mirror of
https://github.com/opencv/opencv.git
synced 2025-06-07 09:25:45 +08:00
Add readNet* functions which parse models from byte arrays
This commit is contained in:
parent
61d8719b8d
commit
d57e5406f0
@ -644,13 +644,23 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromDarknet(const String &cfgFile, const String &darknetModel = String());
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
|
||||
* @param cfgFile file node to the .cfg file with text description of the network architecture.
|
||||
* @param darknetModel file node to the .weights file with learned network.
|
||||
* @returns Network object that ready to do forward, throw an exception in failure cases.
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromDarknet(const FileNode &cfgFile, const FileNode &darknetModel = FileNode());
|
||||
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
|
||||
* @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
|
||||
* @param bufferModel A buffer contains a content of .weights file with learned network.
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromDarknet(const std::vector<char>& bufferCfg,
|
||||
const std::vector<char>& bufferModel = std::vector<char>());
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://pjreddie.com/darknet/">Darknet</a> model files.
|
||||
* @param bufferCfg A buffer contains a content of .cfg file with text description of the network architecture.
|
||||
* @param lenCfg Number of bytes to read from bufferCfg
|
||||
* @param bufferModel A buffer contains a content of .weights file with learned network.
|
||||
* @param lenModel Number of bytes to read from bufferModel
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg,
|
||||
const char *bufferModel = NULL, size_t lenModel = 0);
|
||||
|
||||
/** @brief Reads a network model stored in <a href="http://caffe.berkeleyvision.org">Caffe</a> framework's format.
|
||||
* @param prototxt path to the .prototxt file with text description of the network architecture.
|
||||
@ -659,6 +669,14 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromCaffe(const String &prototxt, const String &caffeModel = String());
|
||||
|
||||
/** @brief Reads a network model stored in Caffe model in memory.
|
||||
* @param bufferProto buffer containing the content of the .prototxt file
|
||||
* @param bufferModel buffer containing the content of the .caffemodel file
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromCaffe(const std::vector<char>& bufferProto,
|
||||
const std::vector<char>& bufferModel = std::vector<char>());
|
||||
|
||||
/** @brief Reads a network model stored in Caffe model in memory.
|
||||
* @details This is an overloaded member function, provided for convenience.
|
||||
* It differs from the above function only in what argument(s) it accepts.
|
||||
@ -680,6 +698,14 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromTensorflow(const String &model, const String &config = String());
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
|
||||
* @param bufferModel buffer containing the content of the pb file
|
||||
* @param bufferConfig buffer containing the content of the pbtxt file
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNetFromTensorflow(const std::vector<char>& bufferModel,
|
||||
const std::vector<char>& bufferConfig = std::vector<char>());
|
||||
|
||||
/** @brief Reads a network model stored in <a href="https://www.tensorflow.org/">TensorFlow</a> framework's format.
|
||||
* @details This is an overloaded member function, provided for convenience.
|
||||
* It differs from the above function only in what argument(s) it accepts.
|
||||
@ -743,6 +769,18 @@ CV__DNN_EXPERIMENTAL_NS_BEGIN
|
||||
*/
|
||||
CV_EXPORTS_W Net readNet(const String& model, const String& config = "", const String& framework = "");
|
||||
|
||||
/**
|
||||
* @brief Read deep learning network represented in one of the supported formats.
|
||||
* @details This is an overloaded member function, provided for convenience.
|
||||
* It differs from the above function only in what argument(s) it accepts.
|
||||
* @param[in] framework Name of origin framework.
|
||||
* @param[in] bufferModel A buffer with a content of binary file with weights
|
||||
* @param[in] bufferConfig A buffer with a content of text file contains network configuration.
|
||||
* @returns Net object.
|
||||
*/
|
||||
CV_EXPORTS_W Net readNet(const String& framework, const std::vector<char>& bufferModel,
|
||||
const std::vector<char>& bufferConfig = std::vector<char>());
|
||||
|
||||
/** @brief Loads blob which was serialized as torch.Tensor object of Torch7 framework.
|
||||
* @warning This function has the same limitations as readNetFromTorch().
|
||||
*/
|
||||
|
@ -453,6 +453,12 @@ Net readNetFromCaffe(const char *bufferProto, size_t lenProto,
|
||||
return net;
|
||||
}
|
||||
|
||||
Net readNetFromCaffe(const std::vector<char>& bufferProto, const std::vector<char>& bufferModel)
|
||||
{
|
||||
return readNetFromCaffe(&bufferProto[0], bufferProto.size(),
|
||||
bufferModel.empty() ? NULL : &bufferModel[0], bufferModel.size());
|
||||
}
|
||||
|
||||
#endif //HAVE_PROTOBUF
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
|
@ -181,45 +181,71 @@ public:
|
||||
}
|
||||
};
|
||||
|
||||
static Net readNetFromDarknet(std::istream &cfgFile, std::istream &darknetModel)
|
||||
{
|
||||
Net net;
|
||||
DarknetImporter darknetImporter(cfgFile, darknetModel);
|
||||
darknetImporter.populateNet(net);
|
||||
return net;
|
||||
}
|
||||
|
||||
static Net readNetFromDarknet(std::istream &cfgFile)
|
||||
{
|
||||
Net net;
|
||||
DarknetImporter darknetImporter(cfgFile);
|
||||
darknetImporter.populateNet(net);
|
||||
return net;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
Net readNetFromDarknet(const String &cfgFile, const String &darknetModel /*= String()*/)
|
||||
{
|
||||
Net net;
|
||||
std::ifstream cfgStream(cfgFile.c_str());
|
||||
if(!cfgStream.is_open()) {
|
||||
if (!cfgStream.is_open())
|
||||
{
|
||||
CV_Error(cv::Error::StsParseError, "Failed to parse NetParameter file: " + std::string(cfgFile));
|
||||
return net;
|
||||
}
|
||||
DarknetImporter darknetImporter;
|
||||
if (darknetModel != String()) {
|
||||
std::ifstream darknetModelStream(darknetModel.c_str());
|
||||
if(!darknetModelStream.is_open()){
|
||||
if (darknetModel != String())
|
||||
{
|
||||
std::ifstream darknetModelStream(darknetModel.c_str(), std::ios::binary);
|
||||
if (!darknetModelStream.is_open())
|
||||
{
|
||||
CV_Error(cv::Error::StsParseError, "Failed to parse NetParameter file: " + std::string(darknetModel));
|
||||
return net;
|
||||
}
|
||||
darknetImporter = DarknetImporter(cfgStream, darknetModelStream);
|
||||
} else {
|
||||
darknetImporter = DarknetImporter(cfgStream);
|
||||
return readNetFromDarknet(cfgStream, darknetModelStream);
|
||||
}
|
||||
darknetImporter.populateNet(net);
|
||||
return net;
|
||||
else
|
||||
return readNetFromDarknet(cfgStream);
|
||||
}
|
||||
|
||||
Net readNetFromDarknet(const FileNode &cfgFile, const FileNode &darknetModel /*= FileNode()*/)
|
||||
struct BufferStream : public std::streambuf
|
||||
{
|
||||
DarknetImporter darknetImporter;
|
||||
if(darknetModel.empty()){
|
||||
std::istringstream cfgStream((std::string)cfgFile);
|
||||
darknetImporter = DarknetImporter(cfgStream);
|
||||
}else{
|
||||
std::istringstream cfgStream((std::string)cfgFile);
|
||||
std::istringstream darknetModelStream((std::string)darknetModel);
|
||||
darknetImporter = DarknetImporter(cfgStream, darknetModelStream);
|
||||
BufferStream(const char* s, std::size_t n)
|
||||
{
|
||||
char* ptr = const_cast<char*>(s);
|
||||
setg(ptr, ptr, ptr + n);
|
||||
}
|
||||
Net net;
|
||||
darknetImporter.populateNet(net);
|
||||
return net;
|
||||
};
|
||||
|
||||
Net readNetFromDarknet(const char *bufferCfg, size_t lenCfg, const char *bufferModel, size_t lenModel)
|
||||
{
|
||||
BufferStream cfgBufferStream(bufferCfg, lenCfg);
|
||||
std::istream cfgStream(&cfgBufferStream);
|
||||
if (lenModel)
|
||||
{
|
||||
BufferStream weightsBufferStream(bufferModel, lenModel);
|
||||
std::istream weightsStream(&weightsBufferStream);
|
||||
return readNetFromDarknet(cfgStream, weightsStream);
|
||||
}
|
||||
else
|
||||
return readNetFromDarknet(cfgStream);
|
||||
}
|
||||
|
||||
Net readNetFromDarknet(const std::vector<char>& bufferCfg, const std::vector<char>& bufferModel)
|
||||
{
|
||||
return readNetFromDarknet(&bufferCfg[0], bufferCfg.size(),
|
||||
bufferModel.empty() ? NULL : &bufferModel[0], bufferModel.size());
|
||||
}
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
|
@ -3047,6 +3047,23 @@ Net readNet(const String& _model, const String& _config, const String& _framewor
|
||||
model + (config.empty() ? "" : ", " + config));
|
||||
}
|
||||
|
||||
Net readNet(const String& _framework, const std::vector<char>& bufferModel,
|
||||
const std::vector<char>& bufferConfig)
|
||||
{
|
||||
String framework = _framework.toLowerCase();
|
||||
if (framework == "caffe")
|
||||
return readNetFromCaffe(bufferConfig, bufferModel);
|
||||
else if (framework == "tensorflow")
|
||||
return readNetFromTensorflow(bufferModel, bufferConfig);
|
||||
else if (framework == "darknet")
|
||||
return readNetFromDarknet(bufferConfig, bufferModel);
|
||||
else if (framework == "torch")
|
||||
CV_Error(Error::StsNotImplemented, "Reading Torch models from buffers");
|
||||
else if (framework == "dldt")
|
||||
CV_Error(Error::StsNotImplemented, "Reading Intel's Model Optimizer models from buffers");
|
||||
CV_Error(Error::StsError, "Cannot determine an origin framework with a name " + framework);
|
||||
}
|
||||
|
||||
Net readNetFromModelOptimizer(const String &xml, const String &bin)
|
||||
{
|
||||
return Net::readFromModelOptimizer(xml, bin);
|
||||
|
@ -1856,5 +1856,11 @@ Net readNetFromTensorflow(const char* bufferModel, size_t lenModel,
|
||||
return net;
|
||||
}
|
||||
|
||||
Net readNetFromTensorflow(const std::vector<char>& bufferModel, const std::vector<char>& bufferConfig)
|
||||
{
|
||||
return readNetFromCaffe(&bufferModel[0], bufferModel.size(),
|
||||
bufferConfig.empty() ? NULL : &bufferConfig[0], bufferConfig.size());
|
||||
}
|
||||
|
||||
CV__DNN_EXPERIMENTAL_NS_END
|
||||
}} // namespace
|
||||
|
@ -65,16 +65,32 @@ TEST(Test_Darknet, read_yolo_voc)
|
||||
ASSERT_FALSE(net.empty());
|
||||
}
|
||||
|
||||
TEST(Test_Darknet, read_filestorage_yolo_voc)
|
||||
TEST(Test_Darknet, read_yolo_voc_stream)
|
||||
{
|
||||
std::ifstream ifile(_tf("yolo-voc.cfg").c_str());
|
||||
std::stringstream buffer;
|
||||
buffer << " " << ifile.rdbuf(); // FIXME: FileStorage drops first character.
|
||||
FileStorage ofs(".xml", FileStorage::WRITE | FileStorage::MEMORY);
|
||||
ofs.write("cfgFile", buffer.str());
|
||||
FileStorage ifs(ofs.releaseAndGetString(), FileStorage::READ | FileStorage::MEMORY | FileStorage::FORMAT_XML);
|
||||
Net net = readNetFromDarknet(ifs["cfgFile"]);
|
||||
ASSERT_FALSE(net.empty());
|
||||
Mat ref;
|
||||
Mat sample = imread(_tf("dog416.png"));
|
||||
Mat inp = blobFromImage(sample, 1.0/255, Size(416, 416), Scalar(), true, false);
|
||||
const std::string cfgFile = findDataFile("dnn/yolo-voc.cfg", false);
|
||||
const std::string weightsFile = findDataFile("dnn/yolo-voc.weights", false);
|
||||
// Import by paths.
|
||||
{
|
||||
Net net = readNetFromDarknet(cfgFile, weightsFile);
|
||||
net.setInput(inp);
|
||||
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
||||
ref = net.forward();
|
||||
}
|
||||
// Import from bytes array.
|
||||
{
|
||||
std::string cfg, weights;
|
||||
readFileInMemory(cfgFile, cfg);
|
||||
readFileInMemory(weightsFile, weights);
|
||||
|
||||
Net net = readNetFromDarknet(&cfg[0], cfg.size(), &weights[0], weights.size());
|
||||
net.setInput(inp);
|
||||
net.setPreferableBackend(DNN_BACKEND_OPENCV);
|
||||
Mat out = net.forward();
|
||||
normAssert(ref, out);
|
||||
}
|
||||
}
|
||||
|
||||
class Test_Darknet_layers : public DNNTestLayer
|
||||
|
Loading…
Reference in New Issue
Block a user