mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
core(test): refactor PCA test
- CV_L2 -> relative NORM_L2 - eigenEps: 1e-6 ==> 1e-4 - evalEps: 1e-6 ==> 1e-5 - evecEps: 1e-3 ==> 5e-3 - RNG seed: 12345 - drop non-informative legacy test code (ts->printf, etc)
This commit is contained in:
parent
611cf8d86f
commit
d48d2d7fe2
@ -286,258 +286,188 @@ void Core_ReduceTest::run( int )
|
||||
|
||||
#define CHECK_C
|
||||
|
||||
class Core_PCATest : public cvtest::BaseTest
|
||||
TEST(Core_PCA, accuracy)
|
||||
{
|
||||
public:
|
||||
Core_PCATest() {}
|
||||
protected:
|
||||
void run(int)
|
||||
const Size sz(200, 500);
|
||||
|
||||
double diffPrjEps, diffBackPrjEps,
|
||||
prjEps, backPrjEps,
|
||||
evalEps, evecEps;
|
||||
int maxComponents = 100;
|
||||
double retainedVariance = 0.95;
|
||||
Mat rPoints(sz, CV_32FC1), rTestPoints(sz, CV_32FC1);
|
||||
RNG rng(12345);
|
||||
|
||||
rng.fill( rPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) );
|
||||
rng.fill( rTestPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) );
|
||||
|
||||
PCA rPCA( rPoints, Mat(), CV_PCA_DATA_AS_ROW, maxComponents ), cPCA;
|
||||
|
||||
// 1. check C++ PCA & ROW
|
||||
Mat rPrjTestPoints = rPCA.project( rTestPoints );
|
||||
Mat rBackPrjTestPoints = rPCA.backProject( rPrjTestPoints );
|
||||
|
||||
Mat avg(1, sz.width, CV_32FC1 );
|
||||
cv::reduce( rPoints, avg, 0, CV_REDUCE_AVG );
|
||||
Mat Q = rPoints - repeat( avg, rPoints.rows, 1 ), Qt = Q.t(), eval, evec;
|
||||
Q = Qt * Q;
|
||||
Q = Q /(float)rPoints.rows;
|
||||
|
||||
eigen( Q, eval, evec );
|
||||
/*SVD svd(Q);
|
||||
evec = svd.vt;
|
||||
eval = svd.w;*/
|
||||
|
||||
Mat subEval( maxComponents, 1, eval.type(), eval.ptr() ),
|
||||
subEvec( maxComponents, evec.cols, evec.type(), evec.ptr() );
|
||||
|
||||
#ifdef CHECK_C
|
||||
Mat prjTestPoints, backPrjTestPoints, cPoints = rPoints.t(), cTestPoints = rTestPoints.t();
|
||||
CvMat _points, _testPoints, _avg, _eval, _evec, _prjTestPoints, _backPrjTestPoints;
|
||||
#endif
|
||||
|
||||
// check eigen()
|
||||
double eigenEps = 1e-4;
|
||||
double err;
|
||||
for(int i = 0; i < Q.rows; i++ )
|
||||
{
|
||||
const Size sz(200, 500);
|
||||
Mat v = evec.row(i).t();
|
||||
Mat Qv = Q * v;
|
||||
|
||||
double diffPrjEps, diffBackPrjEps,
|
||||
prjEps, backPrjEps,
|
||||
evalEps, evecEps;
|
||||
int maxComponents = 100;
|
||||
double retainedVariance = 0.95;
|
||||
Mat rPoints(sz, CV_32FC1), rTestPoints(sz, CV_32FC1);
|
||||
RNG& rng = ts->get_rng();
|
||||
|
||||
rng.fill( rPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) );
|
||||
rng.fill( rTestPoints, RNG::UNIFORM, Scalar::all(0.0), Scalar::all(1.0) );
|
||||
|
||||
PCA rPCA( rPoints, Mat(), CV_PCA_DATA_AS_ROW, maxComponents ), cPCA;
|
||||
|
||||
// 1. check C++ PCA & ROW
|
||||
Mat rPrjTestPoints = rPCA.project( rTestPoints );
|
||||
Mat rBackPrjTestPoints = rPCA.backProject( rPrjTestPoints );
|
||||
|
||||
Mat avg(1, sz.width, CV_32FC1 );
|
||||
cv::reduce( rPoints, avg, 0, CV_REDUCE_AVG );
|
||||
Mat Q = rPoints - repeat( avg, rPoints.rows, 1 ), Qt = Q.t(), eval, evec;
|
||||
Q = Qt * Q;
|
||||
Q = Q /(float)rPoints.rows;
|
||||
|
||||
eigen( Q, eval, evec );
|
||||
/*SVD svd(Q);
|
||||
evec = svd.vt;
|
||||
eval = svd.w;*/
|
||||
|
||||
Mat subEval( maxComponents, 1, eval.type(), eval.ptr() ),
|
||||
subEvec( maxComponents, evec.cols, evec.type(), evec.ptr() );
|
||||
|
||||
#ifdef CHECK_C
|
||||
Mat prjTestPoints, backPrjTestPoints, cPoints = rPoints.t(), cTestPoints = rTestPoints.t();
|
||||
CvMat _points, _testPoints, _avg, _eval, _evec, _prjTestPoints, _backPrjTestPoints;
|
||||
#endif
|
||||
|
||||
// check eigen()
|
||||
double eigenEps = 1e-6;
|
||||
double err;
|
||||
for(int i = 0; i < Q.rows; i++ )
|
||||
Mat lv = eval.at<float>(i,0) * v;
|
||||
err = cvtest::norm(Qv, lv, NORM_L2 | NORM_RELATIVE);
|
||||
EXPECT_LE(err, eigenEps) << "bad accuracy of eigen(); i = " << i;
|
||||
}
|
||||
// check pca eigenvalues
|
||||
evalEps = 1e-5, evecEps = 5e-3;
|
||||
err = cvtest::norm(rPCA.eigenvalues, subEval, NORM_L2 | NORM_RELATIVE);
|
||||
EXPECT_LE(err , evalEps) << "pca.eigenvalues is incorrect (CV_PCA_DATA_AS_ROW)";
|
||||
// check pca eigenvectors
|
||||
for(int i = 0; i < subEvec.rows; i++)
|
||||
{
|
||||
Mat r0 = rPCA.eigenvectors.row(i);
|
||||
Mat r1 = subEvec.row(i);
|
||||
// eigenvectors have normalized length, but both directions v and -v are valid
|
||||
double err1 = cvtest::norm(r0, r1, NORM_L2 | NORM_RELATIVE);
|
||||
double err2 = cvtest::norm(r0, -r1, NORM_L2 | NORM_RELATIVE);
|
||||
err = std::min(err1, err2);
|
||||
if (err > evecEps)
|
||||
{
|
||||
Mat v = evec.row(i).t();
|
||||
Mat Qv = Q * v;
|
||||
Mat tmp;
|
||||
absdiff(rPCA.eigenvectors, subEvec, tmp);
|
||||
double mval = 0; Point mloc;
|
||||
minMaxLoc(tmp, 0, &mval, 0, &mloc);
|
||||
|
||||
Mat lv = eval.at<float>(i,0) * v;
|
||||
err = cvtest::norm( Qv, lv, NORM_L2 );
|
||||
if( err > eigenEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of eigen(); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
}
|
||||
// check pca eigenvalues
|
||||
evalEps = 1e-6, evecEps = 1e-3;
|
||||
err = cvtest::norm( rPCA.eigenvalues, subEval, NORM_L2 );
|
||||
if( err > evalEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "pca.eigenvalues is incorrect (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
// check pca eigenvectors
|
||||
for(int i = 0; i < subEvec.rows; i++)
|
||||
{
|
||||
Mat r0 = rPCA.eigenvectors.row(i);
|
||||
Mat r1 = subEvec.row(i);
|
||||
err = cvtest::norm( r0, r1, CV_L2 );
|
||||
if( err > evecEps )
|
||||
{
|
||||
r1 *= -1;
|
||||
double err2 = cvtest::norm(r0, r1, CV_L2);
|
||||
if( err2 > evecEps )
|
||||
{
|
||||
Mat tmp;
|
||||
absdiff(rPCA.eigenvectors, subEvec, tmp);
|
||||
double mval = 0; Point mloc;
|
||||
minMaxLoc(tmp, 0, &mval, 0, &mloc);
|
||||
|
||||
ts->printf( cvtest::TS::LOG, "pca.eigenvectors is incorrect (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||||
ts->printf( cvtest::TS::LOG, "max diff is %g at (i=%d, j=%d) (%g vs %g)\n",
|
||||
mval, mloc.y, mloc.x, rPCA.eigenvectors.at<float>(mloc.y, mloc.x),
|
||||
subEvec.at<float>(mloc.y, mloc.x));
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
prjEps = 1.265, backPrjEps = 1.265;
|
||||
for( int i = 0; i < rTestPoints.rows; i++ )
|
||||
{
|
||||
// check pca project
|
||||
Mat subEvec_t = subEvec.t();
|
||||
Mat prj = rTestPoints.row(i) - avg; prj *= subEvec_t;
|
||||
err = cvtest::norm(rPrjTestPoints.row(i), prj, CV_RELATIVE_L2);
|
||||
if( err > prjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
// check pca backProject
|
||||
Mat backPrj = rPrjTestPoints.row(i) * subEvec + avg;
|
||||
err = cvtest::norm( rBackPrjTestPoints.row(i), backPrj, CV_RELATIVE_L2 );
|
||||
if( err > backPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
// 2. check C++ PCA & COL
|
||||
cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, maxComponents );
|
||||
diffPrjEps = 1, diffBackPrjEps = 1;
|
||||
Mat ocvPrjTestPoints = cPCA.project(rTestPoints.t());
|
||||
err = cvtest::norm(cv::abs(ocvPrjTestPoints), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 );
|
||||
if( err > diffPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_COL); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
err = cvtest::norm(cPCA.backProject(ocvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 );
|
||||
if( err > diffBackPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
|
||||
// 3. check C++ PCA w/retainedVariance
|
||||
cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, retainedVariance );
|
||||
diffPrjEps = 1, diffBackPrjEps = 1;
|
||||
Mat rvPrjTestPoints = cPCA.project(rTestPoints.t());
|
||||
|
||||
if( cPCA.eigenvectors.rows > maxComponents)
|
||||
err = cvtest::norm(cv::abs(rvPrjTestPoints.rowRange(0,maxComponents)), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 );
|
||||
else
|
||||
err = cvtest::norm(cv::abs(rvPrjTestPoints), cv::abs(rPrjTestPoints.colRange(0,cPCA.eigenvectors.rows).t()), CV_RELATIVE_L2 );
|
||||
|
||||
if( err > diffPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of project() (CV_PCA_DATA_AS_COL); retainedVariance=0.95; err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
err = cvtest::norm(cPCA.backProject(rvPrjTestPoints), rBackPrjTestPoints.t(), CV_RELATIVE_L2 );
|
||||
if( err > diffBackPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); retainedVariance=0.95; err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
|
||||
#ifdef CHECK_C
|
||||
// 4. check C PCA & ROW
|
||||
_points = rPoints;
|
||||
_testPoints = rTestPoints;
|
||||
_avg = avg;
|
||||
_eval = eval;
|
||||
_evec = evec;
|
||||
prjTestPoints.create(rTestPoints.rows, maxComponents, rTestPoints.type() );
|
||||
backPrjTestPoints.create(rPoints.size(), rPoints.type() );
|
||||
_prjTestPoints = prjTestPoints;
|
||||
_backPrjTestPoints = backPrjTestPoints;
|
||||
|
||||
cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_ROW );
|
||||
cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints );
|
||||
cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints );
|
||||
|
||||
err = cvtest::norm(prjTestPoints, rPrjTestPoints, CV_RELATIVE_L2);
|
||||
if( err > diffPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
err = cvtest::norm(backPrjTestPoints, rBackPrjTestPoints, CV_RELATIVE_L2);
|
||||
if( err > diffBackPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_ROW); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
|
||||
// 5. check C PCA & COL
|
||||
_points = cPoints;
|
||||
_testPoints = cTestPoints;
|
||||
avg = avg.t(); _avg = avg;
|
||||
eval = eval.t(); _eval = eval;
|
||||
evec = evec.t(); _evec = evec;
|
||||
prjTestPoints = prjTestPoints.t(); _prjTestPoints = prjTestPoints;
|
||||
backPrjTestPoints = backPrjTestPoints.t(); _backPrjTestPoints = backPrjTestPoints;
|
||||
|
||||
cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_COL );
|
||||
cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints );
|
||||
cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints );
|
||||
|
||||
err = cvtest::norm(cv::abs(prjTestPoints), cv::abs(rPrjTestPoints.t()), CV_RELATIVE_L2 );
|
||||
if( err > diffPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_COL); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
err = cvtest::norm(backPrjTestPoints, rBackPrjTestPoints.t(), CV_RELATIVE_L2);
|
||||
if( err > diffBackPrjEps )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_COL); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
// Test read and write
|
||||
FileStorage fs( "PCA_store.yml", FileStorage::WRITE );
|
||||
rPCA.write( fs );
|
||||
fs.release();
|
||||
|
||||
PCA lPCA;
|
||||
fs.open( "PCA_store.yml", FileStorage::READ );
|
||||
lPCA.read( fs.root() );
|
||||
err = cvtest::norm( rPCA.eigenvectors, lPCA.eigenvectors, CV_RELATIVE_L2 );
|
||||
if( err > 0 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of write/load functions (YML); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
}
|
||||
err = cvtest::norm( rPCA.eigenvalues, lPCA.eigenvalues, CV_RELATIVE_L2 );
|
||||
if( err > 0 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of write/load functions (YML); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
}
|
||||
err = cvtest::norm( rPCA.mean, lPCA.mean, CV_RELATIVE_L2 );
|
||||
if( err > 0 )
|
||||
{
|
||||
ts->printf( cvtest::TS::LOG, "bad accuracy of write/load functions (YML); err = %f\n", err );
|
||||
ts->set_failed_test_info( cvtest::TS::FAIL_BAD_ACCURACY );
|
||||
EXPECT_LE(err, evecEps) << "pca.eigenvectors is incorrect (CV_PCA_DATA_AS_ROW) at " << i << " "
|
||||
<< cv::format("max diff is %g at (i=%d, j=%d) (%g vs %g)\n",
|
||||
mval, mloc.y, mloc.x, rPCA.eigenvectors.at<float>(mloc.y, mloc.x),
|
||||
subEvec.at<float>(mloc.y, mloc.x))
|
||||
<< "r0=" << r0 << std::endl
|
||||
<< "r1=" << r1 << std::endl
|
||||
<< "err1=" << err1 << " err2=" << err2
|
||||
;
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
prjEps = 1.265, backPrjEps = 1.265;
|
||||
for( int i = 0; i < rTestPoints.rows; i++ )
|
||||
{
|
||||
// check pca project
|
||||
Mat subEvec_t = subEvec.t();
|
||||
Mat prj = rTestPoints.row(i) - avg; prj *= subEvec_t;
|
||||
err = cvtest::norm(rPrjTestPoints.row(i), prj, NORM_L2 | NORM_RELATIVE);
|
||||
if (err < prjEps)
|
||||
{
|
||||
EXPECT_LE(err, prjEps) << "bad accuracy of project() (CV_PCA_DATA_AS_ROW)";
|
||||
continue;
|
||||
}
|
||||
// check pca backProject
|
||||
Mat backPrj = rPrjTestPoints.row(i) * subEvec + avg;
|
||||
err = cvtest::norm(rBackPrjTestPoints.row(i), backPrj, NORM_L2 | NORM_RELATIVE);
|
||||
if (err > backPrjEps)
|
||||
{
|
||||
EXPECT_LE(err, backPrjEps) << "bad accuracy of backProject() (CV_PCA_DATA_AS_ROW)";
|
||||
continue;
|
||||
}
|
||||
}
|
||||
|
||||
// 2. check C++ PCA & COL
|
||||
cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, maxComponents );
|
||||
diffPrjEps = 1, diffBackPrjEps = 1;
|
||||
Mat ocvPrjTestPoints = cPCA.project(rTestPoints.t());
|
||||
err = cvtest::norm(cv::abs(ocvPrjTestPoints), cv::abs(rPrjTestPoints.t()), NORM_L2 | NORM_RELATIVE);
|
||||
ASSERT_LE(err, diffPrjEps) << "bad accuracy of project() (CV_PCA_DATA_AS_COL)";
|
||||
err = cvtest::norm(cPCA.backProject(ocvPrjTestPoints), rBackPrjTestPoints.t(), NORM_L2 | NORM_RELATIVE);
|
||||
ASSERT_LE(err, diffBackPrjEps) << "bad accuracy of backProject() (CV_PCA_DATA_AS_COL)";
|
||||
|
||||
// 3. check C++ PCA w/retainedVariance
|
||||
cPCA( rPoints.t(), Mat(), CV_PCA_DATA_AS_COL, retainedVariance );
|
||||
diffPrjEps = 1, diffBackPrjEps = 1;
|
||||
Mat rvPrjTestPoints = cPCA.project(rTestPoints.t());
|
||||
|
||||
if( cPCA.eigenvectors.rows > maxComponents)
|
||||
err = cvtest::norm(cv::abs(rvPrjTestPoints.rowRange(0,maxComponents)), cv::abs(rPrjTestPoints.t()), NORM_L2 | NORM_RELATIVE);
|
||||
else
|
||||
err = cvtest::norm(cv::abs(rvPrjTestPoints), cv::abs(rPrjTestPoints.colRange(0,cPCA.eigenvectors.rows).t()), NORM_L2 | NORM_RELATIVE);
|
||||
|
||||
ASSERT_LE(err, diffPrjEps) << "bad accuracy of project() (CV_PCA_DATA_AS_COL); retainedVariance=" << retainedVariance;
|
||||
err = cvtest::norm(cPCA.backProject(rvPrjTestPoints), rBackPrjTestPoints.t(), NORM_L2 | NORM_RELATIVE);
|
||||
ASSERT_LE(err, diffBackPrjEps) << "bad accuracy of backProject() (CV_PCA_DATA_AS_COL); retainedVariance=" << retainedVariance;
|
||||
|
||||
#ifdef CHECK_C
|
||||
// 4. check C PCA & ROW
|
||||
_points = rPoints;
|
||||
_testPoints = rTestPoints;
|
||||
_avg = avg;
|
||||
_eval = eval;
|
||||
_evec = evec;
|
||||
prjTestPoints.create(rTestPoints.rows, maxComponents, rTestPoints.type() );
|
||||
backPrjTestPoints.create(rPoints.size(), rPoints.type() );
|
||||
_prjTestPoints = prjTestPoints;
|
||||
_backPrjTestPoints = backPrjTestPoints;
|
||||
|
||||
cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_ROW );
|
||||
cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints );
|
||||
cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints );
|
||||
|
||||
err = cvtest::norm(prjTestPoints, rPrjTestPoints, NORM_L2 | NORM_RELATIVE);
|
||||
ASSERT_LE(err, diffPrjEps) << "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_ROW)";
|
||||
err = cvtest::norm(backPrjTestPoints, rBackPrjTestPoints, NORM_L2 | NORM_RELATIVE);
|
||||
ASSERT_LE(err, diffBackPrjEps) << "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_ROW)";
|
||||
|
||||
// 5. check C PCA & COL
|
||||
_points = cPoints;
|
||||
_testPoints = cTestPoints;
|
||||
avg = avg.t(); _avg = avg;
|
||||
eval = eval.t(); _eval = eval;
|
||||
evec = evec.t(); _evec = evec;
|
||||
prjTestPoints = prjTestPoints.t(); _prjTestPoints = prjTestPoints;
|
||||
backPrjTestPoints = backPrjTestPoints.t(); _backPrjTestPoints = backPrjTestPoints;
|
||||
|
||||
cvCalcPCA( &_points, &_avg, &_eval, &_evec, CV_PCA_DATA_AS_COL );
|
||||
cvProjectPCA( &_testPoints, &_avg, &_evec, &_prjTestPoints );
|
||||
cvBackProjectPCA( &_prjTestPoints, &_avg, &_evec, &_backPrjTestPoints );
|
||||
|
||||
err = cvtest::norm(cv::abs(prjTestPoints), cv::abs(rPrjTestPoints.t()), NORM_L2 | NORM_RELATIVE);
|
||||
ASSERT_LE(err, diffPrjEps) << "bad accuracy of cvProjectPCA() (CV_PCA_DATA_AS_COL)";
|
||||
err = cvtest::norm(backPrjTestPoints, rBackPrjTestPoints.t(), NORM_L2 | NORM_RELATIVE);
|
||||
ASSERT_LE(err, diffBackPrjEps) << "bad accuracy of cvBackProjectPCA() (CV_PCA_DATA_AS_COL)";
|
||||
#endif
|
||||
// Test read and write
|
||||
FileStorage fs( "PCA_store.yml", FileStorage::WRITE );
|
||||
rPCA.write( fs );
|
||||
fs.release();
|
||||
|
||||
PCA lPCA;
|
||||
fs.open( "PCA_store.yml", FileStorage::READ );
|
||||
lPCA.read( fs.root() );
|
||||
err = cvtest::norm(rPCA.eigenvectors, lPCA.eigenvectors, NORM_L2 | NORM_RELATIVE);
|
||||
EXPECT_LE(err, 0) << "bad accuracy of write/load functions (YML)";
|
||||
err = cvtest::norm(rPCA.eigenvalues, lPCA.eigenvalues, NORM_L2 | NORM_RELATIVE);
|
||||
EXPECT_LE(err, 0) << "bad accuracy of write/load functions (YML)";
|
||||
err = cvtest::norm(rPCA.mean, lPCA.mean, NORM_L2 | NORM_RELATIVE);
|
||||
EXPECT_LE(err, 0) << "bad accuracy of write/load functions (YML)";
|
||||
}
|
||||
|
||||
class Core_ArrayOpTest : public cvtest::BaseTest
|
||||
{
|
||||
@ -1227,7 +1157,6 @@ protected:
|
||||
}
|
||||
};
|
||||
|
||||
TEST(Core_PCA, accuracy) { Core_PCATest test; test.safe_run(); }
|
||||
TEST(Core_Reduce, accuracy) { Core_ReduceTest test; test.safe_run(); }
|
||||
TEST(Core_Array, basic_operations) { Core_ArrayOpTest test; test.safe_run(); }
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user