low_scaler.scale / self.final_scaler.scale
|
||||
|
||||
def get_low_to_final_ratio(self):
|
||||
return self.final_scaler.scale / self.low_scaler.scale
|
||||
|
||||
def get_final_img_sizes(self):
|
||||
return [self.final_scaler.get_scaled_img_size(sz)
|
||||
for sz in self.img_sizes]
|
||||
|
||||
def get_low_img_sizes(self):
|
||||
return [self.low_scaler.get_scaled_img_size(sz)
|
||||
for sz in self.img_sizes]
|
||||
|
@ -0,0 +1,303 @@
|
||||
import numpy as np
|
||||
import numba as nb
|
||||
import cv2 as cv
|
||||
|
||||
from .stitching_error import StitchingError
|
||||
|
||||
|
||||
def largest_interior_rectangle(cells):
|
||||
outline = get_outline(cells)
|
||||
adjacencies = adjacencies_all_directions(cells)
|
||||
s_map, _, saddle_candidates_map = create_maps(outline, adjacencies)
|
||||
lir1 = biggest_span_in_span_map(s_map)
|
||||
|
||||
candidate_cells = cells_of_interest(saddle_candidates_map)
|
||||
s_map = span_map(adjacencies[0], adjacencies[2], candidate_cells)
|
||||
lir2 = biggest_span_in_span_map(s_map)
|
||||
|
||||
lir = biggest_rectangle(lir1, lir2)
|
||||
return lir
|
||||
|
||||
|
||||
def get_outline(cells):
|
||||
contours, hierarchy = \
|
||||
cv.findContours(cells, cv.RETR_TREE, cv.CHAIN_APPROX_NONE)
|
||||
# TODO support multiple contours
|
||||
# test that only one regular contour exists
|
||||
if not hierarchy.shape == (1, 1, 4) or not np.all(hierarchy == -1):
|
||||
raise StitchingError("Invalid Contour. Try without cropping.")
|
||||
contour = contours[0][:, 0, :]
|
||||
x_values = contour[:, 0].astype("uint32", order="C")
|
||||
y_values = contour[:, 1].astype("uint32", order="C")
|
||||
return x_values, y_values
|
||||
|
||||
|
||||
@nb.njit('uint32[:,::1](uint8[:,::1], boolean)', parallel=True, cache=True)
|
||||
def horizontal_adjacency(cells, direction):
|
||||
result = np.zeros(cells.shape, dtype=np.uint32)
|
||||
for y in nb.prange(cells.shape[0]):
|
||||
span = 0
|
||||
if direction:
|
||||
iterator = range(cells.shape[1]-1, -1, -1)
|
||||
else:
|
||||
iterator = range(cells.shape[1])
|
||||
for x in iterator:
|
||||
if cells[y, x] > 0:
|
||||
span += 1
|
||||
else:
|
||||
span = 0
|
||||
result[y, x] = span
|
||||
return result
|
||||
|
||||
|
||||
@nb.njit('uint32[:,::1](uint8[:,::1], boolean)', parallel=True, cache=True)
|
||||
def vertical_adjacency(cells, direction):
|
||||
result = np.zeros(cells.shape, dtype=np.uint32)
|
||||
for x in nb.prange(cells.shape[1]):
|
||||
span = 0
|
||||
if direction:
|
||||
iterator = range(cells.shape[0]-1, -1, -1)
|
||||
else:
|
||||
iterator = range(cells.shape[0])
|
||||
for y in iterator:
|
||||
if cells[y, x] > 0:
|
||||
span += 1
|
||||
else:
|
||||
span = 0
|
||||
result[y, x] = span
|
||||
return result
|
||||
|
||||
|
||||
@nb.njit(cache=True)
|
||||
def adjacencies_all_directions(cells):
|
||||
h_left2right = horizontal_adjacency(cells, 1)
|
||||
h_right2left = horizontal_adjacency(cells, 0)
|
||||
v_top2bottom = vertical_adjacency(cells, 1)
|
||||
v_bottom2top = vertical_adjacency(cells, 0)
|
||||
return h_left2right, h_right2left, v_top2bottom, v_bottom2top
|
||||
|
||||
|
||||
@nb.njit('uint32(uint32[:])', cache=True)
|
||||
def predict_vector_size(array):
|
||||
zero_indices = np.where(array == 0)[0]
|
||||
if len(zero_indices) == 0:
|
||||
if len(array) == 0:
|
||||
return 0
|
||||
return len(array)
|
||||
return zero_indices[0]
|
||||
|
||||
|
||||
@nb.njit('uint32[:](uint32[:,::1], uint32, uint32)', cache=True)
|
||||
def h_vector_top2bottom(h_adjacency, x, y):
|
||||
vector_size = predict_vector_size(h_adjacency[y:, x])
|
||||
h_vector = np.zeros(vector_size, dtype=np.uint32)
|
||||
h = np.Inf
|
||||
for p in range(vector_size):
|
||||
h = np.minimum(h_adjacency[y+p, x], h)
|
||||
h_vector[p] = h
|
||||
h_vector = np.unique(h_vector)[::-1]
|
||||
return h_vector
|
||||
|
||||
|
||||
@nb.njit('uint32[:](uint32[:,::1], uint32, uint32)', cache=True)
|
||||
def h_vector_bottom2top(h_adjacency, x, y):
|
||||
vector_size = predict_vector_size(np.flip(h_adjacency[:y+1, x]))
|
||||
h_vector = np.zeros(vector_size, dtype=np.uint32)
|
||||
h = np.Inf
|
||||
for p in range(vector_size):
|
||||
h = np.minimum(h_adjacency[y-p, x], h)
|
||||
h_vector[p] = h
|
||||
h_vector = np.unique(h_vector)[::-1]
|
||||
return h_vector
|
||||
|
||||
|
||||
@nb.njit(cache=True)
|
||||
def h_vectors_all_directions(h_left2right, h_right2left, x, y):
|
||||
h_l2r_t2b = h_vector_top2bottom(h_left2right, x, y)
|
||||
h_r2l_t2b = h_vector_top2bottom(h_right2left, x, y)
|
||||
h_l2r_b2t = h_vector_bottom2top(h_left2right, x, y)
|
||||
h_r2l_b2t = h_vector_bottom2top(h_right2left, x, y)
|
||||
return h_l2r_t2b, h_r2l_t2b, h_l2r_b2t, h_r2l_b2t
|
||||
|
||||
|
||||
@nb.njit('uint32[:](uint32[:,::1], uint32, uint32)', cache=True)
|
||||
def v_vector_left2right(v_adjacency, x, y):
|
||||
vector_size = predict_vector_size(v_adjacency[y, x:])
|
||||
v_vector = np.zeros(vector_size, dtype=np.uint32)
|
||||
v = np.Inf
|
||||
for q in range(vector_size):
|
||||
v = np.minimum(v_adjacency[y, x+q], v)
|
||||
v_vector[q] = v
|
||||
v_vector = np.unique(v_vector)[::-1]
|
||||
return v_vector
|
||||
|
||||
|
||||
@nb.njit('uint32[:](uint32[:,::1], uint32, uint32)', cache=True)
|
||||
def v_vector_right2left(v_adjacency, x, y):
|
||||
vector_size = predict_vector_size(np.flip(v_adjacency[y, :x+1]))
|
||||
v_vector = np.zeros(vector_size, dtype=np.uint32)
|
||||
v = np.Inf
|
||||
for q in range(vector_size):
|
||||
v = np.minimum(v_adjacency[y, x-q], v)
|
||||
v_vector[q] = v
|
||||
v_vector = np.unique(v_vector)[::-1]
|
||||
return v_vector
|
||||
|
||||
|
||||
@nb.njit(cache=True)
|
||||
def v_vectors_all_directions(v_top2bottom, v_bottom2top, x, y):
|
||||
v_l2r_t2b = v_vector_left2right(v_top2bottom, x, y)
|
||||
v_r2l_t2b = v_vector_right2left(v_top2bottom, x, y)
|
||||
v_l2r_b2t = v_vector_left2right(v_bottom2top, x, y)
|
||||
v_r2l_b2t = v_vector_right2left(v_bottom2top, x, y)
|
||||
return v_l2r_t2b, v_r2l_t2b, v_l2r_b2t, v_r2l_b2t
|
||||
|
||||
|
||||
@nb.njit('uint32[:,:](uint32[:], uint32[:])', cache=True)
|
||||
def spans(h_vector, v_vector):
|
||||
spans = np.stack((h_vector, v_vector[::-1]), axis=1)
|
||||
return spans
|
||||
|
||||
|
||||
@nb.njit('uint32[:](uint32[:,:])', cache=True)
|
||||
def biggest_span(spans):
|
||||
if len(spans) == 0:
|
||||
return np.array([0, 0], dtype=np.uint32)
|
||||
areas = spans[:, 0] * spans[:, 1]
|
||||
biggest_span_index = np.where(areas == np.amax(areas))[0][0]
|
||||
return spans[biggest_span_index]
|
||||
|
||||
|
||||
@nb.njit(cache=True)
|
||||
def spans_all_directions(h_vectors, v_vectors):
|
||||
span_l2r_t2b = spans(h_vectors[0], v_vectors[0])
|
||||
span_r2l_t2b = spans(h_vectors[1], v_vectors[1])
|
||||
span_l2r_b2t = spans(h_vectors[2], v_vectors[2])
|
||||
span_r2l_b2t = spans(h_vectors[3], v_vectors[3])
|
||||
return span_l2r_t2b, span_r2l_t2b, span_l2r_b2t, span_r2l_b2t
|
||||
|
||||
|
||||
@nb.njit(cache=True)
|
||||
def get_n_directions(spans_all_directions):
|
||||
n_directions = 1
|
||||
for spans in spans_all_directions:
|
||||
all_x_1 = np.all(spans[:, 0] == 1)
|
||||
all_y_1 = np.all(spans[:, 1] == 1)
|
||||
if not all_x_1 and not all_y_1:
|
||||
n_directions += 1
|
||||
return n_directions
|
||||
|
||||
|
||||
@nb.njit(cache=True)
|
||||
def get_xy_array(x, y, spans, mode=0):
|
||||
"""0 - flip none, 1 - flip x, 2 - flip y, 3 - flip both"""
|
||||
xy = spans.copy()
|
||||
xy[:, 0] = x
|
||||
xy[:, 1] = y
|
||||
if mode == 1:
|
||||
xy[:, 0] = xy[:, 0] - spans[:, 0] + 1
|
||||
if mode == 2:
|
||||
xy[:, 1] = xy[:, 1] - spans[:, 1] + 1
|
||||
if mode == 3:
|
||||
xy[:, 0] = xy[:, 0] - spans[:, 0] + 1
|
||||
xy[:, 1] = xy[:, 1] - spans[:, 1] + 1
|
||||
return xy
|
||||
|
||||
|
||||
@nb.njit(cache=True)
|
||||
def get_xy_arrays(x, y, spans_all_directions):
|
||||
xy_l2r_t2b = get_xy_array(x, y, spans_all_directions[0], 0)
|
||||
xy_r2l_t2b = get_xy_array(x, y, spans_all_directions[1], 1)
|
||||
xy_l2r_b2t = get_xy_array(x, y, spans_all_directions[2], 2)
|
||||
xy_r2l_b2t = get_xy_array(x, y, spans_all_directions[3], 3)
|
||||
return xy_l2r_t2b, xy_r2l_t2b, xy_l2r_b2t, xy_r2l_b2t
|
||||
|
||||
|
||||
@nb.njit(cache=True)
|
||||
def point_on_outline(x, y, outline):
|
||||
x_vals, y_vals = outline
|
||||
x_true = x_vals == x
|
||||
y_true = y_vals == y
|
||||
both_true = np.logical_and(x_true, y_true)
|
||||
return np.any(both_true)
|
||||
|
||||
|
||||
@nb.njit('Tuple((uint32[:,:,::1], uint8[:,::1], uint8[:,::1]))'
|
||||
'(UniTuple(uint32[:], 2), UniTuple(uint32[:,::1], 4))',
|
||||
parallel=True, cache=True)
|
||||
def create_maps(outline, adjacencies):
|
||||
x_values, y_values = outline
|
||||
h_left2right, h_right2left, v_top2bottom, v_bottom2top = adjacencies
|
||||
|
||||
shape = h_left2right.shape
|
||||
span_map = np.zeros(shape + (2,), "uint32")
|
||||
direction_map = np.zeros(shape, "uint8")
|
||||
saddle_candidates_map = np.zeros(shape, "uint8")
|
||||
|
||||
for idx in nb.prange(len(x_values)):
|
||||
x, y = x_values[idx], y_values[idx]
|
||||
h_vectors = h_vectors_all_directions(h_left2right, h_right2left, x, y)
|
||||
v_vectors = v_vectors_all_directions(v_top2bottom, v_bottom2top, x, y)
|
||||
span_arrays = spans_all_directions(h_vectors, v_vectors)
|
||||
n = get_n_directions(span_arrays)
|
||||
direction_map[y, x] = n
|
||||
xy_arrays = get_xy_arrays(x, y, span_arrays)
|
||||
for direction_idx in range(4):
|
||||
xy_array = xy_arrays[direction_idx]
|
||||
span_array = span_arrays[direction_idx]
|
||||
for span_idx in range(span_array.shape[0]):
|
||||
x, y = xy_array[span_idx][0], xy_array[span_idx][1]
|
||||
w, h = span_array[span_idx][0], span_array[span_idx][1]
|
||||
if w*h > span_map[y, x, 0] * span_map[y, x, 1]:
|
||||
span_map[y, x, :] = np.array([w, h], "uint32")
|
||||
if n == 3 and not point_on_outline(x, y, outline):
|
||||
saddle_candidates_map[y, x] = np.uint8(255)
|
||||
|
||||
return span_map, direction_map, saddle_candidates_map
|
||||
|
||||
|
||||
def cells_of_interest(cells):
|
||||
y_vals, x_vals = cells.nonzero()
|
||||
x_vals = x_vals.astype("uint32", order="C")
|
||||
y_vals = y_vals.astype("uint32", order="C")
|
||||
return x_vals, y_vals
|
||||
|
||||
|
||||
@nb.njit('uint32[:, :, :]'
|
||||
'(uint32[:,::1], uint32[:,::1], UniTuple(uint32[:], 2))',
|
||||
parallel=True, cache=True)
|
||||
def span_map(h_adjacency_left2right,
|
||||
v_adjacency_top2bottom,
|
||||
cells_of_interest):
|
||||
|
||||
x_values, y_values = cells_of_interest
|
||||
|
||||
span_map = np.zeros(h_adjacency_left2right.shape + (2,), dtype=np.uint32)
|
||||
|
||||
for idx in nb.prange(len(x_values)):
|
||||
x, y = x_values[idx], y_values[idx]
|
||||
h_vector = h_vector_top2bottom(h_adjacency_left2right, x, y)
|
||||
v_vector = v_vector_left2right(v_adjacency_top2bottom, x, y)
|
||||
s = spans(h_vector, v_vector)
|
||||
s = biggest_span(s)
|
||||
span_map[y, x, :] = s
|
||||
|
||||
return span_map
|
||||
|
||||
|
||||
@nb.njit('uint32[:](uint32[:, :, :])', cache=True)
|
||||
def biggest_span_in_span_map(span_map):
|
||||
areas = span_map[:, :, 0] * span_map[:, :, 1]
|
||||
largest_rectangle_indices = np.where(areas == np.amax(areas))
|
||||
x = largest_rectangle_indices[1][0]
|
||||
y = largest_rectangle_indices[0][0]
|
||||
span = span_map[y, x]
|
||||
return np.array([x, y, span[0], span[1]], dtype=np.uint32)
|
||||
|
||||
|
||||
def biggest_rectangle(*args):
|
||||
biggest_rect = np.array([0, 0, 0, 0], dtype=np.uint32)
|
||||
for rect in args:
|
||||
if rect[2] * rect[3] > biggest_rect[2] * biggest_rect[3]:
|
||||
biggest_rect = rect
|
||||
return biggest_rect
|
@ -1,12 +0,0 @@
|
||||
from .megapix_scaler import MegapixScaler
|
||||
|
||||
|
||||
class MegapixDownscaler(MegapixScaler):
|
||||
|
||||
@staticmethod
|
||||
def force_downscale(scale):
|
||||
return min(1.0, scale)
|
||||
|
||||
def set_scale(self, scale):
|
||||
scale = self.force_downscale(scale)
|
||||
super().set_scale(scale)
|
@ -25,3 +25,14 @@ class MegapixScaler:
|
||||
width = int(round(img_size[0] * self.scale))
|
||||
height = int(round(img_size[1] * self.scale))
|
||||
return (width, height)
|
||||
|
||||
|
||||
class MegapixDownscaler(MegapixScaler):
|
||||
|
||||
@staticmethod
|
||||
def force_downscale(scale):
|
||||
return min(1.0, scale)
|
||||
|
||||
def set_scale(self, scale):
|
||||
scale = self.force_downscale(scale)
|
||||
super().set_scale(scale)
|
||||
|
@ -1,27 +0,0 @@
|
||||
import statistics
|
||||
|
||||
|
||||
def estimate_final_panorama_dimensions(cameras, warper, img_handler):
|
||||
medium_to_final_ratio = img_handler.get_medium_to_final_ratio()
|
||||
|
||||
panorama_scale_determined_on_medium_img = \
|
||||
estimate_panorama_scale(cameras)
|
||||
|
||||
panorama_scale = (panorama_scale_determined_on_medium_img *
|
||||
medium_to_final_ratio)
|
||||
panorama_corners = []
|
||||
panorama_sizes = []
|
||||
|
||||
for size, camera in zip(img_handler.img_sizes, cameras):
|
||||
width, height = img_handler.final_scaler.get_scaled_img_size(size)
|
||||
roi = warper.warp_roi(width, height, camera, panorama_scale, medium_to_final_ratio)
|
||||
panorama_corners.append(roi[0:2])
|
||||
panorama_sizes.append(roi[2:4])
|
||||
|
||||
return panorama_scale, panorama_corners, panorama_sizes
|
||||
|
||||
|
||||
def estimate_panorama_scale(cameras):
|
||||
focals = [cam.focal for cam in cameras]
|
||||
panorama_scale = statistics.median(focals)
|
||||
return panorama_scale
|
@ -63,7 +63,14 @@ class SeamFinder:
|
||||
return cv.dilate(seam_lines, kernel)
|
||||
|
||||
@staticmethod
|
||||
def blend_seam_masks(seam_masks, corners, sizes, colors=[
|
||||
def blend_seam_masks(seam_masks, corners, sizes):
|
||||
imgs = colored_img_generator(sizes)
|
||||
blended_seam_masks, _ = \
|
||||
Blender.create_panorama(imgs, seam_masks, corners, sizes)
|
||||
return blended_seam_masks
|
||||
|
||||
|
||||
def colored_img_generator(sizes, colors=(
|
||||
(255, 000, 000), # Blue
|
||||
(000, 000, 255), # Red
|
||||
(000, 255, 000), # Green
|
||||
@ -72,21 +79,13 @@ class SeamFinder:
|
||||
(128, 128, 255), # Pink
|
||||
(128, 128, 128), # Gray
|
||||
(000, 000, 128), # Brown
|
||||
(000, 128, 255)] # Orange
|
||||
(000, 128, 255)) # Orange
|
||||
):
|
||||
|
||||
blender = Blender("no")
|
||||
blender.prepare(corners, sizes)
|
||||
|
||||
for idx, (seam_mask, size, corner) in enumerate(
|
||||
zip(seam_masks, sizes, corners)):
|
||||
if idx+1 > len(colors):
|
||||
raise ValueError("Not enough default colors! Pass additional "
|
||||
"colors to \"colors\" parameter")
|
||||
one_color_img = create_img_by_size(size, colors[idx])
|
||||
blender.feed(one_color_img, seam_mask, corner)
|
||||
|
||||
return blender.blend()
|
||||
for idx, size in enumerate(sizes):
|
||||
if idx+1 > len(colors):
|
||||
raise ValueError("Not enough default colors! Pass additional "
|
||||
"colors to \"colors\" parameter")
|
||||
yield create_img_by_size(size, colors[idx])
|
||||
|
||||
|
||||
def create_img_by_size(size, color=(0, 0, 0)):
|
||||
|
@ -8,7 +8,7 @@ from .camera_estimator import CameraEstimator
|
||||
from .camera_adjuster import CameraAdjuster
|
||||
from .camera_wave_corrector import WaveCorrector
|
||||
from .warper import Warper
|
||||
from .panorama_estimation import estimate_final_panorama_dimensions
|
||||
from .cropper import Cropper
|
||||
from .exposure_error_compensator import ExposureErrorCompensator
|
||||
from .seam_finder import SeamFinder
|
||||
from .blender import Blender
|
||||
@ -33,6 +33,7 @@ class Stitcher:
|
||||
"wave_correct_kind": WaveCorrector.DEFAULT_WAVE_CORRECTION,
|
||||
"warper_type": Warper.DEFAULT_WARP_TYPE,
|
||||
"low_megapix": ImageHandler.DEFAULT_LOW_MEGAPIX,
|
||||
"crop": Cropper.DEFAULT_CROP,
|
||||
"compensator": ExposureErrorCompensator.DEFAULT_COMPENSATOR,
|
||||
"nr_feeds": ExposureErrorCompensator.DEFAULT_NR_FEEDS,
|
||||
"block_size": ExposureErrorCompensator.DEFAULT_BLOCK_SIZE,
|
||||
@ -68,6 +69,7 @@ class Stitcher:
|
||||
CameraAdjuster(args.adjuster, args.refinement_mask)
|
||||
self.wave_corrector = WaveCorrector(args.wave_correct_kind)
|
||||
self.warper = Warper(args.warper_type)
|
||||
self.cropper = Cropper(args.crop)
|
||||
self.compensator = \
|
||||
ExposureErrorCompensator(args.compensator, args.nr_feeds,
|
||||
args.block_size)
|
||||
@ -77,7 +79,6 @@ class Stitcher:
|
||||
|
||||
def stitch(self, img_names):
|
||||
self.initialize_registration(img_names)
|
||||
|
||||
imgs = self.resize_medium_resolution()
|
||||
features = self.find_features(imgs)
|
||||
matches = self.match_features(features)
|
||||
@ -85,22 +86,26 @@ class Stitcher:
|
||||
cameras = self.estimate_camera_parameters(features, matches)
|
||||
cameras = self.refine_camera_parameters(features, matches, cameras)
|
||||
cameras = self.perform_wave_correction(cameras)
|
||||
panorama_scale, panorama_corners, panorama_sizes = \
|
||||
self.estimate_final_panorama_dimensions(cameras)
|
||||
|
||||
self.initialize_composition(panorama_corners, panorama_sizes)
|
||||
self.estimate_scale(cameras)
|
||||
|
||||
imgs = self.resize_low_resolution(imgs)
|
||||
imgs = self.warp_low_resolution_images(imgs, cameras, panorama_scale)
|
||||
self.estimate_exposure_errors(imgs)
|
||||
seam_masks = self.find_seam_masks(imgs)
|
||||
imgs, masks, corners, sizes = self.warp_low_resolution(imgs, cameras)
|
||||
self.prepare_cropper(imgs, masks, corners, sizes)
|
||||
imgs, masks, corners, sizes = \
|
||||
self.crop_low_resolution(imgs, masks, corners, sizes)
|
||||
self.estimate_exposure_errors(corners, imgs, masks)
|
||||
seam_masks = self.find_seam_masks(imgs, corners, masks)
|
||||
|
||||
imgs = self.resize_final_resolution()
|
||||
imgs = self.warp_final_resolution_images(imgs, cameras, panorama_scale)
|
||||
imgs = self.compensate_exposure_errors(imgs)
|
||||
imgs, masks, corners, sizes = self.warp_final_resolution(imgs, cameras)
|
||||
imgs, masks, corners, sizes = \
|
||||
self.crop_final_resolution(imgs, masks, corners, sizes)
|
||||
self.set_masks(masks)
|
||||
imgs = self.compensate_exposure_errors(corners, imgs)
|
||||
seam_masks = self.resize_seam_masks(seam_masks)
|
||||
self.blend_images(imgs, seam_masks)
|
||||
|
||||
self.initialize_composition(corners, sizes)
|
||||
self.blend_images(imgs, seam_masks, corners)
|
||||
return self.create_final_panorama()
|
||||
|
||||
def initialize_registration(self, img_names):
|
||||
@ -132,9 +137,77 @@ class Stitcher:
|
||||
def perform_wave_correction(self, cameras):
|
||||
return self.wave_corrector.correct(cameras)
|
||||
|
||||
def estimate_final_panorama_dimensions(self, cameras):
|
||||
return estimate_final_panorama_dimensions(cameras, self.warper,
|
||||
self.img_handler)
|
||||
def estimate_scale(self, cameras):
|
||||
self.warper.set_scale(cameras)
|
||||
|
||||
def resize_low_resolution(self, imgs=None):
|
||||
return list(self.img_handler.resize_to_low_resolution(imgs))
|
||||
|
||||
def warp_low_resolution(self, imgs, cameras):
|
||||
sizes = self.img_handler.get_low_img_sizes()
|
||||
camera_aspect = self.img_handler.get_medium_to_low_ratio()
|
||||
imgs, masks, corners, sizes = \
|
||||
self.warp(imgs, cameras, sizes, camera_aspect)
|
||||
return list(imgs), list(masks), corners, sizes
|
||||
|
||||
def warp_final_resolution(self, imgs, cameras):
|
||||
sizes = self.img_handler.get_final_img_sizes()
|
||||
camera_aspect = self.img_handler.get_medium_to_final_ratio()
|
||||
return self.warp(imgs, cameras, sizes, camera_aspect)
|
||||
|
||||
def warp(self, imgs, cameras, sizes, aspect=1):
|
||||
imgs = self.warper.warp_images(imgs, cameras, aspect)
|
||||
masks = self.warper.create_and_warp_masks(sizes, cameras, aspect)
|
||||
corners, sizes = self.warper.warp_rois(sizes, cameras, aspect)
|
||||
return imgs, masks, corners, sizes
|
||||
|
||||
def prepare_cropper(self, imgs, masks, corners, sizes):
|
||||
self.cropper.prepare(imgs, masks, corners, sizes)
|
||||
|
||||
def crop_low_resolution(self, imgs, masks, corners, sizes):
|
||||
imgs, masks, corners, sizes = self.crop(imgs, masks, corners, sizes)
|
||||
return list(imgs), list(masks), corners, sizes
|
||||
|
||||
def crop_final_resolution(self, imgs, masks, corners, sizes):
|
||||
lir_aspect = self.img_handler.get_low_to_final_ratio()
|
||||
return self.crop(imgs, masks, corners, sizes, lir_aspect)
|
||||
|
||||
def crop(self, imgs, masks, corners, sizes, aspect=1):
|
||||
masks = self.cropper.crop_images(masks, aspect)
|
||||
imgs = self.cropper.crop_images(imgs, aspect)
|
||||
corners, sizes = self.cropper.crop_rois(corners, sizes, aspect)
|
||||
return imgs, masks, corners, sizes
|
||||
|
||||
def estimate_exposure_errors(self, corners, imgs, masks):
|
||||
self.compensator.feed(corners, imgs, masks)
|
||||
|
||||
def find_seam_masks(self, imgs, corners, masks):
|
||||
return self.seam_finder.find(imgs, corners, masks)
|
||||
|
||||
def resize_final_resolution(self):
|
||||
return self.img_handler.resize_to_final_resolution()
|
||||
|
||||
def compensate_exposure_errors(self, corners, imgs):
|
||||
for idx, (corner, img) in enumerate(zip(corners, imgs)):
|
||||
yield self.compensator.apply(idx, corner, img, self.get_mask(idx))
|
||||
|
||||
def resize_seam_masks(self, seam_masks):
|
||||
for idx, seam_mask in enumerate(seam_masks):
|
||||
yield SeamFinder.resize(seam_mask, self.get_mask(idx))
|
||||
|
||||
def set_masks(self, mask_generator):
|
||||
self.masks = mask_generator
|
||||
self.mask_index = -1
|
||||
|
||||
def get_mask(self, idx):
|
||||
if idx == self.mask_index + 1:
|
||||
self.mask_index += 1
|
||||
self.mask = next(self.masks)
|
||||
return self.mask
|
||||
elif idx == self.mask_index:
|
||||
return self.mask
|
||||
else:
|
||||
raise StitchingError("Invalid Mask Index!")
|
||||
|
||||
def initialize_composition(self, corners, sizes):
|
||||
if self.timelapser.do_timelapse:
|
||||
@ -142,66 +215,22 @@ class Stitcher:
|
||||
else:
|
||||
self.blender.prepare(corners, sizes)
|
||||
|
||||
def resize_low_resolution(self, imgs=None):
|
||||
return list(self.img_handler.resize_to_low_resolution(imgs))
|
||||
|
||||
def warp_low_resolution_images(self, imgs, cameras, final_scale):
|
||||
camera_aspect = self.img_handler.get_medium_to_low_ratio()
|
||||
scale = final_scale * self.img_handler.get_final_to_low_ratio()
|
||||
return list(self.warp_images(imgs, cameras, scale, camera_aspect))
|
||||
|
||||
def warp_final_resolution_images(self, imgs, cameras, scale):
|
||||
camera_aspect = self.img_handler.get_medium_to_final_ratio()
|
||||
return self.warp_images(imgs, cameras, scale, camera_aspect)
|
||||
|
||||
def warp_images(self, imgs, cameras, scale, aspect=1):
|
||||
self._masks = []
|
||||
self._corners = []
|
||||
for img_warped, mask_warped, corner in \
|
||||
self.warper.warp_images_and_image_masks(
|
||||
imgs, cameras, scale, aspect
|
||||
):
|
||||
self._masks.append(mask_warped)
|
||||
self._corners.append(corner)
|
||||
yield img_warped
|
||||
|
||||
def estimate_exposure_errors(self, imgs):
|
||||
self.compensator.feed(self._corners, imgs, self._masks)
|
||||
|
||||
def find_seam_masks(self, imgs):
|
||||
return self.seam_finder.find(imgs, self._corners, self._masks)
|
||||
|
||||
def resize_final_resolution(self):
|
||||
return self.img_handler.resize_to_final_resolution()
|
||||
|
||||
def compensate_exposure_errors(self, imgs):
|
||||
for idx, img in enumerate(imgs):
|
||||
yield self.compensator.apply(idx, self._corners[idx],
|
||||
img, self._masks[idx])
|
||||
|
||||
def resize_seam_masks(self, seam_masks):
|
||||
for idx, seam_mask in enumerate(seam_masks):
|
||||
yield SeamFinder.resize(seam_mask, self._masks[idx])
|
||||
|
||||
def blend_images(self, imgs, masks):
|
||||
for idx, (img, mask) in enumerate(zip(imgs, masks)):
|
||||
def blend_images(self, imgs, masks, corners):
|
||||
for idx, (img, mask, corner) in enumerate(zip(imgs, masks, corners)):
|
||||
if self.timelapser.do_timelapse:
|
||||
self.timelapser.process_and_save_frame(
|
||||
self.img_handler.img_names[idx], img, self._corners[idx]
|
||||
self.img_handler.img_names[idx], img, corner
|
||||
)
|
||||
else:
|
||||
self.blender.feed(img, mask, self._corners[idx])
|
||||
self.blender.feed(img, mask, corner)
|
||||
|
||||
def create_final_panorama(self):
|
||||
if not self.timelapser.do_timelapse:
|
||||
return self.blender.blend()
|
||||
panorama, _ = self.blender.blend()
|
||||
return panorama
|
||||
|
||||
@staticmethod
|
||||
def validate_kwargs(kwargs):
|
||||
for arg in kwargs:
|
||||
if arg not in Stitcher.DEFAULT_SETTINGS:
|
||||
raise StitchingError("Invalid Argument: " + arg)
|
||||
|
||||
def collect_garbage(self):
|
||||
del self.img_handler.img_names, self.img_handler.img_sizes,
|
||||
del self._corners, self._masks
|
||||
|
@ -44,13 +44,12 @@ class Subsetter:
|
||||
indices = cv.detail.leaveBiggestComponent(features,
|
||||
pairwise_matches,
|
||||
self.confidence_threshold)
|
||||
indices_as_list = [int(idx) for idx in list(indices[:, 0])]
|
||||
|
||||
if len(indices_as_list) < 2:
|
||||
if len(indices) < 2:
|
||||
raise StitchingError("No match exceeds the "
|
||||
"given confidence theshold.")
|
||||
|
||||
return indices_as_list
|
||||
return indices
|
||||
|
||||
@staticmethod
|
||||
def subset_list(list_to_subset, indices):
|
||||
|
@ -7,9 +7,8 @@ import cv2 as cv
|
||||
sys.path.insert(0, os.path.abspath(os.path.join(os.path.dirname(__file__),
|
||||
'..', '..')))
|
||||
|
||||
from opencv_stitching.megapix_scaler import MegapixScaler
|
||||
from opencv_stitching.megapix_downscaler import MegapixDownscaler
|
||||
#%%
|
||||
from opencv_stitching.megapix_scaler import MegapixScaler, MegapixDownscaler
|
||||
# %%
|
||||
|
||||
|
||||
class TestScaler(unittest.TestCase):
|
||||
|
@ -14,6 +14,7 @@ from stitching_detailed import main
|
||||
|
||||
class TestStitcher(unittest.TestCase):
|
||||
|
||||
@unittest.skip("skip performance test (not needed in every run)")
|
||||
def test_performance(self):
|
||||
|
||||
print("Run new Stitcher class:")
|
||||
@ -25,7 +26,6 @@ class TestStitcher(unittest.TestCase):
|
||||
stitcher.stitch(["boat5.jpg", "boat2.jpg",
|
||||
"boat3.jpg", "boat4.jpg",
|
||||
"boat1.jpg", "boat6.jpg"])
|
||||
stitcher.collect_garbage()
|
||||
|
||||
_, peak_memory = tracemalloc.get_traced_memory()
|
||||
tracemalloc.stop()
|
||||
|
@ -70,8 +70,8 @@ class TestImageRegistration(unittest.TestCase):
|
||||
indices_to_delete = subsetter.get_indices_to_delete(len(img_names),
|
||||
indices)
|
||||
|
||||
self.assertEqual(indices, [2, 3, 4])
|
||||
self.assertEqual(indices_to_delete, [0, 1])
|
||||
np.testing.assert_array_equal(indices, np.array([2, 3, 4]))
|
||||
np.testing.assert_array_equal(indices_to_delete, np.array([0, 1]))
|
||||
|
||||
subsetted_image_names = subsetter.subset_list(img_names, indices)
|
||||
self.assertEqual(subsetted_image_names,
|
||||
|
@ -15,7 +15,7 @@ from opencv_stitching.stitcher import Stitcher
|
||||
class TestStitcher(unittest.TestCase):
|
||||
|
||||
def test_stitcher_aquaduct(self):
|
||||
stitcher = Stitcher(n_features=250)
|
||||
stitcher = Stitcher(nfeatures=250)
|
||||
result = stitcher.stitch(["s1.jpg", "s2.jpg"])
|
||||
cv.imwrite("result.jpg", result)
|
||||
|
||||
@ -30,7 +30,7 @@ class TestStitcher(unittest.TestCase):
|
||||
"wave_correct_kind": "no",
|
||||
"finder": "dp_colorgrad",
|
||||
"compensator": "no",
|
||||
"conf_thresh": 0.3}
|
||||
"confidence_threshold": 0.3}
|
||||
|
||||
stitcher = Stitcher(**settings)
|
||||
result = stitcher.stitch(["boat5.jpg", "boat2.jpg",
|
||||
@ -49,7 +49,7 @@ class TestStitcher(unittest.TestCase):
|
||||
settings = {"warper_type": "compressedPlaneA2B1",
|
||||
"finder": "dp_colorgrad",
|
||||
"compensator": "channel_blocks",
|
||||
"conf_thresh": 0.3}
|
||||
"confidence_threshold": 0.3}
|
||||
|
||||
stitcher = Stitcher(**settings)
|
||||
result = stitcher.stitch(["boat5.jpg", "boat2.jpg",
|
||||
@ -64,7 +64,7 @@ class TestStitcher(unittest.TestCase):
|
||||
atol=max_image_shape_derivation)
|
||||
|
||||
def test_stitcher_boat_aquaduct_subset(self):
|
||||
settings = {"final_megapix": 1}
|
||||
settings = {"final_megapix": 1, "crop": True}
|
||||
|
||||
stitcher = Stitcher(**settings)
|
||||
result = stitcher.stitch(["boat5.jpg",
|
||||
@ -76,7 +76,7 @@ class TestStitcher(unittest.TestCase):
|
||||
|
||||
max_image_shape_derivation = 100
|
||||
np.testing.assert_allclose(result.shape[:2],
|
||||
(839, 3384),
|
||||
(705, 3374),
|
||||
atol=max_image_shape_derivation)
|
||||
|
||||
def test_stitcher_budapest(self):
|
||||
|
@ -1,3 +1,5 @@
|
||||
from statistics import median
|
||||
|
||||
import cv2 as cv
|
||||
import numpy as np
|
||||
|
||||
@ -15,48 +17,54 @@ class Warper:
|
||||
|
||||
DEFAULT_WARP_TYPE = 'spherical'
|
||||
|
||||
def __init__(self, warper_type=DEFAULT_WARP_TYPE, scale=1):
|
||||
def __init__(self, warper_type=DEFAULT_WARP_TYPE):
|
||||
self.warper_type = warper_type
|
||||
self.warper = cv.PyRotationWarper(warper_type, scale)
|
||||
self.scale = scale
|
||||
self.scale = None
|
||||
|
||||
def warp_images_and_image_masks(self, imgs, cameras, scale=None, aspect=1):
|
||||
self.update_scale(scale)
|
||||
def set_scale(self, cameras):
|
||||
focals = [cam.focal for cam in cameras]
|
||||
self.scale = median(focals)
|
||||
|
||||
def warp_images(self, imgs, cameras, aspect=1):
|
||||
for img, camera in zip(imgs, cameras):
|
||||
yield self.warp_image_and_image_mask(img, camera, scale, aspect)
|
||||
yield self.warp_image(img, camera, aspect)
|
||||
|
||||
def warp_image_and_image_mask(self, img, camera, scale=None, aspect=1):
|
||||
self.update_scale(scale)
|
||||
corner, img_warped = self.warp_image(img, camera, aspect)
|
||||
mask = 255 * np.ones((img.shape[0], img.shape[1]), np.uint8)
|
||||
_, mask_warped = self.warp_image(mask, camera, aspect, mask=True)
|
||||
return img_warped, mask_warped, corner
|
||||
def warp_image(self, img, camera, aspect=1):
|
||||
warper = cv.PyRotationWarper(self.warper_type, self.scale*aspect)
|
||||
_, warped_image = warper.warp(img,
|
||||
Warper.get_K(camera, aspect),
|
||||
camera.R,
|
||||
cv.INTER_LINEAR,
|
||||
cv.BORDER_REFLECT)
|
||||
return warped_image
|
||||
|
||||
def warp_image(self, image, camera, aspect=1, mask=False):
|
||||
if mask:
|
||||
interp_mode = cv.INTER_NEAREST
|
||||
border_mode = cv.BORDER_CONSTANT
|
||||
else:
|
||||
interp_mode = cv.INTER_LINEAR
|
||||
border_mode = cv.BORDER_REFLECT
|
||||
def create_and_warp_masks(self, sizes, cameras, aspect=1):
|
||||
for size, camera in zip(sizes, cameras):
|
||||
yield self.create_and_warp_mask(size, camera, aspect)
|
||||
|
||||
corner, warped_image = self.warper.warp(image,
|
||||
Warper.get_K(camera, aspect),
|
||||
camera.R,
|
||||
interp_mode,
|
||||
border_mode)
|
||||
return corner, warped_image
|
||||
def create_and_warp_mask(self, size, camera, aspect=1):
|
||||
warper = cv.PyRotationWarper(self.warper_type, self.scale*aspect)
|
||||
mask = 255 * np.ones((size[1], size[0]), np.uint8)
|
||||
_, warped_mask = warper.warp(mask,
|
||||
Warper.get_K(camera, aspect),
|
||||
camera.R,
|
||||
cv.INTER_NEAREST,
|
||||
cv.BORDER_CONSTANT)
|
||||
return warped_mask
|
||||
|
||||
def warp_roi(self, width, height, camera, scale=None, aspect=1):
|
||||
self.update_scale(scale)
|
||||
roi = (width, height)
|
||||
def warp_rois(self, sizes, cameras, aspect=1):
|
||||
roi_corners = []
|
||||
roi_sizes = []
|
||||
for size, camera in zip(sizes, cameras):
|
||||
roi = self.warp_roi(size, camera, aspect)
|
||||
roi_corners.append(roi[0:2])
|
||||
roi_sizes.append(roi[2:4])
|
||||
return roi_corners, roi_sizes
|
||||
|
||||
def warp_roi(self, size, camera, aspect=1):
|
||||
warper = cv.PyRotationWarper(self.warper_type, self.scale*aspect)
|
||||
K = Warper.get_K(camera, aspect)
|
||||
return self.warper.warpRoi(roi, K, camera.R)
|
||||
|
||||
def update_scale(self, scale):
|
||||
if scale is not None and scale != self.scale:
|
||||
self.warper = cv.PyRotationWarper(self.warper_type, scale) # setScale not working: https://docs.opencv.org/4.x/d5/d76/classcv_1_1PyRotationWarper.html#a90b000bb75f95294f9b0b6ec9859eb55
|
||||
self.scale = scale
|
||||
return warper.warpRoi(size, K, camera.R)
|
||||
|
||||
@staticmethod
|
||||
def get_K(camera, aspect=1):
|
||||
|
@ -23,6 +23,7 @@ from opencv_stitching.camera_estimator import CameraEstimator
|
||||
from opencv_stitching.camera_adjuster import CameraAdjuster
|
||||
from opencv_stitching.camera_wave_corrector import WaveCorrector
|
||||
from opencv_stitching.warper import Warper
|
||||
from opencv_stitching.cropper import Cropper
|
||||
from opencv_stitching.exposure_error_compensator import ExposureErrorCompensator # noqa
|
||||
from opencv_stitching.seam_finder import SeamFinder
|
||||
from opencv_stitching.blender import Blender
|
||||
@ -72,9 +73,7 @@ parser.add_argument(
|
||||
type=int, dest='range_width'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--try_use_gpu',
|
||||
action='store',
|
||||
default=False,
|
||||
'--try_use_gpu', action='store', default=False,
|
||||
help="Try to use CUDA. The default value is no. "
|
||||
"All default values are for CPU mode.",
|
||||
type=bool, dest='try_use_gpu'
|
||||
@ -146,6 +145,13 @@ parser.add_argument(
|
||||
"The default is %s Mpx." % ImageHandler.DEFAULT_LOW_MEGAPIX,
|
||||
type=float, dest='low_megapix'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--crop', action='store', default=Cropper.DEFAULT_CROP,
|
||||
help="Crop black borders around images caused by warping using the "
|
||||
"largest interior rectangle. "
|
||||
"Default is '%s'." % Cropper.DEFAULT_CROP,
|
||||
type=bool, dest='crop'
|
||||
)
|
||||
parser.add_argument(
|
||||
'--compensator', action='store',
|
||||
default=ExposureErrorCompensator.DEFAULT_COMPENSATOR,
|
||||
|
Loading…
Reference in New Issue
Block a user