Adding some dynamic feature detectors...

This commit is contained in:
Ethan Rublee 2010-11-22 23:59:25 +00:00
parent 63ba7ee2d9
commit da05e6609a
2 changed files with 160 additions and 1 deletions

View File

@ -1448,6 +1448,152 @@ protected:
int levels;
};
/****************************************************************************************\
* Dynamic Feature Detectors *
\****************************************************************************************/
/** \brief an adaptively adjusting detector that iteratively detects until the desired number
* of features are detected.
* Beware that this is not thread safe - as the adjustment of parameters breaks the const
* of the detection routine...
* /TODO Make this const correct and thread safe
*/
template<typename Adjuster>
class DynamicDetectorAdaptor: public FeatureDetector {
public:
/** \param min_features the minimum desired features
* \param max_features the maximum desired number of features
* \param max_iters the maximum number of times to try to adjust the feature detector params
* for the FastAdjuster this can be high, but with Star or Surf this can get time consuming
* \param a a copy of an Adjuster that will do the detection and parameter adjustment
*/
DynamicDetectorAdaptor(int min_features, int max_features,
int max_iters, const Adjuster& a = Adjuster()) :
escape_iters_(max_iters), min_features_(min_features), max_features_(
max_features), adjuster_(a) {
}
protected:
virtual void detectImpl(const cv::Mat& image,
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
cv::Mat()) const {
//for oscillation testing
bool down = false;
bool up = false;
//flag for whether the correct threshhold has been reached
bool thresh_good = false;
//this is bad but adjuster should persist from detection to detection
Adjuster& adjuster = const_cast<Adjuster&> (adjuster_);
//break if the desired number hasn't been reached.
int iter_count = escape_iters_;
do {
keypoints.clear();
//the adjuster takes care of calling the detector with updated parameters
adjuster.detect(image, mask, keypoints);
if (int(keypoints.size()) < min_features_) {
down = true;
adjuster.tooFew(min_features_, keypoints.size());
} else if (int(keypoints.size()) > max_features_) {
up = true;
adjuster.tooMany(max_features_, keypoints.size());
} else
thresh_good = true;
} while (--iter_count >= 0 && !(down && up) && !thresh_good
&& adjuster.good());
}
private:
int escape_iters_;
int min_features_, max_features_;
Adjuster adjuster_;
};
struct FastAdjuster {
FastAdjuster() :
thresh_(20) {
}
void detect(const Mat& img, const Mat& mask, std::vector<
KeyPoint>& keypoints) const {
FastFeatureDetector(thresh_, true).detect(img, keypoints, mask);
}
void tooFew(int min, int n_detected) {
//fast is easy to adjust
thresh_--;
}
void tooMany(int max, int n_detected) {
//fast is easy to adjust
thresh_++;
}
//return whether or not the threshhold is beyond
//a useful point
bool good() const {
return (thresh_ > 1) && (thresh_ < 200);
}
int thresh_;
};
struct StarAdjuster {
StarAdjuster() :
thresh_(30) {
}
void detect(const Mat& img, const Mat& mask, std::vector<
KeyPoint>& keypoints) const {
StarFeatureDetector detector_tmp(16, thresh_, 10, 8, 3);
detector_tmp.detect(img, keypoints, mask);
}
void tooFew(int min, int n_detected) {
thresh_ *= 0.9;
if (thresh_ < 1.1)
thresh_ = 1.1;
}
void tooMany(int max, int n_detected) {
thresh_ *= 1.1;
}
//return whether or not the threshhold is beyond
//a useful point
bool good() const {
return (thresh_ > 2) && (thresh_ < 200);
}
double thresh_;
};
struct SurfAdjuster {
SurfAdjuster() :
thresh_(400.0) {
}
void detect(const Mat& img, const Mat& mask, std::vector<
KeyPoint>& keypoints) const {
SurfFeatureDetector detector_tmp(thresh_);
detector_tmp.detect(img, keypoints, mask);
}
void tooFew(int min, int n_detected) {
thresh_ *= 0.9;
if (thresh_ < 1.1)
thresh_ = 1.1;
}
void tooMany(int max, int n_detected) {
thresh_ *= 1.1;
}
//return whether or not the threshhold is beyond
//a useful point
bool good() const {
return (thresh_ > 2) && (thresh_ < 1000);
}
double thresh_;
};
typedef DynamicDetectorAdaptor<FastAdjuster> FASTDynamicDetector;
typedef DynamicDetectorAdaptor<StarAdjuster> StarDynamicDetector;
typedef DynamicDetectorAdaptor<SurfAdjuster> SurfDynamicDetector;
CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
float maxDeltaX, float maxDeltaY );
@ -1717,7 +1863,8 @@ struct CV_EXPORTS L1
};
/*
* Hamming distance (city block distance) functor
* Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
* bit count of A exclusive ored with B
*/
struct CV_EXPORTS HammingLUT
{

View File

@ -526,10 +526,18 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
{
fd = new FastFeatureDetector();
}
else if( !detectorType.compare( "DynamicFAST" ) )
{
fd = new FASTDynamicDetector(400,500,5);
}
else if( !detectorType.compare( "STAR" ) )
{
fd = new StarFeatureDetector();
}
else if( !detectorType.compare( "DynamicSTAR" ) )
{
fd = new StarDynamicDetector(400,500,5);
}
else if( !detectorType.compare( "SIFT" ) )
{
fd = new SiftFeatureDetector(SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(),
@ -539,6 +547,10 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
{
fd = new SurfFeatureDetector();
}
else if( !detectorType.compare( "DynamicSURF" ) )
{
fd = new SurfDynamicDetector(400,500,5);
}
else if( !detectorType.compare( "MSER" ) )
{
fd = new MserFeatureDetector();