mirror of
https://github.com/opencv/opencv.git
synced 2024-11-25 19:50:38 +08:00
Merge pull request #14445 from l-bat:batchnorm3d
This commit is contained in:
commit
d848594deb
@ -29,6 +29,8 @@ class BatchNormLayerImpl CV_FINAL : public BatchNormLayer
|
||||
public:
|
||||
Mat weights_, bias_;
|
||||
UMat umat_weight, umat_bias;
|
||||
mutable int dims;
|
||||
|
||||
|
||||
BatchNormLayerImpl(const LayerParams& params)
|
||||
{
|
||||
@ -142,6 +144,7 @@ public:
|
||||
std::vector<MatShape> &outputs,
|
||||
std::vector<MatShape> &internals) const CV_OVERRIDE
|
||||
{
|
||||
dims = inputs[0].size();
|
||||
if (!useGlobalStats && inputs[0][0] != 1)
|
||||
CV_Error(Error::StsNotImplemented, "Batch normalization in training mode with batch size > 1");
|
||||
Layer::getMemoryShapes(inputs, requiredOutputs, outputs, internals);
|
||||
@ -150,9 +153,9 @@ public:
|
||||
|
||||
virtual bool supportBackend(int backendId) CV_OVERRIDE
|
||||
{
|
||||
return backendId == DNN_BACKEND_OPENCV ||
|
||||
return (backendId == DNN_BACKEND_OPENCV) ||
|
||||
(backendId == DNN_BACKEND_HALIDE && haveHalide()) ||
|
||||
(backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine());
|
||||
(backendId == DNN_BACKEND_INFERENCE_ENGINE && haveInfEngine() && (preferableTarget == DNN_TARGET_CPU || dims == 4));
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
@ -178,11 +181,12 @@ public:
|
||||
}
|
||||
|
||||
UMat &inpBlob = inputs[0];
|
||||
CV_Assert(inpBlob.dims == 2 || inpBlob.dims == 4);
|
||||
int groups = inpBlob.size[0];
|
||||
int channels = inpBlob.size[1];
|
||||
int rows = inpBlob.dims > 2 ? inpBlob.size[2] : 1;
|
||||
int cols = inpBlob.dims > 2 ? inpBlob.size[3] : 1;
|
||||
int planeSize = 1;
|
||||
for (size_t i = 2; i < inpBlob.dims; i++) {
|
||||
planeSize *= inpBlob.size[i];
|
||||
}
|
||||
|
||||
String opts = (use_half) ? " -DDtype=half" : " -DDtype=float";
|
||||
for (size_t ii = 0; ii < outputs.size(); ii++)
|
||||
@ -196,7 +200,7 @@ public:
|
||||
}
|
||||
else
|
||||
{
|
||||
MatShape s = shape(groups * channels, rows * cols);
|
||||
MatShape s = shape(groups * channels, planeSize);
|
||||
UMat src = inputs[ii].reshape(1, s.size(), &s[0]);
|
||||
UMat dst = outputs[ii].reshape(1, s.size(), &s[0]);
|
||||
int number = (s[1] % 8 == 0) ? 8 : ((s[1] % 4 == 0) ? 4 : 1);
|
||||
@ -248,9 +252,10 @@ public:
|
||||
CV_Assert(inputs.size() == 1);
|
||||
|
||||
Mat &inpBlob = inputs[0];
|
||||
CV_Assert(inpBlob.dims == 2 || inpBlob.dims == 4);
|
||||
int rows = inpBlob.dims > 2 ? inpBlob.size[2] : 1;
|
||||
int cols = inpBlob.dims > 2 ? inpBlob.size[3] : 1;
|
||||
int planeSize = 1;
|
||||
for (size_t i = 2; i < inpBlob.dims; i++) {
|
||||
planeSize *= inpBlob.size[i];
|
||||
}
|
||||
|
||||
for (size_t ii = 0; ii < outputs.size(); ii++)
|
||||
{
|
||||
@ -262,8 +267,8 @@ public:
|
||||
{
|
||||
float w = weights_.at<float>(n);
|
||||
float b = bias_.at<float>(n);
|
||||
Mat inpBlobPlane(rows, cols, CV_32F, inpBlob.ptr<float>(num, n));
|
||||
Mat outBlobPlane(rows, cols, CV_32F, outBlob.ptr<float>(num, n));
|
||||
Mat inpBlobPlane(1, planeSize, CV_32F, inpBlob.ptr<float>(num, n));
|
||||
Mat outBlobPlane(1, planeSize, CV_32F, outBlob.ptr<float>(num, n));
|
||||
inpBlobPlane.convertTo(outBlobPlane, CV_32F, w, b);
|
||||
}
|
||||
}
|
||||
|
@ -167,6 +167,13 @@ TEST_P(Test_ONNX_layers, BatchNormalization)
|
||||
testONNXModels("batch_norm");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, BatchNormalization3D)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU)
|
||||
throw SkipTestException("");
|
||||
testONNXModels("batch_norm_3d");
|
||||
}
|
||||
|
||||
TEST_P(Test_ONNX_layers, Transpose)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE &&
|
||||
|
@ -188,6 +188,13 @@ TEST_P(Test_TensorFlow_layers, batch_norm)
|
||||
runTensorFlowNet("mvn_batch_norm_1x1");
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, batch_norm3D)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE && target != DNN_TARGET_CPU)
|
||||
throw SkipTestException("");
|
||||
runTensorFlowNet("batch_norm3d");
|
||||
}
|
||||
|
||||
TEST_P(Test_TensorFlow_layers, slim_batch_norm)
|
||||
{
|
||||
if (backend == DNN_BACKEND_INFERENCE_ENGINE)
|
||||
|
Loading…
Reference in New Issue
Block a user