mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 09:25:45 +08:00
Merge pull request #17371 from l-bat:nms_model
* Fix NMS bug in DetectionModel * Fixed comments * Refactoring
This commit is contained in:
parent
515a06cedf
commit
d3aaf2d3a3
@ -595,6 +595,8 @@ CV__DNN_INLINE_NS_BEGIN
|
||||
class CV_EXPORTS RegionLayer : public Layer
|
||||
{
|
||||
public:
|
||||
float nmsThreshold;
|
||||
|
||||
static Ptr<RegionLayer> create(const LayerParams& params);
|
||||
};
|
||||
|
||||
|
@ -69,7 +69,7 @@ class RegionLayerImpl CV_FINAL : public RegionLayer
|
||||
{
|
||||
public:
|
||||
int coords, classes, anchors, classfix;
|
||||
float thresh, nmsThreshold, scale_x_y;
|
||||
float thresh, scale_x_y;
|
||||
bool useSoftmax, useLogistic;
|
||||
#ifdef HAVE_OPENCL
|
||||
UMat blob_umat;
|
||||
|
@ -236,10 +236,27 @@ void SegmentationModel::segment(InputArray frame, OutputArray mask)
|
||||
}
|
||||
}
|
||||
|
||||
DetectionModel::DetectionModel(const String& model, const String& config)
|
||||
: Model(model, config) {};
|
||||
void disableRegionNMS(Net& net)
|
||||
{
|
||||
for (String& name : net.getUnconnectedOutLayersNames())
|
||||
{
|
||||
int layerId = net.getLayerId(name);
|
||||
Ptr<RegionLayer> layer = net.getLayer(layerId).dynamicCast<RegionLayer>();
|
||||
if (!layer.empty())
|
||||
{
|
||||
layer->nmsThreshold = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
DetectionModel::DetectionModel(const Net& network) : Model(network) {};
|
||||
DetectionModel::DetectionModel(const String& model, const String& config)
|
||||
: Model(model, config) {
|
||||
disableRegionNMS(*this);
|
||||
}
|
||||
|
||||
DetectionModel::DetectionModel(const Net& network) : Model(network) {
|
||||
disableRegionNMS(*this);
|
||||
}
|
||||
|
||||
void DetectionModel::detect(InputArray frame, CV_OUT std::vector<int>& classIds,
|
||||
CV_OUT std::vector<float>& confidences, CV_OUT std::vector<Rect>& boxes,
|
||||
@ -264,9 +281,6 @@ void DetectionModel::detect(InputArray frame, CV_OUT std::vector<int>& classIds,
|
||||
int lastLayerId = getLayerId(layerNames.back());
|
||||
Ptr<Layer> lastLayer = getLayer(lastLayerId);
|
||||
|
||||
std::vector<int> predClassIds;
|
||||
std::vector<Rect> predBoxes;
|
||||
std::vector<float> predConf;
|
||||
if (lastLayer->type == "DetectionOutput")
|
||||
{
|
||||
// Network produces output blob with a shape 1x1xNx7 where N is a number of
|
||||
@ -302,15 +316,18 @@ void DetectionModel::detect(InputArray frame, CV_OUT std::vector<int>& classIds,
|
||||
top = std::max(0, std::min(top, frameHeight - 1));
|
||||
width = std::max(1, std::min(width, frameWidth - left));
|
||||
height = std::max(1, std::min(height, frameHeight - top));
|
||||
predBoxes.emplace_back(left, top, width, height);
|
||||
boxes.emplace_back(left, top, width, height);
|
||||
|
||||
predClassIds.push_back(static_cast<int>(data[j + 1]));
|
||||
predConf.push_back(conf);
|
||||
classIds.push_back(static_cast<int>(data[j + 1]));
|
||||
confidences.push_back(conf);
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (lastLayer->type == "Region")
|
||||
{
|
||||
std::vector<int> predClassIds;
|
||||
std::vector<Rect> predBoxes;
|
||||
std::vector<float> predConf;
|
||||
for (int i = 0; i < detections.size(); ++i)
|
||||
{
|
||||
// Network produces output blob with a shape NxC where N is a number of
|
||||
@ -343,35 +360,45 @@ void DetectionModel::detect(InputArray frame, CV_OUT std::vector<int>& classIds,
|
||||
predBoxes.emplace_back(left, top, width, height);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error(Error::StsNotImplemented, "Unknown output layer type: \"" + lastLayer->type + "\"");
|
||||
|
||||
if (nmsThreshold)
|
||||
{
|
||||
std::vector<int> indices;
|
||||
NMSBoxes(predBoxes, predConf, confThreshold, nmsThreshold, indices);
|
||||
|
||||
boxes.reserve(indices.size());
|
||||
confidences.reserve(indices.size());
|
||||
classIds.reserve(indices.size());
|
||||
|
||||
for (int idx : indices)
|
||||
if (nmsThreshold)
|
||||
{
|
||||
boxes.push_back(predBoxes[idx]);
|
||||
confidences.push_back(predConf[idx]);
|
||||
classIds.push_back(predClassIds[idx]);
|
||||
std::map<int, std::vector<size_t> > class2indices;
|
||||
for (size_t i = 0; i < predClassIds.size(); i++)
|
||||
{
|
||||
if (predConf[i] >= confThreshold)
|
||||
{
|
||||
class2indices[predClassIds[i]].push_back(i);
|
||||
}
|
||||
}
|
||||
for (const auto& it : class2indices)
|
||||
{
|
||||
std::vector<Rect> localBoxes;
|
||||
std::vector<float> localConfidences;
|
||||
for (size_t idx : it.second)
|
||||
{
|
||||
localBoxes.push_back(predBoxes[idx]);
|
||||
localConfidences.push_back(predConf[idx]);
|
||||
}
|
||||
std::vector<int> indices;
|
||||
NMSBoxes(localBoxes, localConfidences, confThreshold, nmsThreshold, indices);
|
||||
classIds.resize(classIds.size() + indices.size(), it.first);
|
||||
for (int idx : indices)
|
||||
{
|
||||
boxes.push_back(localBoxes[idx]);
|
||||
confidences.push_back(localConfidences[idx]);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
boxes = std::move(predBoxes);
|
||||
classIds = std::move(predClassIds);
|
||||
confidences = std::move(predConf);
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
boxes = std::move(predBoxes);
|
||||
classIds = std::move(predClassIds);
|
||||
confidences = std::move(predConf);
|
||||
}
|
||||
|
||||
|
||||
|
||||
CV_Error(Error::StsNotImplemented, "Unknown output layer type: \"" + lastLayer->type + "\"");
|
||||
}
|
||||
|
||||
}} // namespace
|
||||
|
Loading…
Reference in New Issue
Block a user