mirror of
https://github.com/opencv/opencv.git
synced 2024-11-24 03:00:14 +08:00
Merge pull request #20564 from AleksandrPanov:update_kalman_sample
Update kalman sample * updated view and comments, fixed dims * updated view and comments, added statePost
This commit is contained in:
parent
a9817e9127
commit
d6306f8ccb
@ -1,6 +1,6 @@
|
||||
#include "opencv2/video/tracking.hpp"
|
||||
#include "opencv2/highgui.hpp"
|
||||
|
||||
#include "opencv2/core/cvdef.h"
|
||||
#include <stdio.h>
|
||||
|
||||
using namespace cv;
|
||||
@ -14,15 +14,19 @@ static void help()
|
||||
{
|
||||
printf( "\nExample of c calls to OpenCV's Kalman filter.\n"
|
||||
" Tracking of rotating point.\n"
|
||||
" Rotation speed is constant.\n"
|
||||
" Point moves in a circle and is characterized by a 1D state.\n"
|
||||
" state_k+1 = state_k + speed + process_noise N(0, 1e-5)\n"
|
||||
" The speed is constant.\n"
|
||||
" Both state and measurements vectors are 1D (a point angle),\n"
|
||||
" Measurement is the real point angle + gaussian noise.\n"
|
||||
" The real and the estimated points are connected with yellow line segment,\n"
|
||||
" the real and the measured points are connected with red line segment.\n"
|
||||
" Measurement is the real state + gaussian noise N(0, 1e-1).\n"
|
||||
" The real and the measured points are connected with red line segment,\n"
|
||||
" the real and the estimated points are connected with yellow line segment,\n"
|
||||
" the real and the corrected estimated points are connected with green line segment.\n"
|
||||
" (if Kalman filter works correctly,\n"
|
||||
" the yellow segment should be shorter than the red one).\n"
|
||||
" the yellow segment should be shorter than the red one and\n"
|
||||
" the green segment should be shorter than the yellow one)."
|
||||
"\n"
|
||||
" Pressing any key (except ESC) will reset the tracking with a different speed.\n"
|
||||
" Pressing any key (except ESC) will reset the tracking.\n"
|
||||
" Pressing ESC will stop the program.\n"
|
||||
);
|
||||
}
|
||||
@ -39,7 +43,9 @@ int main(int, char**)
|
||||
|
||||
for(;;)
|
||||
{
|
||||
randn( state, Scalar::all(0), Scalar::all(0.1) );
|
||||
img = Scalar::all(0);
|
||||
state.at<float>(0) = 0.0f;
|
||||
state.at<float>(1) = 2.f * (float)CV_PI / 6;
|
||||
KF.transitionMatrix = (Mat_<float>(2, 2) << 1, 1, 0, 1);
|
||||
|
||||
setIdentity(KF.measurementMatrix);
|
||||
@ -60,36 +66,40 @@ int main(int, char**)
|
||||
double predictAngle = prediction.at<float>(0);
|
||||
Point predictPt = calcPoint(center, R, predictAngle);
|
||||
|
||||
randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));
|
||||
|
||||
// generate measurement
|
||||
randn( measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));
|
||||
measurement += KF.measurementMatrix*state;
|
||||
|
||||
double measAngle = measurement.at<float>(0);
|
||||
Point measPt = calcPoint(center, R, measAngle);
|
||||
|
||||
// correct the state estimates based on measurements
|
||||
// updates statePost & errorCovPost
|
||||
KF.correct(measurement);
|
||||
double improvedAngle = KF.statePost.at<float>(0);
|
||||
Point improvedPt = calcPoint(center, R, improvedAngle);
|
||||
|
||||
// plot points
|
||||
#define drawCross( center, color, d ) \
|
||||
line( img, Point( center.x - d, center.y - d ), \
|
||||
Point( center.x + d, center.y + d ), color, 1, LINE_AA, 0); \
|
||||
line( img, Point( center.x + d, center.y - d ), \
|
||||
Point( center.x - d, center.y + d ), color, 1, LINE_AA, 0 )
|
||||
img = img * 0.2;
|
||||
drawMarker(img, measPt, Scalar(0, 0, 255), cv::MARKER_SQUARE, 5, 2);
|
||||
drawMarker(img, predictPt, Scalar(0, 255, 255), cv::MARKER_SQUARE, 5, 2);
|
||||
drawMarker(img, improvedPt, Scalar(0, 255, 0), cv::MARKER_SQUARE, 5, 2);
|
||||
drawMarker(img, statePt, Scalar(255, 255, 255), cv::MARKER_STAR, 10, 1);
|
||||
// forecast one step
|
||||
Mat test = Mat(KF.transitionMatrix*KF.statePost);
|
||||
drawMarker(img, calcPoint(center, R, Mat(KF.transitionMatrix*KF.statePost).at<float>(0)),
|
||||
Scalar(255, 255, 0), cv::MARKER_SQUARE, 12, 1);
|
||||
|
||||
img = Scalar::all(0);
|
||||
drawCross( statePt, Scalar(255,255,255), 3 );
|
||||
drawCross( measPt, Scalar(0,0,255), 3 );
|
||||
drawCross( predictPt, Scalar(0,255,0), 3 );
|
||||
line( img, statePt, measPt, Scalar(0,0,255), 3, LINE_AA, 0 );
|
||||
line( img, statePt, predictPt, Scalar(0,255,255), 3, LINE_AA, 0 );
|
||||
line( img, statePt, measPt, Scalar(0,0,255), 1, LINE_AA, 0 );
|
||||
line( img, statePt, predictPt, Scalar(0,255,255), 1, LINE_AA, 0 );
|
||||
line( img, statePt, improvedPt, Scalar(0,255,0), 1, LINE_AA, 0 );
|
||||
|
||||
if(theRNG().uniform(0,4) != 0)
|
||||
KF.correct(measurement);
|
||||
|
||||
randn( processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));
|
||||
state = KF.transitionMatrix*state + processNoise;
|
||||
|
||||
imshow( "Kalman", img );
|
||||
code = (char)waitKey(100);
|
||||
code = (char)waitKey(1000);
|
||||
|
||||
if( code > 0 )
|
||||
break;
|
||||
|
@ -1,14 +1,18 @@
|
||||
#!/usr/bin/env python
|
||||
"""
|
||||
Tracking of rotating point.
|
||||
Rotation speed is constant.
|
||||
Point moves in a circle and is characterized by a 1D state.
|
||||
state_k+1 = state_k + speed + process_noise N(0, 1e-5)
|
||||
The speed is constant.
|
||||
Both state and measurements vectors are 1D (a point angle),
|
||||
Measurement is the real point angle + gaussian noise.
|
||||
The real and the estimated points are connected with yellow line segment,
|
||||
the real and the measured points are connected with red line segment.
|
||||
Measurement is the real state + gaussian noise N(0, 1e-1).
|
||||
The real and the measured points are connected with red line segment,
|
||||
the real and the estimated points are connected with yellow line segment,
|
||||
the real and the corrected estimated points are connected with green line segment.
|
||||
(if Kalman filter works correctly,
|
||||
the yellow segment should be shorter than the red one).
|
||||
Pressing any key (except ESC) will reset the tracking with a different speed.
|
||||
the yellow segment should be shorter than the red one and
|
||||
the green segment should be shorter than the yellow one).
|
||||
Pressing any key (except ESC) will reset the tracking.
|
||||
Pressing ESC will stop the program.
|
||||
"""
|
||||
# Python 2/3 compatibility
|
||||
@ -21,8 +25,7 @@ if PY3:
|
||||
import numpy as np
|
||||
import cv2 as cv
|
||||
|
||||
from math import cos, sin, sqrt
|
||||
import numpy as np
|
||||
from math import cos, sin, sqrt, pi
|
||||
|
||||
def main():
|
||||
img_height = 500
|
||||
@ -30,64 +33,62 @@ def main():
|
||||
kalman = cv.KalmanFilter(2, 1, 0)
|
||||
|
||||
code = long(-1)
|
||||
|
||||
cv.namedWindow("Kalman")
|
||||
|
||||
num_circle_steps = 12
|
||||
while True:
|
||||
state = 0.1 * np.random.randn(2, 1)
|
||||
|
||||
kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]])
|
||||
kalman.measurementMatrix = 1. * np.ones((1, 2))
|
||||
kalman.processNoiseCov = 1e-5 * np.eye(2)
|
||||
kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1))
|
||||
kalman.errorCovPost = 1. * np.ones((2, 2))
|
||||
kalman.statePost = 0.1 * np.random.randn(2, 1)
|
||||
img = np.zeros((img_height, img_width, 3), np.uint8)
|
||||
state = np.array([[0.0],[(2 * pi) / num_circle_steps]]) # start state
|
||||
kalman.transitionMatrix = np.array([[1., 1.], [0., 1.]]) # F. input
|
||||
kalman.measurementMatrix = 1. * np.eye(1, 2) # H. input
|
||||
kalman.processNoiseCov = 1e-5 * np.eye(2) # Q. input
|
||||
kalman.measurementNoiseCov = 1e-1 * np.ones((1, 1)) # R. input
|
||||
kalman.errorCovPost = 1. * np.eye(2, 2) # P._k|k KF state var
|
||||
kalman.statePost = 0.1 * np.random.randn(2, 1) # x^_k|k KF state var
|
||||
|
||||
while True:
|
||||
def calc_point(angle):
|
||||
return (np.around(img_width/2 + img_width/3*cos(angle), 0).astype(int),
|
||||
np.around(img_height/2 - img_width/3*sin(angle), 1).astype(int))
|
||||
|
||||
return (np.around(img_width / 2. + img_width / 3.0 * cos(angle), 0).astype(int),
|
||||
np.around(img_height / 2. - img_width / 3.0 * sin(angle), 1).astype(int))
|
||||
img = img * 1e-3
|
||||
state_angle = state[0, 0]
|
||||
state_pt = calc_point(state_angle)
|
||||
|
||||
# advance Kalman filter to next timestep
|
||||
# updates statePre, statePost, errorCovPre, errorCovPost
|
||||
# k-> k+1, x'(k) = A*x(k)
|
||||
# P'(k) = temp1*At + Q
|
||||
prediction = kalman.predict()
|
||||
predict_angle = prediction[0, 0]
|
||||
predict_pt = calc_point(predict_angle)
|
||||
|
||||
measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)
|
||||
|
||||
predict_pt = calc_point(prediction[0, 0]) # equivalent to calc_point(kalman.statePre[0,0])
|
||||
# generate measurement
|
||||
measurement = kalman.measurementNoiseCov * np.random.randn(1, 1)
|
||||
measurement = np.dot(kalman.measurementMatrix, state) + measurement
|
||||
|
||||
measurement_angle = measurement[0, 0]
|
||||
measurement_pt = calc_point(measurement_angle)
|
||||
|
||||
# plot points
|
||||
def draw_cross(center, color, d):
|
||||
cv.line(img,
|
||||
(center[0] - d, center[1] - d), (center[0] + d, center[1] + d),
|
||||
color, 1, cv.LINE_AA, 0)
|
||||
cv.line(img,
|
||||
(center[0] + d, center[1] - d), (center[0] - d, center[1] + d),
|
||||
color, 1, cv.LINE_AA, 0)
|
||||
|
||||
img = np.zeros((img_height, img_width, 3), np.uint8)
|
||||
draw_cross(np.int32(state_pt), (255, 255, 255), 3)
|
||||
draw_cross(np.int32(measurement_pt), (0, 0, 255), 3)
|
||||
draw_cross(np.int32(predict_pt), (0, 255, 0), 3)
|
||||
|
||||
cv.line(img, state_pt, measurement_pt, (0, 0, 255), 3, cv.LINE_AA, 0)
|
||||
cv.line(img, state_pt, predict_pt, (0, 255, 255), 3, cv.LINE_AA, 0)
|
||||
|
||||
# correct the state estimates based on measurements
|
||||
# updates statePost & errorCovPost
|
||||
kalman.correct(measurement)
|
||||
improved_pt = calc_point(kalman.statePost[0, 0])
|
||||
|
||||
process_noise = sqrt(kalman.processNoiseCov[0,0]) * np.random.randn(2, 1)
|
||||
state = np.dot(kalman.transitionMatrix, state) + process_noise
|
||||
# plot points
|
||||
cv.drawMarker(img, measurement_pt, (0, 0, 255), cv.MARKER_SQUARE, 5, 2)
|
||||
cv.drawMarker(img, predict_pt, (0, 255, 255), cv.MARKER_SQUARE, 5, 2)
|
||||
cv.drawMarker(img, improved_pt, (0, 255, 0), cv.MARKER_SQUARE, 5, 2)
|
||||
cv.drawMarker(img, state_pt, (255, 255, 255), cv.MARKER_STAR, 10, 1)
|
||||
# forecast one step
|
||||
cv.drawMarker(img, calc_point(np.dot(kalman.transitionMatrix, kalman.statePost)[0, 0]),
|
||||
(255, 255, 0), cv.MARKER_SQUARE, 12, 1)
|
||||
|
||||
cv.line(img, state_pt, measurement_pt, (0, 0, 255), 1, cv.LINE_AA, 0) # red measurement error
|
||||
cv.line(img, state_pt, predict_pt, (0, 255, 255), 1, cv.LINE_AA, 0) # yellow pre-meas error
|
||||
cv.line(img, state_pt, improved_pt, (0, 255, 0), 1, cv.LINE_AA, 0) # green post-meas error
|
||||
|
||||
# update the real process
|
||||
process_noise = sqrt(kalman.processNoiseCov[0, 0]) * np.random.randn(2, 1)
|
||||
state = np.dot(kalman.transitionMatrix, state) + process_noise # x_k+1 = F x_k + w_k
|
||||
|
||||
cv.imshow("Kalman", img)
|
||||
|
||||
code = cv.waitKey(100)
|
||||
code = cv.waitKey(1000)
|
||||
if code != -1:
|
||||
break
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user