mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 06:03:15 +08:00
Update ocl::surf_matcher sample.
The new sample adjust some parameters thus it should always be able to calculate valid homography matrix when input is box.png and box_in_scene.png. Pure cpp surf and bfmatcher implementation is also added to show the user its accuracy and performance.
This commit is contained in:
parent
37091b086c
commit
d85f27b537
@ -46,156 +46,101 @@
|
||||
#include <iostream>
|
||||
#include <stdio.h>
|
||||
#include "opencv2/core/core.hpp"
|
||||
#include "opencv2/features2d/features2d.hpp"
|
||||
#include "opencv2/highgui/highgui.hpp"
|
||||
#include "opencv2/ocl/ocl.hpp"
|
||||
#include "opencv2/nonfree/nonfree.hpp"
|
||||
#include "opencv2/nonfree/ocl.hpp"
|
||||
#include "opencv2/calib3d/calib3d.hpp"
|
||||
#include "opencv2/nonfree/nonfree.hpp"
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace cv::ocl;
|
||||
|
||||
//#define USE_CPU_DESCRIPTOR // use cpu descriptor extractor until ocl descriptor extractor is fixed
|
||||
//#define USE_CPU_BFMATCHER
|
||||
const int LOOP_NUM = 10;
|
||||
const int GOOD_PTS_MAX = 50;
|
||||
const float GOOD_PORTION = 0.15f;
|
||||
|
||||
namespace
|
||||
{
|
||||
void help();
|
||||
|
||||
void help()
|
||||
{
|
||||
cout << "\nThis program demonstrates using SURF_OCL features detector and descriptor extractor" << endl;
|
||||
cout << "\nUsage:\n\tsurf_matcher --left <image1> --right <image2>" << endl;
|
||||
std::cout << "\nThis program demonstrates using SURF_OCL features detector and descriptor extractor" << std::endl;
|
||||
std::cout << "\nUsage:\n\tsurf_matcher --left <image1> --right <image2> [-c]" << std::endl;
|
||||
std::cout << "\nExample:\n\tsurf_matcher --left box.png --right box_in_scene.png" << std::endl;
|
||||
}
|
||||
|
||||
int64 work_begin = 0;
|
||||
int64 work_end = 0;
|
||||
|
||||
////////////////////////////////////////////////////
|
||||
// This program demonstrates the usage of SURF_OCL.
|
||||
// use cpu findHomography interface to calculate the transformation matrix
|
||||
int main(int argc, char* argv[])
|
||||
void workBegin()
|
||||
{
|
||||
if (argc != 5 && argc != 1)
|
||||
work_begin = getTickCount();
|
||||
}
|
||||
void workEnd()
|
||||
{
|
||||
work_end = getTickCount() - work_begin;
|
||||
}
|
||||
double getTime(){
|
||||
return work_end /((double)cvGetTickFrequency() * 1000.);
|
||||
}
|
||||
|
||||
template<class KPDetector>
|
||||
struct SURFDetector
|
||||
{
|
||||
KPDetector surf;
|
||||
SURFDetector(double hessian = 800.0)
|
||||
:surf(hessian)
|
||||
{
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
vector<cv::ocl::Info> info;
|
||||
if(!cv::ocl::getDevice(info))
|
||||
template<class T>
|
||||
void operator()(const T& in, const T& mask, vector<cv::KeyPoint>& pts, T& descriptors, bool useProvided = false)
|
||||
{
|
||||
cout << "Error: Did not find a valid OpenCL device!" << endl;
|
||||
return -1;
|
||||
surf(in, mask, pts, descriptors, useProvided);
|
||||
}
|
||||
Mat cpu_img1, cpu_img2, cpu_img1_grey, cpu_img2_grey;
|
||||
oclMat img1, img2;
|
||||
if(argc != 5)
|
||||
};
|
||||
|
||||
template<class KPMatcher>
|
||||
struct SURFMatcher
|
||||
{
|
||||
KPMatcher matcher;
|
||||
template<class T>
|
||||
void match(const T& in1, const T& in2, vector<cv::DMatch>& matches)
|
||||
{
|
||||
cpu_img1 = imread("o.png");
|
||||
cvtColor(cpu_img1, cpu_img1_grey, CV_BGR2GRAY);
|
||||
img1 = cpu_img1_grey;
|
||||
CV_Assert(!img1.empty());
|
||||
|
||||
cpu_img2 = imread("r2.png");
|
||||
cvtColor(cpu_img2, cpu_img2_grey, CV_BGR2GRAY);
|
||||
img2 = cpu_img2_grey;
|
||||
}
|
||||
else
|
||||
{
|
||||
for (int i = 1; i < argc; ++i)
|
||||
{
|
||||
if (string(argv[i]) == "--left")
|
||||
{
|
||||
cpu_img1 = imread(argv[++i]);
|
||||
cvtColor(cpu_img1, cpu_img1_grey, CV_BGR2GRAY);
|
||||
img1 = cpu_img1_grey;
|
||||
CV_Assert(!img1.empty());
|
||||
}
|
||||
else if (string(argv[i]) == "--right")
|
||||
{
|
||||
cpu_img2 = imread(argv[++i]);
|
||||
cvtColor(cpu_img2, cpu_img2_grey, CV_BGR2GRAY);
|
||||
img2 = cpu_img2_grey;
|
||||
}
|
||||
else if (string(argv[i]) == "--help")
|
||||
{
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
matcher.match(in1, in2, matches);
|
||||
}
|
||||
};
|
||||
|
||||
SURF_OCL surf;
|
||||
//surf.hessianThreshold = 400.f;
|
||||
//surf.extended = false;
|
||||
|
||||
// detecting keypoints & computing descriptors
|
||||
oclMat keypoints1GPU, keypoints2GPU;
|
||||
oclMat descriptors1GPU, descriptors2GPU;
|
||||
|
||||
// downloading results
|
||||
vector<KeyPoint> keypoints1, keypoints2;
|
||||
vector<DMatch> matches;
|
||||
|
||||
|
||||
#ifndef USE_CPU_DESCRIPTOR
|
||||
surf(img1, oclMat(), keypoints1GPU, descriptors1GPU);
|
||||
surf(img2, oclMat(), keypoints2GPU, descriptors2GPU);
|
||||
|
||||
surf.downloadKeypoints(keypoints1GPU, keypoints1);
|
||||
surf.downloadKeypoints(keypoints2GPU, keypoints2);
|
||||
|
||||
|
||||
#ifdef USE_CPU_BFMATCHER
|
||||
//BFMatcher
|
||||
BFMatcher matcher(cv::NORM_L2);
|
||||
matcher.match(Mat(descriptors1GPU), Mat(descriptors2GPU), matches);
|
||||
#else
|
||||
BruteForceMatcher_OCL_base matcher(BruteForceMatcher_OCL_base::L2Dist);
|
||||
matcher.match(descriptors1GPU, descriptors2GPU, matches);
|
||||
#endif
|
||||
|
||||
#else
|
||||
surf(img1, oclMat(), keypoints1GPU);
|
||||
surf(img2, oclMat(), keypoints2GPU);
|
||||
surf.downloadKeypoints(keypoints1GPU, keypoints1);
|
||||
surf.downloadKeypoints(keypoints2GPU, keypoints2);
|
||||
|
||||
// use SURF_OCL to detect keypoints and use SURF to extract descriptors
|
||||
SURF surf_cpu;
|
||||
Mat descriptors1, descriptors2;
|
||||
surf_cpu(cpu_img1, Mat(), keypoints1, descriptors1, true);
|
||||
surf_cpu(cpu_img2, Mat(), keypoints2, descriptors2, true);
|
||||
matcher.match(descriptors1, descriptors2, matches);
|
||||
#endif
|
||||
cout << "OCL: FOUND " << keypoints1GPU.cols << " keypoints on first image" << endl;
|
||||
cout << "OCL: FOUND " << keypoints2GPU.cols << " keypoints on second image" << endl;
|
||||
|
||||
double max_dist = 0; double min_dist = 100;
|
||||
//-- Quick calculation of max and min distances between keypoints
|
||||
for( size_t i = 0; i < keypoints1.size(); i++ )
|
||||
{
|
||||
double dist = matches[i].distance;
|
||||
if( dist < min_dist ) min_dist = dist;
|
||||
if( dist > max_dist ) max_dist = dist;
|
||||
}
|
||||
|
||||
printf("-- Max dist : %f \n", max_dist );
|
||||
printf("-- Min dist : %f \n", min_dist );
|
||||
|
||||
//-- Draw only "good" matches (i.e. whose distance is less than 2.5*min_dist )
|
||||
Mat drawGoodMatches(
|
||||
const Mat& cpu_img1,
|
||||
const Mat& cpu_img2,
|
||||
const vector<KeyPoint>& keypoints1,
|
||||
const vector<KeyPoint>& keypoints2,
|
||||
vector<DMatch>& matches,
|
||||
vector<Point2f>& scene_corners_
|
||||
)
|
||||
{
|
||||
//-- Sort matches and preserve top 10% matches
|
||||
std::sort(matches.begin(), matches.end());
|
||||
std::vector< DMatch > good_matches;
|
||||
double minDist = matches.front().distance,
|
||||
maxDist = matches.back().distance;
|
||||
|
||||
for( size_t i = 0; i < keypoints1.size(); i++ )
|
||||
const int ptsPairs = std::min(GOOD_PTS_MAX, (int)(matches.size() * GOOD_PORTION));
|
||||
for( int i = 0; i < ptsPairs; i++ )
|
||||
{
|
||||
if( matches[i].distance < 3*min_dist )
|
||||
{
|
||||
good_matches.push_back( matches[i]);
|
||||
}
|
||||
good_matches.push_back( matches[i] );
|
||||
}
|
||||
std::cout << "\nMax distance: " << maxDist << std::endl;
|
||||
std::cout << "Min distance: " << minDist << std::endl;
|
||||
|
||||
std::cout << "Calculating homography using " << ptsPairs << " point pairs." << std::endl;
|
||||
|
||||
// drawing the results
|
||||
Mat img_matches;
|
||||
drawMatches( cpu_img1, keypoints1, cpu_img2, keypoints2,
|
||||
good_matches, img_matches, Scalar::all(-1), Scalar::all(-1),
|
||||
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
||||
vector<char>(), DrawMatchesFlags::NOT_DRAW_SINGLE_POINTS );
|
||||
|
||||
//-- Localize the object
|
||||
std::vector<Point2f> obj;
|
||||
@ -207,26 +152,238 @@ int main(int argc, char* argv[])
|
||||
obj.push_back( keypoints1[ good_matches[i].queryIdx ].pt );
|
||||
scene.push_back( keypoints2[ good_matches[i].trainIdx ].pt );
|
||||
}
|
||||
Mat H = findHomography( obj, scene, CV_RANSAC );
|
||||
|
||||
//-- Get the corners from the image_1 ( the object to be "detected" )
|
||||
std::vector<Point2f> obj_corners(4);
|
||||
obj_corners[0] = cvPoint(0,0); obj_corners[1] = cvPoint( cpu_img1.cols, 0 );
|
||||
obj_corners[2] = cvPoint( cpu_img1.cols, cpu_img1.rows ); obj_corners[3] = cvPoint( 0, cpu_img1.rows );
|
||||
std::vector<Point2f> scene_corners(4);
|
||||
|
||||
Mat H = findHomography( obj, scene, CV_RANSAC );
|
||||
perspectiveTransform( obj_corners, scene_corners, H);
|
||||
|
||||
scene_corners_ = scene_corners;
|
||||
|
||||
//-- Draw lines between the corners (the mapped object in the scene - image_2 )
|
||||
line( img_matches, scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
line( img_matches, scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
line( img_matches, scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
line( img_matches, scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), Scalar( 0, 255, 0), 4 );
|
||||
line( img_matches,
|
||||
scene_corners[0] + Point2f( (float)cpu_img1.cols, 0), scene_corners[1] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, CV_AA );
|
||||
line( img_matches,
|
||||
scene_corners[1] + Point2f( (float)cpu_img1.cols, 0), scene_corners[2] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, CV_AA );
|
||||
line( img_matches,
|
||||
scene_corners[2] + Point2f( (float)cpu_img1.cols, 0), scene_corners[3] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, CV_AA );
|
||||
line( img_matches,
|
||||
scene_corners[3] + Point2f( (float)cpu_img1.cols, 0), scene_corners[0] + Point2f( (float)cpu_img1.cols, 0),
|
||||
Scalar( 0, 255, 0), 2, CV_AA );
|
||||
return img_matches;
|
||||
}
|
||||
|
||||
}
|
||||
////////////////////////////////////////////////////
|
||||
// This program demonstrates the usage of SURF_OCL.
|
||||
// use cpu findHomography interface to calculate the transformation matrix
|
||||
int main(int argc, char* argv[])
|
||||
{
|
||||
vector<cv::ocl::Info> info;
|
||||
if(cv::ocl::getDevice(info) == 0)
|
||||
{
|
||||
std::cout << "Error: Did not find a valid OpenCL device!" << std::endl;
|
||||
return -1;
|
||||
}
|
||||
ocl::setDevice(info[0]);
|
||||
|
||||
Mat cpu_img1, cpu_img2, cpu_img1_grey, cpu_img2_grey;
|
||||
oclMat img1, img2;
|
||||
bool useCPU = false;
|
||||
bool useGPU = false;
|
||||
bool useALL = false;
|
||||
|
||||
for (int i = 1; i < argc; ++i)
|
||||
{
|
||||
if (string(argv[i]) == "--left")
|
||||
{
|
||||
cpu_img1 = imread(argv[++i]);
|
||||
CV_Assert(!cpu_img1.empty());
|
||||
cvtColor(cpu_img1, cpu_img1_grey, CV_BGR2GRAY);
|
||||
img1 = cpu_img1_grey;
|
||||
}
|
||||
else if (string(argv[i]) == "--right")
|
||||
{
|
||||
cpu_img2 = imread(argv[++i]);
|
||||
CV_Assert(!cpu_img2.empty());
|
||||
cvtColor(cpu_img2, cpu_img2_grey, CV_BGR2GRAY);
|
||||
img2 = cpu_img2_grey;
|
||||
}
|
||||
else if (string(argv[i]) == "-c")
|
||||
{
|
||||
useCPU = true;
|
||||
useGPU = false;
|
||||
useALL = false;
|
||||
}else if(string(argv[i]) == "-g")
|
||||
{
|
||||
useGPU = true;
|
||||
useCPU = false;
|
||||
useALL = false;
|
||||
}else if(string(argv[i]) == "-a")
|
||||
{
|
||||
useALL = true;
|
||||
useCPU = false;
|
||||
useGPU = false;
|
||||
}
|
||||
else if (string(argv[i]) == "--help")
|
||||
{
|
||||
help();
|
||||
return -1;
|
||||
}
|
||||
}
|
||||
if(!useCPU)
|
||||
{
|
||||
std::cout
|
||||
<< "Device name:"
|
||||
<< info[0].DeviceName[0]
|
||||
<< std::endl;
|
||||
}
|
||||
double surf_time = 0.;
|
||||
|
||||
//declare input/output
|
||||
vector<KeyPoint> keypoints1, keypoints2;
|
||||
vector<DMatch> matches;
|
||||
|
||||
vector<KeyPoint> gpu_keypoints1;
|
||||
vector<KeyPoint> gpu_keypoints2;
|
||||
vector<DMatch> gpu_matches;
|
||||
|
||||
Mat descriptors1CPU, descriptors2CPU;
|
||||
|
||||
oclMat keypoints1GPU, keypoints2GPU;
|
||||
oclMat descriptors1GPU, descriptors2GPU;
|
||||
|
||||
//instantiate detectors/matchers
|
||||
SURFDetector<SURF> cpp_surf;
|
||||
SURFDetector<SURF_OCL> ocl_surf;
|
||||
|
||||
SURFMatcher<BFMatcher> cpp_matcher;
|
||||
SURFMatcher<BFMatcher_OCL> ocl_matcher;
|
||||
|
||||
//-- start of timing section
|
||||
if (useCPU)
|
||||
{
|
||||
for (int i = 0; i <= LOOP_NUM; i++)
|
||||
{
|
||||
if(i == 1) workBegin();
|
||||
cpp_surf(cpu_img1_grey, Mat(), keypoints1, descriptors1CPU);
|
||||
cpp_surf(cpu_img2_grey, Mat(), keypoints2, descriptors2CPU);
|
||||
cpp_matcher.match(descriptors1CPU, descriptors2CPU, matches);
|
||||
}
|
||||
workEnd();
|
||||
std::cout << "CPP: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl;
|
||||
std::cout << "CPP: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl;
|
||||
|
||||
surf_time = getTime();
|
||||
std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n";
|
||||
}
|
||||
else if(useGPU)
|
||||
{
|
||||
for (int i = 0; i <= LOOP_NUM; i++)
|
||||
{
|
||||
if(i == 1) workBegin();
|
||||
ocl_surf(img1, oclMat(), keypoints1, descriptors1GPU);
|
||||
ocl_surf(img2, oclMat(), keypoints2, descriptors2GPU);
|
||||
ocl_matcher.match(descriptors1GPU, descriptors2GPU, matches);
|
||||
}
|
||||
workEnd();
|
||||
std::cout << "OCL: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl;
|
||||
std::cout << "OCL: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl;
|
||||
|
||||
surf_time = getTime();
|
||||
std::cout << "SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n";
|
||||
}else
|
||||
{
|
||||
//cpu runs
|
||||
for (int i = 0; i <= LOOP_NUM; i++)
|
||||
{
|
||||
if(i == 1) workBegin();
|
||||
cpp_surf(cpu_img1_grey, Mat(), keypoints1, descriptors1CPU);
|
||||
cpp_surf(cpu_img2_grey, Mat(), keypoints2, descriptors2CPU);
|
||||
cpp_matcher.match(descriptors1CPU, descriptors2CPU, matches);
|
||||
}
|
||||
workEnd();
|
||||
std::cout << "\nCPP: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl;
|
||||
std::cout << "CPP: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl;
|
||||
|
||||
surf_time = getTime();
|
||||
std::cout << "(CPP)SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl;
|
||||
|
||||
//gpu runs
|
||||
for (int i = 0; i <= LOOP_NUM; i++)
|
||||
{
|
||||
if(i == 1) workBegin();
|
||||
ocl_surf(img1, oclMat(), gpu_keypoints1, descriptors1GPU);
|
||||
ocl_surf(img2, oclMat(), gpu_keypoints2, descriptors2GPU);
|
||||
ocl_matcher.match(descriptors1GPU, descriptors2GPU, gpu_matches);
|
||||
}
|
||||
workEnd();
|
||||
std::cout << "\nOCL: FOUND " << keypoints1.size() << " keypoints on first image" << std::endl;
|
||||
std::cout << "OCL: FOUND " << keypoints2.size() << " keypoints on second image" << std::endl;
|
||||
|
||||
surf_time = getTime();
|
||||
std::cout << "(OCL)SURF run time: " << surf_time / LOOP_NUM << " ms" << std::endl<<"\n";
|
||||
|
||||
}
|
||||
|
||||
//--------------------------------------------------------------------------
|
||||
std::vector<Point2f> cpu_corner;
|
||||
Mat img_matches = drawGoodMatches(cpu_img1, cpu_img2, keypoints1, keypoints2, matches, cpu_corner);
|
||||
|
||||
std::vector<Point2f> gpu_corner;
|
||||
Mat ocl_img_matches;
|
||||
if(useALL || (!useCPU&&!useGPU))
|
||||
{
|
||||
ocl_img_matches = drawGoodMatches(cpu_img1, cpu_img2, gpu_keypoints1, gpu_keypoints2, gpu_matches, gpu_corner);
|
||||
|
||||
//check accuracy
|
||||
std::cout<<"\nCheck accuracy:\n";
|
||||
|
||||
if(cpu_corner.size()!=gpu_corner.size())
|
||||
std::cout<<"Failed\n";
|
||||
else
|
||||
{
|
||||
bool result = false;
|
||||
for(int i = 0; i < cpu_corner.size(); i++)
|
||||
{
|
||||
if((std::abs(cpu_corner[i].x - gpu_corner[i].x) > 10)
|
||||
||(std::abs(cpu_corner[i].y - gpu_corner[i].y) > 10))
|
||||
{
|
||||
std::cout<<"Failed\n";
|
||||
result = false;
|
||||
break;
|
||||
}
|
||||
result = true;
|
||||
}
|
||||
if(result)
|
||||
std::cout<<"Passed\n";
|
||||
}
|
||||
}
|
||||
|
||||
//-- Show detected matches
|
||||
namedWindow("ocl surf matches", 0);
|
||||
imshow("ocl surf matches", img_matches);
|
||||
waitKey(0);
|
||||
if (useCPU)
|
||||
{
|
||||
namedWindow("cpu surf matches", 0);
|
||||
imshow("cpu surf matches", img_matches);
|
||||
}
|
||||
else if(useGPU)
|
||||
{
|
||||
namedWindow("ocl surf matches", 0);
|
||||
imshow("ocl surf matches", img_matches);
|
||||
}else
|
||||
{
|
||||
namedWindow("cpu surf matches", 0);
|
||||
imshow("cpu surf matches", img_matches);
|
||||
|
||||
namedWindow("ocl surf matches", 0);
|
||||
imshow("ocl surf matches", ocl_img_matches);
|
||||
}
|
||||
waitKey(0);
|
||||
return 0;
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user