mirror of
https://github.com/opencv/opencv.git
synced 2024-11-29 05:29:54 +08:00
Merge pull request #15995 from bwignall:typo
This commit is contained in:
commit
d9efb55d29
@ -36,7 +36,7 @@ let x = document.getElementById('myRange');
|
||||
@endcode
|
||||
|
||||
As a trackbar, the range element need a trackbar name, the default value, minimum value, maximum value,
|
||||
step and the callback function which is executed everytime trackbar value changes. The callback function
|
||||
step and the callback function which is executed every time trackbar value changes. The callback function
|
||||
always has a default argument, which is the trackbar position. Additionally, a text element to display the
|
||||
trackbar value is fine. In our case, we can create the trackbar as below:
|
||||
@code{.html}
|
||||
|
@ -16,7 +16,7 @@ correspondingly window color changes. By default, initial color will be set to B
|
||||
|
||||
For cv.getTrackbarPos() function, first argument is the trackbar name, second one is the window
|
||||
name to which it is attached, third argument is the default value, fourth one is the maximum value
|
||||
and fifth one is the callback function which is executed everytime trackbar value changes. The
|
||||
and fifth one is the callback function which is executed every time trackbar value changes. The
|
||||
callback function always has a default argument which is the trackbar position. In our case,
|
||||
function does nothing, so we simply pass.
|
||||
|
||||
|
@ -54,7 +54,7 @@ print( accuracy )
|
||||
@endcode
|
||||
So our basic OCR app is ready. This particular example gave me an accuracy of 91%. One option
|
||||
improve accuracy is to add more data for training, especially the wrong ones. So instead of finding
|
||||
this training data everytime I start application, I better save it, so that next time, I directly
|
||||
this training data every time I start application, I better save it, so that next time, I directly
|
||||
read this data from a file and start classification. You can do it with the help of some Numpy
|
||||
functions like np.savetxt, np.savez, np.load etc. Please check their docs for more details.
|
||||
@code{.py}
|
||||
|
@ -210,12 +210,12 @@ Explanation
|
||||
@code{.cpp}
|
||||
image2 = image - Scalar::all(i)
|
||||
@endcode
|
||||
So, **image2** is the substraction of **image** and **Scalar::all(i)**. In fact, what happens
|
||||
here is that every pixel of **image2** will be the result of substracting every pixel of
|
||||
So, **image2** is the subtraction of **image** and **Scalar::all(i)**. In fact, what happens
|
||||
here is that every pixel of **image2** will be the result of subtracting every pixel of
|
||||
**image** minus the value of **i** (remember that for each pixel we are considering three values
|
||||
such as R, G and B, so each of them will be affected)
|
||||
|
||||
Also remember that the substraction operation *always* performs internally a **saturate**
|
||||
Also remember that the subtraction operation *always* performs internally a **saturate**
|
||||
operation, which means that the result obtained will always be inside the allowed range (no
|
||||
negative and between 0 and 255 for our example).
|
||||
|
||||
|
@ -502,7 +502,7 @@ typedef double v1f64 __attribute__ ((vector_size(8), aligned(8)));
|
||||
(v4u32)__builtin_msa_pckev_w((v4i32)__builtin_msa_sat_u_d((v2u64)__e, 31), (v4i32)__builtin_msa_sat_u_d((v2u64)__d, 31)); \
|
||||
})
|
||||
|
||||
/* Minimum values between corresponding elements in the two vectors are written to teh returned vector. */
|
||||
/* Minimum values between corresponding elements in the two vectors are written to the returned vector. */
|
||||
#define msa_minq_s8(__a, __b) (__builtin_msa_min_s_b(__a, __b))
|
||||
#define msa_minq_s16(__a, __b) (__builtin_msa_min_s_h(__a, __b))
|
||||
#define msa_minq_s32(__a, __b) (__builtin_msa_min_s_w(__a, __b))
|
||||
@ -514,7 +514,7 @@ typedef double v1f64 __attribute__ ((vector_size(8), aligned(8)));
|
||||
#define msa_minq_f32(__a, __b) (__builtin_msa_fmin_w(__a, __b))
|
||||
#define msa_minq_f64(__a, __b) (__builtin_msa_fmin_d(__a, __b))
|
||||
|
||||
/* Maximum values between corresponding elements in the two vectors are written to teh returned vector. */
|
||||
/* Maximum values between corresponding elements in the two vectors are written to the returned vector. */
|
||||
#define msa_maxq_s8(__a, __b) (__builtin_msa_max_s_b(__a, __b))
|
||||
#define msa_maxq_s16(__a, __b) (__builtin_msa_max_s_h(__a, __b))
|
||||
#define msa_maxq_s32(__a, __b) (__builtin_msa_max_s_w(__a, __b))
|
||||
|
@ -82,7 +82,7 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
{
|
||||
CV_Assert(is_fully_aligned<T>(output, N));
|
||||
CV_Assert(is_fully_aligned<T>(input, N));
|
||||
/* more assertions are required to fully check for vectorization possiblity; check concat() */
|
||||
/* more assertions are required to fully check for vectorization possibility; check concat() */
|
||||
|
||||
auto kernel = raw::concat_vec<T, N>;
|
||||
auto policy = make_policy(kernel, input.size() / N, 0, stream);
|
||||
@ -168,7 +168,7 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
CV_Assert(output.rank() == input.rank());
|
||||
CV_Assert(output.rank() == offsets.size());
|
||||
|
||||
/* squeezable axes at the begining of both tensors can be eliminated
|
||||
/* squeezable axes at the beginning of both tensors can be eliminated
|
||||
*
|
||||
* Reasoning:
|
||||
* ----------
|
||||
|
@ -103,7 +103,7 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
CV_Assert(output.rank() == input.rank());
|
||||
CV_Assert(output.rank() == ranges.size());
|
||||
|
||||
/* squeezable axes at the begining of both tensors can be eliminated
|
||||
/* squeezable axes at the beginning of both tensors can be eliminated
|
||||
*
|
||||
* Reasoning:
|
||||
* ----------
|
||||
|
@ -83,7 +83,7 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
CV_Assert(input.rank() == order.size());
|
||||
CV_Assert(input.size() == output.size());
|
||||
|
||||
/* squeezable axes at the begining of both tensors which aren't permuted can be eliminated
|
||||
/* squeezable axes at the beginning of both tensors which aren't permuted can be eliminated
|
||||
*
|
||||
* Reasoning:
|
||||
* ----------
|
||||
|
@ -79,7 +79,7 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace kernels {
|
||||
CV_Assert(output.rank() == input.rank());
|
||||
CV_Assert(output.rank() == offsets.size());
|
||||
|
||||
/* squeezable axes at the begining of both tensors can be eliminated
|
||||
/* squeezable axes at the beginning of both tensors can be eliminated
|
||||
*
|
||||
* Reasoning:
|
||||
* ----------
|
||||
|
@ -218,7 +218,7 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace csl { namespace cu
|
||||
*
|
||||
* cuDNN frequently assumes that the first axis is the batch axis and the
|
||||
* second axis is the channel axis; hence, we copy the shape of a lower rank
|
||||
* tensor to the begining of `dims`
|
||||
* tensor to the beginning of `dims`
|
||||
*/
|
||||
std::copy(start, end, std::begin(dims));
|
||||
|
||||
|
@ -53,7 +53,7 @@ namespace cv { namespace dnn { namespace cuda4dnn { namespace csl {
|
||||
* "TensorType" is used when only meta-information such as the size or shape is required, i.e. the data won't be touched
|
||||
*/
|
||||
|
||||
/** if the \p axis is a negative index, the equivalent postive index is returned; otherwise, returns \p axis */
|
||||
/** if the \p axis is a negative index, the equivalent positive index is returned; otherwise, returns \p axis */
|
||||
CUDA4DNN_HOST_DEVICE constexpr std::size_t clamp_axis(int axis, std::size_t rank) {
|
||||
return axis < 0 ? axis + rank : axis;
|
||||
}
|
||||
|
@ -41,7 +41,7 @@ namespace cv { namespace dnn { namespace cuda4dnn {
|
||||
/* 1 for L1 norm, 2 for L2 norm */
|
||||
std::size_t norm;
|
||||
|
||||
/* epsilon to use to avoid divison by zero */
|
||||
/* epsilon to use to avoid division by zero */
|
||||
T eps;
|
||||
};
|
||||
|
||||
|
@ -168,7 +168,7 @@ namespace cv { namespace dnn { namespace cuda4dnn {
|
||||
* copying the input to a bigger tensor and padding the ends manually
|
||||
*
|
||||
* But we first try to avoid the transformation using cuDNN's flexibility. cuDNN can accept a smaller or
|
||||
* a bigger output shape. This effectively allows us to have arbitary padding at the right.
|
||||
* a bigger output shape. This effectively allows us to have arbitrary padding at the right.
|
||||
*/
|
||||
if (std::any_of(std::begin(padding_left), std::end(padding_left), is_not_zero))
|
||||
{
|
||||
|
@ -65,7 +65,7 @@ namespace cv { namespace dnn {
|
||||
* \param[out] destTensor destination tensor
|
||||
* \param stream CUDA stream to use for the memory transfer
|
||||
*
|
||||
* The memory copy starts from begining \p srcMat. The number of elements copied is
|
||||
* The memory copy starts from beginning \p srcMat. The number of elements copied is
|
||||
* equal to the number of elements in \p destTensor.
|
||||
*
|
||||
* Pre-conditions:
|
||||
|
@ -73,7 +73,7 @@ inline std::ostream& operator<<(std::ostream& os, bitwiseOp op)
|
||||
// 1. Default parameters: int type, cv::Size sz, int dtype, getCompileArgs() function
|
||||
// - available in test body
|
||||
// 2. Input/output matrices will be initialized by initMatsRandU (in this fixture)
|
||||
// 3. Specific parameters: opType, testWithScalar, scale, doReverseOp of correponding types
|
||||
// 3. Specific parameters: opType, testWithScalar, scale, doReverseOp of corresponding types
|
||||
// - created (and initialized) automatically
|
||||
// - available in test body
|
||||
// Note: all parameter _values_ (e.g. type CV_8UC3) are set via INSTANTIATE_TEST_CASE_P macro
|
||||
|
@ -25,7 +25,7 @@ namespace opencv_test
|
||||
// 1. Default parameters: int type, cv::Size sz, int dtype, getCompileArgs() function
|
||||
// - available in test body
|
||||
// 2. Input/output matrices will be initialized by initMatrixRandN (in this fixture)
|
||||
// 3. Specific parameters: cmpF, kernSize, borderType of correponding types
|
||||
// 3. Specific parameters: cmpF, kernSize, borderType of corresponding types
|
||||
// - created (and initialized) automatically
|
||||
// - available in test body
|
||||
// Note: all parameter _values_ (e.g. type CV_8UC3) are set via INSTANTIATE_TEST_CASE_P macro
|
||||
|
@ -195,7 +195,7 @@ g_api_ocv_pair_mat_mat opXor = {std::string{"operator^"},
|
||||
// 1. Default parameters: int type, cv::Size sz, int dtype, getCompileArgs() function
|
||||
// - available in test body
|
||||
// 2. Input/output matrices will be initialized by initMatsRandU (in this fixture)
|
||||
// 3. Specific parameters: cmpF, op of correponding types
|
||||
// 3. Specific parameters: cmpF, op of corresponding types
|
||||
// - created (and initialized) automatically
|
||||
// - available in test body
|
||||
// Note: all parameter _values_ (e.g. type CV_8UC3) are set via INSTANTIATE_TEST_CASE_P macro
|
||||
|
@ -540,7 +540,7 @@ TEST(GAPI_Streaming_Types, XChangeVector)
|
||||
auto fluid_kernels = cv::gapi::core::fluid::kernels();
|
||||
fluid_kernels.include<TypesTest::FluidAddV>();
|
||||
|
||||
// Here OCV takes precedense over Fluid, whith SubC & SumV remaining
|
||||
// Here OCV takes precedense over Fluid, with SubC & SumV remaining
|
||||
// in Fluid.
|
||||
auto kernels = cv::gapi::combine(fluid_kernels, ocv_kernels);
|
||||
|
||||
|
@ -83,7 +83,7 @@ void CV_WatershedTest::run( int /* start_from */)
|
||||
Point* p = (Point*)cvGetSeqElem(cnts, 0);
|
||||
|
||||
//expected image was added with 1 in order to save to png
|
||||
//so now we substract 1 to get real color
|
||||
//so now we subtract 1 to get real color
|
||||
if(!exp.empty())
|
||||
colors.push_back(exp.ptr(p->y)[p->x] - 1);
|
||||
}
|
||||
|
Loading…
Reference in New Issue
Block a user