mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 22:44:02 +08:00
Adding some dynamic feature detectors...
This commit is contained in:
parent
63ba7ee2d9
commit
da05e6609a
@ -1448,6 +1448,152 @@ protected:
|
||||
int levels;
|
||||
};
|
||||
|
||||
/****************************************************************************************\
|
||||
* Dynamic Feature Detectors *
|
||||
\****************************************************************************************/
|
||||
/** \brief an adaptively adjusting detector that iteratively detects until the desired number
|
||||
* of features are detected.
|
||||
* Beware that this is not thread safe - as the adjustment of parameters breaks the const
|
||||
* of the detection routine...
|
||||
* /TODO Make this const correct and thread safe
|
||||
*/
|
||||
template<typename Adjuster>
|
||||
class DynamicDetectorAdaptor: public FeatureDetector {
|
||||
public:
|
||||
|
||||
/** \param min_features the minimum desired features
|
||||
* \param max_features the maximum desired number of features
|
||||
* \param max_iters the maximum number of times to try to adjust the feature detector params
|
||||
* for the FastAdjuster this can be high, but with Star or Surf this can get time consuming
|
||||
* \param a a copy of an Adjuster that will do the detection and parameter adjustment
|
||||
*/
|
||||
DynamicDetectorAdaptor(int min_features, int max_features,
|
||||
int max_iters, const Adjuster& a = Adjuster()) :
|
||||
escape_iters_(max_iters), min_features_(min_features), max_features_(
|
||||
max_features), adjuster_(a) {
|
||||
}
|
||||
protected:
|
||||
virtual void detectImpl(const cv::Mat& image,
|
||||
std::vector<cv::KeyPoint>& keypoints, const cv::Mat& mask =
|
||||
cv::Mat()) const {
|
||||
//for oscillation testing
|
||||
bool down = false;
|
||||
bool up = false;
|
||||
|
||||
//flag for whether the correct threshhold has been reached
|
||||
bool thresh_good = false;
|
||||
|
||||
//this is bad but adjuster should persist from detection to detection
|
||||
Adjuster& adjuster = const_cast<Adjuster&> (adjuster_);
|
||||
|
||||
//break if the desired number hasn't been reached.
|
||||
int iter_count = escape_iters_;
|
||||
|
||||
do {
|
||||
keypoints.clear();
|
||||
|
||||
//the adjuster takes care of calling the detector with updated parameters
|
||||
adjuster.detect(image, mask, keypoints);
|
||||
|
||||
if (int(keypoints.size()) < min_features_) {
|
||||
down = true;
|
||||
adjuster.tooFew(min_features_, keypoints.size());
|
||||
} else if (int(keypoints.size()) > max_features_) {
|
||||
up = true;
|
||||
adjuster.tooMany(max_features_, keypoints.size());
|
||||
} else
|
||||
thresh_good = true;
|
||||
} while (--iter_count >= 0 && !(down && up) && !thresh_good
|
||||
&& adjuster.good());
|
||||
}
|
||||
|
||||
private:
|
||||
int escape_iters_;
|
||||
int min_features_, max_features_;
|
||||
Adjuster adjuster_;
|
||||
};
|
||||
|
||||
struct FastAdjuster {
|
||||
FastAdjuster() :
|
||||
thresh_(20) {
|
||||
}
|
||||
void detect(const Mat& img, const Mat& mask, std::vector<
|
||||
KeyPoint>& keypoints) const {
|
||||
FastFeatureDetector(thresh_, true).detect(img, keypoints, mask);
|
||||
}
|
||||
void tooFew(int min, int n_detected) {
|
||||
//fast is easy to adjust
|
||||
thresh_--;
|
||||
}
|
||||
void tooMany(int max, int n_detected) {
|
||||
//fast is easy to adjust
|
||||
thresh_++;
|
||||
}
|
||||
|
||||
//return whether or not the threshhold is beyond
|
||||
//a useful point
|
||||
bool good() const {
|
||||
return (thresh_ > 1) && (thresh_ < 200);
|
||||
}
|
||||
int thresh_;
|
||||
};
|
||||
|
||||
struct StarAdjuster {
|
||||
StarAdjuster() :
|
||||
thresh_(30) {
|
||||
}
|
||||
void detect(const Mat& img, const Mat& mask, std::vector<
|
||||
KeyPoint>& keypoints) const {
|
||||
StarFeatureDetector detector_tmp(16, thresh_, 10, 8, 3);
|
||||
detector_tmp.detect(img, keypoints, mask);
|
||||
}
|
||||
void tooFew(int min, int n_detected) {
|
||||
thresh_ *= 0.9;
|
||||
if (thresh_ < 1.1)
|
||||
thresh_ = 1.1;
|
||||
}
|
||||
void tooMany(int max, int n_detected) {
|
||||
thresh_ *= 1.1;
|
||||
}
|
||||
|
||||
//return whether or not the threshhold is beyond
|
||||
//a useful point
|
||||
bool good() const {
|
||||
return (thresh_ > 2) && (thresh_ < 200);
|
||||
}
|
||||
double thresh_;
|
||||
};
|
||||
|
||||
struct SurfAdjuster {
|
||||
SurfAdjuster() :
|
||||
thresh_(400.0) {
|
||||
}
|
||||
void detect(const Mat& img, const Mat& mask, std::vector<
|
||||
KeyPoint>& keypoints) const {
|
||||
SurfFeatureDetector detector_tmp(thresh_);
|
||||
detector_tmp.detect(img, keypoints, mask);
|
||||
}
|
||||
void tooFew(int min, int n_detected) {
|
||||
thresh_ *= 0.9;
|
||||
if (thresh_ < 1.1)
|
||||
thresh_ = 1.1;
|
||||
}
|
||||
void tooMany(int max, int n_detected) {
|
||||
thresh_ *= 1.1;
|
||||
}
|
||||
|
||||
//return whether or not the threshhold is beyond
|
||||
//a useful point
|
||||
bool good() const {
|
||||
return (thresh_ > 2) && (thresh_ < 1000);
|
||||
}
|
||||
double thresh_;
|
||||
};
|
||||
|
||||
typedef DynamicDetectorAdaptor<FastAdjuster> FASTDynamicDetector;
|
||||
typedef DynamicDetectorAdaptor<StarAdjuster> StarDynamicDetector;
|
||||
typedef DynamicDetectorAdaptor<SurfAdjuster> SurfDynamicDetector;
|
||||
|
||||
CV_EXPORTS Mat windowedMatchingMask( const vector<KeyPoint>& keypoints1, const vector<KeyPoint>& keypoints2,
|
||||
float maxDeltaX, float maxDeltaY );
|
||||
|
||||
@ -1717,7 +1863,8 @@ struct CV_EXPORTS L1
|
||||
};
|
||||
|
||||
/*
|
||||
* Hamming distance (city block distance) functor
|
||||
* Hamming distance functor - counts the bit differences between two strings - useful for the Brief descriptor
|
||||
* bit count of A exclusive ored with B
|
||||
*/
|
||||
struct CV_EXPORTS HammingLUT
|
||||
{
|
||||
|
@ -526,10 +526,18 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
|
||||
{
|
||||
fd = new FastFeatureDetector();
|
||||
}
|
||||
else if( !detectorType.compare( "DynamicFAST" ) )
|
||||
{
|
||||
fd = new FASTDynamicDetector(400,500,5);
|
||||
}
|
||||
else if( !detectorType.compare( "STAR" ) )
|
||||
{
|
||||
fd = new StarFeatureDetector();
|
||||
}
|
||||
else if( !detectorType.compare( "DynamicSTAR" ) )
|
||||
{
|
||||
fd = new StarDynamicDetector(400,500,5);
|
||||
}
|
||||
else if( !detectorType.compare( "SIFT" ) )
|
||||
{
|
||||
fd = new SiftFeatureDetector(SIFT::DetectorParams::GET_DEFAULT_THRESHOLD(),
|
||||
@ -539,6 +547,10 @@ Ptr<FeatureDetector> createFeatureDetector( const string& detectorType )
|
||||
{
|
||||
fd = new SurfFeatureDetector();
|
||||
}
|
||||
else if( !detectorType.compare( "DynamicSURF" ) )
|
||||
{
|
||||
fd = new SurfDynamicDetector(400,500,5);
|
||||
}
|
||||
else if( !detectorType.compare( "MSER" ) )
|
||||
{
|
||||
fd = new MserFeatureDetector();
|
||||
|
Loading…
Reference in New Issue
Block a user