Allow more input query/train types for ocl::bfmatcher

RadiusMatch for HammingDist cannot pass yet.
This commit is contained in:
Peng Xiao 2013-04-13 13:42:26 +08:00
parent 1db20099a9
commit d9de84091c
3 changed files with 30 additions and 100 deletions

View File

@ -77,7 +77,6 @@ template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ >
void matchUnrolledCached(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
const oclMat &trainIdx, const oclMat &distance, int distType)
{
assert(query.type() == CV_32F);
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
@ -121,7 +120,6 @@ template < int BLOCK_SIZE/*, typename Mask*/ >
void match(const oclMat &query, const oclMat &train, const oclMat &/*mask*/,
const oclMat &trainIdx, const oclMat &distance, int distType)
{
assert(query.type() == CV_32F);
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
@ -164,7 +162,6 @@ template < int BLOCK_SIZE, int MAX_DESC_LEN/*, typename Mask*/ >
void matchUnrolledCached(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &/*mask*/,
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
{
assert(query.type() == CV_32F);
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
@ -207,7 +204,6 @@ template < int BLOCK_SIZE/*, typename Mask*/ >
void radius_match(const oclMat &query, const oclMat &train, float maxDistance, const oclMat &/*mask*/,
const oclMat &trainIdx, const oclMat &distance, const oclMat &nMatches, int distType)
{
assert(query.type() == CV_32F);
cv::ocl::Context *ctx = query.clCxt;
size_t globalSize[] = {(train.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, (query.rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, 1};
size_t localSize[] = {BLOCK_SIZE, BLOCK_SIZE, 1};
@ -566,17 +562,6 @@ void cv::ocl::BruteForceMatcher_OCL_base::matchSingle(const oclMat &query, const
if (query.empty() || train.empty())
return;
// match1 doesn't support signed char type, match2 only support float, hamming support uchar, ushort and int
int callType = query.depth();
if (callType != 5)
CV_Error(CV_UNSUPPORTED_FORMAT_ERR, "BruteForceMatch OpenCL only support float type query!\n");
if ((distType == 0 && callType == 1 ) || (distType == 1 && callType != 5) || (distType == 2 && (callType != 0
|| callType != 2 || callType != 4)))
{
CV_Error(CV_UNSUPPORTED_DEPTH_ERR, "BruteForceMatch OpenCL only support float type query!\n");
}
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.cols == query.cols && train.type() == query.type());
@ -687,17 +672,6 @@ void cv::ocl::BruteForceMatcher_OCL_base::matchCollection(const oclMat &query, c
if (query.empty() || trainCollection.empty())
return;
// match1 doesn't support signed char type, match2 only support float, hamming support uchar, ushort and int
int callType = query.depth();
if (callType != 5)
CV_Error(CV_UNSUPPORTED_FORMAT_ERR, "BruteForceMatch OpenCL only support float type query!\n");
if ((distType == 0 && callType == 1 ) || (distType == 1 && callType != 5) || (distType == 2 && (callType != 0
|| callType != 2 || callType != 4)))
{
CV_Error(CV_UNSUPPORTED_DEPTH_ERR, "BruteForceMatch OpenCL only support float type query!\n");
}
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
const int nQuery = query.rows;
@ -706,7 +680,6 @@ void cv::ocl::BruteForceMatcher_OCL_base::matchCollection(const oclMat &query, c
ensureSizeIsEnough(1, nQuery, CV_32S, imgIdx);
ensureSizeIsEnough(1, nQuery, CV_32F, distance);
matchDispatcher(query, (const oclMat *)trainCollection.ptr(), trainCollection.cols, masks, trainIdx, imgIdx, distance, distType);
return;
@ -778,18 +751,6 @@ void cv::ocl::BruteForceMatcher_OCL_base::knnMatchSingle(const oclMat &query, co
if (query.empty() || train.empty())
return;
// match1 doesn't support signed char type, match2 only support float, hamming support uchar, ushort and int
int callType = query.depth();
if (callType != 5)
CV_Error(CV_UNSUPPORTED_FORMAT_ERR, "BruteForceMatch OpenCL only support float type query!\n");
if ((distType == 0 && callType == 1 ) || (distType == 1 && callType != 5) || (distType == 2 && (callType != 0
|| callType != 2 || callType != 4)))
{
CV_Error(CV_UNSUPPORTED_DEPTH_ERR, "BruteForceMatch OpenCL only support float type query!\n");
}
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
CV_Assert(train.type() == query.type() && train.cols == query.cols);
@ -886,26 +847,7 @@ void cv::ocl::BruteForceMatcher_OCL_base::knnMatch2Collection(const oclMat &quer
typedef void (*caller_t)(const oclMat & query, const oclMat & trains, const oclMat & masks,
const oclMat & trainIdx, const oclMat & imgIdx, const oclMat & distance);
#if 0
static const caller_t callers[3][6] =
{
{
ocl_match2L1_gpu<unsigned char>, 0/*match2L1_gpu<signed char>*/,
ocl_match2L1_gpu<unsigned short>, ocl_match2L1_gpu<short>,
ocl_match2L1_gpu<int>, ocl_match2L1_gpu<float>
},
{
0/*match2L2_gpu<unsigned char>*/, 0/*match2L2_gpu<signed char>*/,
0/*match2L2_gpu<unsigned short>*/, 0/*match2L2_gpu<short>*/,
0/*match2L2_gpu<int>*/, ocl_match2L2_gpu<float>
},
{
ocl_match2Hamming_gpu<unsigned char>, 0/*match2Hamming_gpu<signed char>*/,
ocl_match2Hamming_gpu<unsigned short>, 0/*match2Hamming_gpu<short>*/,
ocl_match2Hamming_gpu<int>, 0/*match2Hamming_gpu<float>*/
}
};
#endif
CV_Assert(query.channels() == 1 && query.depth() < CV_64F);
const int nQuery = query.rows;
@ -1056,18 +998,6 @@ void cv::ocl::BruteForceMatcher_OCL_base::radiusMatchSingle(const oclMat &query,
if (query.empty() || train.empty())
return;
// match1 doesn't support signed char type, match2 only support float, hamming support uchar, ushort and int
int callType = query.depth();
if (callType != 5)
CV_Error(CV_UNSUPPORTED_FORMAT_ERR, "BruteForceMatch OpenCL only support float type query!\n");
if ((distType == 0 && callType == 1 ) || (distType == 1 && callType != 5) || (distType == 2 && (callType != 0
|| callType != 2 || callType != 4)))
{
CV_Error(CV_UNSUPPORTED_DEPTH_ERR, "BruteForceMatch OpenCL only support float type query!\n");
}
const int nQuery = query.rows;
const int nTrain = train.rows;

View File

@ -85,14 +85,17 @@ int bit1Count(int x)
typedef int value_type;
typedef int result_type;
# endif
#define DIST_RES(x) (x)
#elif (DIST_TYPE == 1) // L2Dist
#define DIST(x, y) (((x) - (y)) * ((x) - (y)))
typedef float value_type;
typedef float result_type;
#define DIST_RES(x) sqrt(x)
#elif (DIST_TYPE == 2) // Hamming
#define DIST(x, y) bit1Count(((x) ^ (y))
#define DIST(x, y) bit1Count( (x) ^ (y) )
typedef int value_type;
typedef int result_type;
#define DIST_RES(x) (x)
#endif
result_type reduce_block(
@ -110,7 +113,7 @@ result_type reduce_block(
s_query[lidy * BLOCK_SIZE + j],
s_train[j * BLOCK_SIZE + lidx]);
}
return result;
return DIST_RES(result);
}
result_type reduce_multi_block(
@ -129,7 +132,7 @@ result_type reduce_multi_block(
s_query[lidy * MAX_DESC_LEN + block_index * BLOCK_SIZE + j],
s_train[j * BLOCK_SIZE + lidx]);
}
return result;
return DIST_RES(result);
}
/* 2dim launch, global size: dim0 is (query rows + BLOCK_SIZE - 1) / BLOCK_SIZE * BLOCK_SIZE, dim1 is BLOCK_SIZE
@ -153,8 +156,8 @@ __kernel void BruteForceMatch_UnrollMatch(
const int lidy = get_local_id(1);
const int groupidx = get_group_id(0);
__local value_type *s_query = sharebuffer;
__local value_type *s_train = sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
__local value_type *s_query = (__local value_type *)sharebuffer;
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
int queryIdx = groupidx * BLOCK_SIZE + lidy;
// load the query into local memory.
@ -251,8 +254,8 @@ __kernel void BruteForceMatch_Match(
float myBestDistance = MAX_FLOAT;
int myBestTrainIdx = -1;
__local value_type *s_query = sharebuffer;
__local value_type *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
__local value_type *s_query = (__local value_type *)sharebuffer;
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
// loop
for (int t = 0 ; t < (train_rows + BLOCK_SIZE - 1) / BLOCK_SIZE ; t++)
@ -345,8 +348,8 @@ __kernel void BruteForceMatch_RadiusUnrollMatch(
const int queryIdx = groupidy * BLOCK_SIZE + lidy;
const int trainIdx = groupidx * BLOCK_SIZE + lidx;
__local value_type *s_query = sharebuffer;
__local value_type *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
__local value_type *s_query = (__local value_type *)sharebuffer;
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
result_type result = 0;
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; ++i)
@ -365,7 +368,8 @@ __kernel void BruteForceMatch_RadiusUnrollMatch(
barrier(CLK_LOCAL_MEM_FENCE);
}
if (queryIdx < query_rows && trainIdx < train_rows && result < maxDistance/* && mask(queryIdx, trainIdx)*/)
if (queryIdx < query_rows && trainIdx < train_rows &&
convert_float(result) < maxDistance/* && mask(queryIdx, trainIdx)*/)
{
unsigned int ind = atom_inc(nMatches + queryIdx/*, (unsigned int) -1*/);
@ -405,8 +409,8 @@ __kernel void BruteForceMatch_RadiusMatch(
const int queryIdx = groupidy * BLOCK_SIZE + lidy;
const int trainIdx = groupidx * BLOCK_SIZE + lidx;
__local value_type *s_query = sharebuffer;
__local value_type *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
__local value_type *s_query = (__local value_type *)sharebuffer;
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
result_type result = 0;
for (int i = 0 ; i < (query_cols + BLOCK_SIZE - 1) / BLOCK_SIZE ; ++i)
@ -425,7 +429,8 @@ __kernel void BruteForceMatch_RadiusMatch(
barrier(CLK_LOCAL_MEM_FENCE);
}
if (queryIdx < query_rows && trainIdx < train_rows && result < maxDistance/* && mask(queryIdx, trainIdx)*/)
if (queryIdx < query_rows && trainIdx < train_rows &&
convert_float(result) < maxDistance/* && mask(queryIdx, trainIdx)*/)
{
unsigned int ind = atom_inc(nMatches + queryIdx);
@ -458,8 +463,8 @@ __kernel void BruteForceMatch_knnUnrollMatch(
const int groupidx = get_group_id(0);
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
local value_type *s_query = sharebuffer;
local value_type *s_train = sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
__local value_type *s_query = (__local value_type *)sharebuffer;
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * MAX_DESC_LEN;
// load the query into local memory.
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE; i ++)
@ -480,7 +485,6 @@ __kernel void BruteForceMatch_knnUnrollMatch(
result_type result = 0;
for (int i = 0 ; i < MAX_DESC_LEN / BLOCK_SIZE ; i++)
{
const int loadX = lidx + i * BLOCK_SIZE;
//load a BLOCK_SIZE * BLOCK_SIZE block into local train.
const int loadx = lidx + i * BLOCK_SIZE;
s_train[lidx * BLOCK_SIZE + lidy] = loadx < train_cols ? train[min(t * BLOCK_SIZE + lidy, train_rows - 1) * (step / sizeof(float)) + loadx] : 0;
@ -514,8 +518,8 @@ __kernel void BruteForceMatch_knnUnrollMatch(
barrier(CLK_LOCAL_MEM_FENCE);
local float *s_distance = (local float *)sharebuffer;
local int *s_trainIdx = (local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
__local float *s_distance = (local float *)sharebuffer;
__local int *s_trainIdx = (local int *)(sharebuffer + BLOCK_SIZE * BLOCK_SIZE);
// find BestMatch
s_distance += lidy * BLOCK_SIZE;
@ -604,8 +608,8 @@ __kernel void BruteForceMatch_knnMatch(
const int groupidx = get_group_id(0);
const int queryIdx = groupidx * BLOCK_SIZE + lidy;
local value_type *s_query = sharebuffer;
local value_type *s_train = sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
__local value_type *s_query = (__local value_type *)sharebuffer;
__local value_type *s_train = (__local value_type *)sharebuffer + BLOCK_SIZE * BLOCK_SIZE;
float myBestDistance1 = MAX_FLOAT;
float myBestDistance2 = MAX_FLOAT;

View File

@ -158,11 +158,7 @@ namespace
TEST_P(BruteForceMatcher, RadiusMatch_Single)
{
float radius;
if(distType == cv::ocl::BruteForceMatcher_OCL_base::L2Dist)
radius = 1.f / countFactor / countFactor;
else
radius = 1.f / countFactor;
float radius = 1.f / countFactor;
cv::ocl::BruteForceMatcher_OCL_base matcher(distType);