mirror of
https://github.com/opencv/opencv.git
synced 2025-01-18 14:13:15 +08:00
Partially back-port #25075 to 4.x
This commit is contained in:
parent
ef611df09b
commit
daa8f7dfc6
@ -86,10 +86,10 @@ static CvMat* cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, b
|
||||
int* dsti;
|
||||
|
||||
if( !CV_IS_MAT(idx_arr) )
|
||||
CV_ERROR( CV_StsBadArg, "Invalid index array" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid index array" );
|
||||
|
||||
if( idx_arr->rows != 1 && idx_arr->cols != 1 )
|
||||
CV_ERROR( CV_StsBadSize, "the index array must be 1-dimensional" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "the index array must be 1-dimensional" );
|
||||
|
||||
idx_total = idx_arr->rows + idx_arr->cols - 1;
|
||||
srcb = idx_arr->data.ptr;
|
||||
@ -105,20 +105,20 @@ static CvMat* cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, b
|
||||
// idx_arr is array of 1's and 0's -
|
||||
// i.e. it is a mask of the selected components
|
||||
if( idx_total != data_arr_size )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes,
|
||||
"Component mask should contain as many elements as the total number of input variables" );
|
||||
|
||||
for( i = 0; i < idx_total; i++ )
|
||||
idx_selected += srcb[i*step] != 0;
|
||||
|
||||
if( idx_selected == 0 )
|
||||
CV_ERROR( CV_StsOutOfRange, "No components/input_variables is selected!" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "No components/input_variables is selected!" );
|
||||
|
||||
break;
|
||||
case CV_32SC1:
|
||||
// idx_arr is array of integer indices of selected components
|
||||
if( idx_total > data_arr_size )
|
||||
CV_ERROR( CV_StsOutOfRange,
|
||||
CV_ERROR( cv::Error::StsOutOfRange,
|
||||
"index array may not contain more elements than the total number of input variables" );
|
||||
idx_selected = idx_total;
|
||||
// check if sorted already
|
||||
@ -134,7 +134,7 @@ static CvMat* cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, b
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_ERROR( CV_StsUnsupportedFormat, "Unsupported index array data type "
|
||||
CV_ERROR( cv::Error::StsUnsupportedFormat, "Unsupported index array data type "
|
||||
"(it should be 8uC1, 8sC1 or 32sC1)" );
|
||||
}
|
||||
|
||||
@ -156,13 +156,13 @@ static CvMat* cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, b
|
||||
qsort( dsti, idx_total, sizeof(dsti[0]), icvCmpIntegers );
|
||||
|
||||
if( dsti[0] < 0 || dsti[idx_total-1] >= data_arr_size )
|
||||
CV_ERROR( CV_StsOutOfRange, "the index array elements are out of range" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "the index array elements are out of range" );
|
||||
|
||||
if( check_for_duplicates )
|
||||
{
|
||||
for( i = 1; i < idx_total; i++ )
|
||||
if( dsti[i] <= dsti[i-1] )
|
||||
CV_ERROR( CV_StsBadArg, "There are duplicated index array elements" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "There are duplicated index array elements" );
|
||||
}
|
||||
}
|
||||
|
||||
@ -218,7 +218,7 @@ bool CvCascadeBoostParams::read( const FileNode &node )
|
||||
!boostTypeStr.compare( CC_LOGIT_BOOST ) ? CvBoost::LOGIT :
|
||||
!boostTypeStr.compare( CC_GENTLE_BOOST ) ? CvBoost::GENTLE : -1;
|
||||
if (boost_type == -1)
|
||||
CV_Error( CV_StsBadArg, "unsupported Boost type" );
|
||||
CV_Error( cv::Error::StsBadArg, "unsupported Boost type" );
|
||||
node[CC_MINHITRATE] >> minHitRate;
|
||||
node[CC_MAXFALSEALARM] >> maxFalseAlarm;
|
||||
node[CC_TRIM_RATE] >> weight_trim_rate ;
|
||||
@ -228,7 +228,7 @@ bool CvCascadeBoostParams::read( const FileNode &node )
|
||||
maxFalseAlarm <= 0 || maxFalseAlarm > 1 ||
|
||||
weight_trim_rate <= 0 || weight_trim_rate > 1 ||
|
||||
max_depth <= 0 || weak_count <= 0 )
|
||||
CV_Error( CV_StsBadArg, "bad parameters range");
|
||||
CV_Error( cv::Error::StsBadArg, "bad parameters range");
|
||||
return true;
|
||||
}
|
||||
|
||||
@ -309,7 +309,7 @@ CvDTreeNode* CvCascadeBoostTrainData::subsample_data( const CvMat* _subsample_id
|
||||
bool isMakeRootCopy = true;
|
||||
|
||||
if( !data_root )
|
||||
CV_Error( CV_StsError, "No training data has been set" );
|
||||
CV_Error( cv::Error::StsError, "No training data has been set" );
|
||||
|
||||
if( _subsample_idx )
|
||||
{
|
||||
@ -547,7 +547,7 @@ void CvCascadeBoostTrainData::setData( const CvFeatureEvaluator* _featureEvaluat
|
||||
// TODO: check responses: elements must be 0 or 1
|
||||
|
||||
if( _precalcValBufSize < 0 || _precalcIdxBufSize < 0)
|
||||
CV_Error( CV_StsOutOfRange, "_numPrecalcVal and _numPrecalcIdx must be positive or 0" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "_numPrecalcVal and _numPrecalcIdx must be positive or 0" );
|
||||
|
||||
var_count = var_all = featureEvaluator->getNumFeatures() * featureEvaluator->getFeatureSize();
|
||||
sample_count = _numSamples;
|
||||
@ -602,7 +602,7 @@ void CvCascadeBoostTrainData::setData( const CvFeatureEvaluator* _featureEvaluat
|
||||
|
||||
if ((uint64)effective_buf_width * (uint64)effective_buf_height != effective_buf_size)
|
||||
{
|
||||
CV_Error(CV_StsBadArg, "The memory buffer cannot be allocated since its size exceeds integer fields limit");
|
||||
CV_Error(cv::Error::StsBadArg, "The memory buffer cannot be allocated since its size exceeds integer fields limit");
|
||||
}
|
||||
|
||||
if ( is_buf_16u )
|
||||
@ -914,7 +914,7 @@ CvDTreeNode* CvCascadeBoostTree::predict( int sampleIdx ) const
|
||||
{
|
||||
CvDTreeNode* node = root;
|
||||
if( !node )
|
||||
CV_Error( CV_StsError, "The tree has not been trained yet" );
|
||||
CV_Error( cv::Error::StsError, "The tree has not been trained yet" );
|
||||
|
||||
if ( ((CvCascadeBoostTrainData*)data)->featureEvaluator->getMaxCatCount() == 0 ) // ordered
|
||||
{
|
||||
|
@ -142,7 +142,7 @@ bool CvCascadeClassifier::train( const string _cascadeDirName,
|
||||
double time = (double)getTickCount();
|
||||
|
||||
if( _cascadeDirName.empty() || _posFilename.empty() || _negFilename.empty() )
|
||||
CV_Error( CV_StsBadArg, "_cascadeDirName or _bgfileName or _vecFileName is NULL" );
|
||||
CV_Error( cv::Error::StsBadArg, "_cascadeDirName or _bgfileName or _vecFileName is NULL" );
|
||||
|
||||
string dirName;
|
||||
if (_cascadeDirName.find_last_of("/\\") == (_cascadeDirName.length() - 1) )
|
||||
@ -452,7 +452,7 @@ void CvCascadeClassifier::save( const string filename, bool baseFormat )
|
||||
//char buf[256];
|
||||
CvSeq* weak;
|
||||
if ( cascadeParams.featureType != CvFeatureParams::HAAR )
|
||||
CV_Error( CV_StsBadFunc, "old file format is used for Haar-like features only");
|
||||
CV_Error( cv::Error::StsBadFunc, "old file format is used for Haar-like features only");
|
||||
fs << "{:" ICV_HAAR_TYPE_ID;
|
||||
fs << ICV_HAAR_SIZE_NAME << "[:" << cascadeParams.winSize.width <<
|
||||
cascadeParams.winSize.height << "]";
|
||||
|
@ -138,7 +138,7 @@ bool CvCascadeImageReader::PosReader::create( const string _filename )
|
||||
fread( &vecSize, sizeof( vecSize ), 1, file ) != 1 ||
|
||||
fread( &tmp, sizeof( tmp ), 1, file ) != 1 ||
|
||||
fread( &tmp, sizeof( tmp ), 1, file ) != 1 )
|
||||
CV_Error_( CV_StsParseError, ("wrong file format for %s\n", _filename.c_str()) );
|
||||
CV_Error_( cv::Error::StsParseError, ("wrong file format for %s\n", _filename.c_str()) );
|
||||
base = sizeof( count ) + sizeof( vecSize ) + 2*sizeof( tmp );
|
||||
if( feof( file ) )
|
||||
return false;
|
||||
@ -154,14 +154,14 @@ bool CvCascadeImageReader::PosReader::get( Mat &_img )
|
||||
uchar tmp = 0;
|
||||
size_t elements_read = fread( &tmp, sizeof( tmp ), 1, file );
|
||||
if( elements_read != 1 )
|
||||
CV_Error( CV_StsBadArg, "Can not get new positive sample. The most possible reason is "
|
||||
CV_Error( cv::Error::StsBadArg, "Can not get new positive sample. The most possible reason is "
|
||||
"insufficient count of samples in given vec-file.\n");
|
||||
elements_read = fread( vec, sizeof( vec[0] ), vecSize, file );
|
||||
if( elements_read != (size_t)(vecSize) )
|
||||
CV_Error( CV_StsBadArg, "Can not get new positive sample. Seems that vec-file has incorrect structure.\n");
|
||||
CV_Error( cv::Error::StsBadArg, "Can not get new positive sample. Seems that vec-file has incorrect structure.\n");
|
||||
|
||||
if( feof( file ) || last++ >= count )
|
||||
CV_Error( CV_StsBadArg, "Can not get new positive sample. vec-file is over.\n");
|
||||
CV_Error( cv::Error::StsBadArg, "Can not get new positive sample. vec-file is over.\n");
|
||||
|
||||
for( int r = 0; r < _img.rows; r++ )
|
||||
{
|
||||
|
@ -991,7 +991,7 @@ CvBoost::set_params( const CvBoostParams& _params )
|
||||
params = _params;
|
||||
if( params.boost_type != DISCRETE && params.boost_type != REAL &&
|
||||
params.boost_type != LOGIT && params.boost_type != GENTLE )
|
||||
CV_ERROR( CV_StsBadArg, "Unknown/unsupported boosting type" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Unknown/unsupported boosting type" );
|
||||
|
||||
params.weak_count = MAX( params.weak_count, 1 );
|
||||
params.weight_trim_rate = MAX( params.weight_trim_rate, 0. );
|
||||
@ -1045,7 +1045,7 @@ CvBoost::train( const CvMat* _train_data, int _tflag,
|
||||
_sample_idx, _var_type, _missing_mask, _params, true, true );
|
||||
|
||||
if( data->get_num_classes() != 2 )
|
||||
CV_ERROR( CV_StsNotImplemented,
|
||||
CV_ERROR( cv::Error::StsNotImplemented,
|
||||
"Boosted trees can only be used for 2-class classification." );
|
||||
CV_CALL( storage = cvCreateMemStorage() );
|
||||
weak = cvCreateSeq( 0, sizeof(CvSeq), sizeof(CvBoostTree*), storage );
|
||||
@ -1482,7 +1482,7 @@ CvBoost::get_active_vars( bool absolute_idx )
|
||||
__BEGIN__;
|
||||
|
||||
if( !weak )
|
||||
CV_ERROR( CV_StsError, "The boosted tree ensemble has not been trained yet" );
|
||||
CV_ERROR( cv::Error::StsError, "The boosted tree ensemble has not been trained yet" );
|
||||
|
||||
if( !active_vars || !active_vars_abs )
|
||||
{
|
||||
@ -1612,13 +1612,13 @@ CvBoost::predict( const CvMat* _sample, const CvMat* _missing,
|
||||
const float* sample_data;
|
||||
|
||||
if( !weak )
|
||||
CV_Error( CV_StsError, "The boosted tree ensemble has not been trained yet" );
|
||||
CV_Error( cv::Error::StsError, "The boosted tree ensemble has not been trained yet" );
|
||||
|
||||
if( !CV_IS_MAT(_sample) || CV_MAT_TYPE(_sample->type) != CV_32FC1 ||
|
||||
(_sample->cols != 1 && _sample->rows != 1) ||
|
||||
(_sample->cols + _sample->rows - 1 != data->var_all && !raw_mode) ||
|
||||
(active_vars && _sample->cols + _sample->rows - 1 != active_vars->cols && raw_mode) )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"the input sample must be 1d floating-point vector with the same "
|
||||
"number of elements as the total number of variables or "
|
||||
"as the number of variables used for training" );
|
||||
@ -1627,7 +1627,7 @@ CvBoost::predict( const CvMat* _sample, const CvMat* _missing,
|
||||
{
|
||||
if( !CV_IS_MAT(_missing) || !CV_IS_MASK_ARR(_missing) ||
|
||||
!CV_ARE_SIZES_EQ(_missing, _sample) )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"the missing data mask must be 8-bit vector of the same size as input sample" );
|
||||
}
|
||||
|
||||
@ -1644,7 +1644,7 @@ CvBoost::predict( const CvMat* _sample, const CvMat* _missing,
|
||||
CV_MAT_TYPE(weak_responses->type) != CV_32FC1 ||
|
||||
(weak_responses->cols != 1 && weak_responses->rows != 1) ||
|
||||
weak_responses->cols + weak_responses->rows - 1 != weak_count )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"The output matrix of weak classifier responses must be valid "
|
||||
"floating-point vector of the same number of components as the length of input slice" );
|
||||
wstep = CV_IS_MAT_CONT(weak_responses->type) ? 1 : weak_responses->step/sizeof(float);
|
||||
@ -1700,7 +1700,7 @@ CvBoost::predict( const CvMat* _sample, const CvMat* _missing,
|
||||
c = a;
|
||||
int ival = cvRound(val);
|
||||
if ( (ival != val) && (!m) )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"one of input categorical variable is not an integer" );
|
||||
|
||||
while( a < b )
|
||||
@ -1735,7 +1735,7 @@ CvBoost::predict( const CvMat* _sample, const CvMat* _missing,
|
||||
else
|
||||
{
|
||||
if( !CV_IS_MAT_CONT(_sample->type & (_missing ? _missing->type : -1)) )
|
||||
CV_Error( CV_StsBadArg, "In raw mode the input vectors must be continuous" );
|
||||
CV_Error( cv::Error::StsBadArg, "In raw mode the input vectors must be continuous" );
|
||||
}
|
||||
|
||||
cvStartReadSeq( weak, &reader );
|
||||
@ -1951,7 +1951,7 @@ void CvBoost::read_params( cv::FileNode& fnode )
|
||||
params.boost_type = temp.empty() ? -1 : (int)temp;
|
||||
|
||||
if( params.boost_type < DISCRETE || params.boost_type > GENTLE )
|
||||
CV_ERROR( CV_StsBadArg, "Unknown boosting type" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Unknown boosting type" );
|
||||
|
||||
temp = fnode[ "splitting_criteria" ];
|
||||
if( !temp.empty() && temp.isString() )
|
||||
@ -1966,7 +1966,7 @@ void CvBoost::read_params( cv::FileNode& fnode )
|
||||
params.split_criteria = temp.empty() ? -1 : (int) temp;
|
||||
|
||||
if( params.split_criteria < DEFAULT || params.boost_type > SQERR )
|
||||
CV_ERROR( CV_StsBadArg, "Unknown boosting type" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Unknown boosting type" );
|
||||
|
||||
params.weak_count = (int) fnode[ "ntrees" ];
|
||||
params.weight_trim_rate = (double)fnode["weight_trimming_rate"];
|
||||
@ -1996,13 +1996,13 @@ CvBoost::read( cv::FileNode& node )
|
||||
|
||||
trees_fnode = node[ "trees" ];
|
||||
if( trees_fnode.empty() || !trees_fnode.isSeq() )
|
||||
CV_ERROR( CV_StsParseError, "<trees> tag is missing" );
|
||||
CV_ERROR( cv::Error::StsParseError, "<trees> tag is missing" );
|
||||
|
||||
reader = trees_fnode.begin();
|
||||
ntrees = (int) trees_fnode.size();
|
||||
|
||||
if( ntrees != params.weak_count )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes,
|
||||
"The number of trees stored does not match <ntrees> tag value" );
|
||||
|
||||
CV_CALL( storage = cvCreateMemStorage() );
|
||||
@ -2034,7 +2034,7 @@ CvBoost::write( cv::FileStorage& fs, const char* name ) const
|
||||
fs.startWriteStruct( name, cv::FileNode::MAP, CV_TYPE_NAME_ML_BOOSTING );
|
||||
|
||||
if( !weak )
|
||||
CV_ERROR( CV_StsBadArg, "The classifier has not been trained yet" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "The classifier has not been trained yet" );
|
||||
|
||||
write_params( fs );
|
||||
fs.startWriteStruct( "trees", cv::FileNode::SEQ );
|
||||
|
@ -284,7 +284,7 @@ const CvMat* CvMLData::get_missing() const
|
||||
__BEGIN__;
|
||||
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
|
||||
__END__;
|
||||
|
||||
@ -331,7 +331,7 @@ void CvMLData::set_delimiter(char ch)
|
||||
__BEGIN__;
|
||||
|
||||
if (ch == miss_ch /*|| ch == flt_separator*/)
|
||||
CV_ERROR(CV_StsBadArg, "delimited, miss_character and flt_separator must be different");
|
||||
CV_ERROR(cv::Error::StsBadArg, "delimited, miss_character and flt_separator must be different");
|
||||
|
||||
delimiter = ch;
|
||||
|
||||
@ -349,7 +349,7 @@ void CvMLData::set_miss_ch(char ch)
|
||||
__BEGIN__;
|
||||
|
||||
if (ch == delimiter/* || ch == flt_separator*/)
|
||||
CV_ERROR(CV_StsBadArg, "delimited, miss_character and flt_separator must be different");
|
||||
CV_ERROR(cv::Error::StsBadArg, "delimited, miss_character and flt_separator must be different");
|
||||
|
||||
miss_ch = ch;
|
||||
|
||||
@ -367,10 +367,10 @@ void CvMLData::set_response_idx( int idx )
|
||||
__BEGIN__;
|
||||
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
|
||||
if ( idx >= values->cols)
|
||||
CV_ERROR( CV_StsBadArg, "idx value is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "idx value is not correct" );
|
||||
|
||||
if ( response_idx >= 0 )
|
||||
chahge_var_idx( response_idx, true );
|
||||
@ -387,7 +387,7 @@ int CvMLData::get_response_idx() const
|
||||
__BEGIN__;
|
||||
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
__END__;
|
||||
return response_idx;
|
||||
}
|
||||
@ -400,19 +400,19 @@ void CvMLData::change_var_type( int var_idx, int type )
|
||||
int var_count = 0;
|
||||
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
|
||||
var_count = values->cols;
|
||||
|
||||
if ( var_idx < 0 || var_idx >= var_count)
|
||||
CV_ERROR( CV_StsBadArg, "var_idx is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "var_idx is not correct" );
|
||||
|
||||
if ( type != CV_VAR_ORDERED && type != CV_VAR_CATEGORICAL)
|
||||
CV_ERROR( CV_StsBadArg, "type is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "type is not correct" );
|
||||
|
||||
assert( var_types );
|
||||
if ( var_types->data.ptr[var_idx] == CV_VAR_CATEGORICAL && type == CV_VAR_ORDERED)
|
||||
CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
|
||||
var_types->data.ptr[var_idx] = (uchar)type;
|
||||
|
||||
__END__;
|
||||
@ -428,7 +428,7 @@ void CvMLData::set_var_types( const char* str )
|
||||
const char* ord = 0, *cat = 0;
|
||||
int var_count = 0, set_var_type_count = 0;
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
|
||||
var_count = values->cols;
|
||||
|
||||
@ -437,7 +437,7 @@ void CvMLData::set_var_types( const char* str )
|
||||
ord = strstr( str, "ord" );
|
||||
cat = strstr( str, "cat" );
|
||||
if ( !ord && !cat )
|
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "types string is not correct" );
|
||||
|
||||
if ( !ord && strlen(cat) == 3 ) // str == "cat"
|
||||
{
|
||||
@ -455,19 +455,19 @@ void CvMLData::set_var_types( const char* str )
|
||||
{
|
||||
char* stopstring = NULL;
|
||||
if ( ord[3] != '[')
|
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "types string is not correct" );
|
||||
|
||||
ord += 4; // pass "ord["
|
||||
do
|
||||
{
|
||||
int b1 = (int)strtod( ord, &stopstring );
|
||||
if ( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') )
|
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "types string is not correct" );
|
||||
ord = stopstring + 1;
|
||||
if ( (stopstring[0] == ',') || (stopstring[0] == ']'))
|
||||
{
|
||||
if ( var_types->data.ptr[b1] == CV_VAR_CATEGORICAL)
|
||||
CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
|
||||
var_types->data.ptr[b1] = CV_VAR_ORDERED;
|
||||
set_var_type_count++;
|
||||
}
|
||||
@ -477,39 +477,39 @@ void CvMLData::set_var_types( const char* str )
|
||||
{
|
||||
int b2 = (int)strtod( ord, &stopstring);
|
||||
if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') )
|
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "types string is not correct" );
|
||||
ord = stopstring + 1;
|
||||
for (int i = b1; i <= b2; i++)
|
||||
{
|
||||
if ( var_types->data.ptr[i] == CV_VAR_CATEGORICAL)
|
||||
CV_ERROR( CV_StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "it`s impossible to assign CV_VAR_ORDERED type to categorical variable" );
|
||||
var_types->data.ptr[i] = CV_VAR_ORDERED;
|
||||
}
|
||||
set_var_type_count += b2 - b1 + 1;
|
||||
}
|
||||
else
|
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "types string is not correct" );
|
||||
|
||||
}
|
||||
}
|
||||
while (*stopstring != ']');
|
||||
|
||||
if ( stopstring[1] != '\0' && stopstring[1] != ',')
|
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "types string is not correct" );
|
||||
}
|
||||
|
||||
if ( cat ) // parse cat str
|
||||
{
|
||||
char* stopstring = NULL;
|
||||
if ( cat[3] != '[')
|
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "types string is not correct" );
|
||||
|
||||
cat += 4; // pass "cat["
|
||||
do
|
||||
{
|
||||
int b1 = (int)strtod( cat, &stopstring );
|
||||
if ( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') )
|
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "types string is not correct" );
|
||||
cat = stopstring + 1;
|
||||
if ( (stopstring[0] == ',') || (stopstring[0] == ']'))
|
||||
{
|
||||
@ -522,25 +522,25 @@ void CvMLData::set_var_types( const char* str )
|
||||
{
|
||||
int b2 = (int)strtod( cat, &stopstring);
|
||||
if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') )
|
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "types string is not correct" );
|
||||
cat = stopstring + 1;
|
||||
for (int i = b1; i <= b2; i++)
|
||||
var_types->data.ptr[i] = CV_VAR_CATEGORICAL;
|
||||
set_var_type_count += b2 - b1 + 1;
|
||||
}
|
||||
else
|
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "types string is not correct" );
|
||||
|
||||
}
|
||||
}
|
||||
while (*stopstring != ']');
|
||||
|
||||
if ( stopstring[1] != '\0' && stopstring[1] != ',')
|
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "types string is not correct" );
|
||||
}
|
||||
|
||||
if (set_var_type_count != var_count)
|
||||
CV_ERROR( CV_StsBadArg, "types string is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "types string is not correct" );
|
||||
|
||||
__END__;
|
||||
}
|
||||
@ -553,7 +553,7 @@ const CvMat* CvMLData::get_var_types()
|
||||
uchar *var_types_out_ptr = 0;
|
||||
int avcount, vt_size;
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
|
||||
assert( var_idx_mask );
|
||||
|
||||
@ -597,7 +597,7 @@ const CvMat* CvMLData::get_responses()
|
||||
int var_count = 0;
|
||||
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
var_count = values->cols;
|
||||
|
||||
if ( response_idx < 0 || response_idx >= var_count )
|
||||
@ -621,7 +621,7 @@ void CvMLData::set_train_test_split( const CvTrainTestSplit * spl)
|
||||
int sample_count = 0;
|
||||
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
|
||||
sample_count = values->rows;
|
||||
|
||||
@ -631,14 +631,14 @@ void CvMLData::set_train_test_split( const CvTrainTestSplit * spl)
|
||||
{
|
||||
train_sample_count = spl->train_sample_part.count;
|
||||
if (train_sample_count > sample_count)
|
||||
CV_ERROR( CV_StsBadArg, "train samples count is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "train samples count is not correct" );
|
||||
train_sample_count = train_sample_count<=0 ? sample_count : train_sample_count;
|
||||
}
|
||||
else // dtype.train_sample_part_mode == CV_PORTION
|
||||
{
|
||||
train_sample_portion = spl->train_sample_part.portion;
|
||||
if ( train_sample_portion > 1)
|
||||
CV_ERROR( CV_StsBadArg, "train samples count is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "train samples count is not correct" );
|
||||
train_sample_portion = train_sample_portion <= FLT_EPSILON ||
|
||||
1 - train_sample_portion <= FLT_EPSILON ? 1 : train_sample_portion;
|
||||
train_sample_count = std::max(1, cvFloor( train_sample_portion * sample_count ));
|
||||
@ -680,7 +680,7 @@ const CvMat* CvMLData::get_train_sample_idx() const
|
||||
__BEGIN__;
|
||||
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
__END__;
|
||||
|
||||
return train_sample_idx;
|
||||
@ -692,7 +692,7 @@ const CvMat* CvMLData::get_test_sample_idx() const
|
||||
__BEGIN__;
|
||||
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
__END__;
|
||||
|
||||
return test_sample_idx;
|
||||
@ -704,7 +704,7 @@ void CvMLData::mix_train_and_test_idx()
|
||||
__BEGIN__;
|
||||
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
__END__;
|
||||
|
||||
if ( !sample_idx)
|
||||
@ -731,7 +731,7 @@ const CvMat* CvMLData::get_var_idx()
|
||||
int avcount = 0;
|
||||
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
|
||||
assert( var_idx_mask );
|
||||
|
||||
@ -776,12 +776,12 @@ void CvMLData::change_var_idx( int vi, bool state )
|
||||
int var_count = 0;
|
||||
|
||||
if ( !values )
|
||||
CV_ERROR( CV_StsInternal, "data is empty" );
|
||||
CV_ERROR( cv::Error::StsInternal, "data is empty" );
|
||||
|
||||
var_count = values->cols;
|
||||
|
||||
if ( vi < 0 || vi >= var_count)
|
||||
CV_ERROR( CV_StsBadArg, "variable index is not correct" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "variable index is not correct" );
|
||||
|
||||
assert( var_idx_mask );
|
||||
var_idx_mask->data.ptr[vi] = state;
|
||||
|
@ -67,7 +67,7 @@ void CvStatModel::save( const char* filename, const char* name ) const
|
||||
__BEGIN__;
|
||||
|
||||
if( !fs.open( filename, cv::FileStorage::WRITE ))
|
||||
CV_ERROR( CV_StsError, "Could not open the file storage. Check the path and permissions" );
|
||||
CV_ERROR( cv::Error::StsError, "Could not open the file storage. Check the path and permissions" );
|
||||
|
||||
write( fs, name ? name : default_model_name );
|
||||
|
||||
@ -87,7 +87,7 @@ void CvStatModel::load( const char* filename, const char* name )
|
||||
cv::FileNode model_node;
|
||||
|
||||
if( !fs.open(filename, cv::FileStorage::READ) )
|
||||
CV_ERROR( CV_StsError, "Could not open the file storage. Check the path and permissions" );
|
||||
CV_ERROR( cv::Error::StsError, "Could not open the file storage. Check the path and permissions" );
|
||||
|
||||
if( name )
|
||||
model_node = fs[ name ];
|
||||
@ -107,12 +107,12 @@ void CvStatModel::load( const char* filename, const char* name )
|
||||
|
||||
void CvStatModel::write( cv::FileStorage&, const char* ) const
|
||||
{
|
||||
OPENCV_ERROR( CV_StsNotImplemented, "CvStatModel::write", "" );
|
||||
OPENCV_ERROR( cv::Error::StsNotImplemented, "CvStatModel::write", "" );
|
||||
}
|
||||
|
||||
void CvStatModel::read( const cv::FileNode& )
|
||||
{
|
||||
OPENCV_ERROR( CV_StsNotImplemented, "CvStatModel::read", "" );
|
||||
OPENCV_ERROR( cv::Error::StsNotImplemented, "CvStatModel::read", "" );
|
||||
}
|
||||
|
||||
CvMat* icvGenerateRandomClusterCenters ( int seed, const CvMat* data,
|
||||
@ -134,7 +134,7 @@ CvMat* icvGenerateRandomClusterCenters ( int seed, const CvMat* data,
|
||||
{
|
||||
if( _centers && !ICV_IS_MAT_OF_TYPE (_centers, CV_32FC1) )
|
||||
{
|
||||
CV_ERROR(CV_StsBadArg,"");
|
||||
CV_ERROR(cv::Error::StsBadArg,"");
|
||||
}
|
||||
else if( !_centers )
|
||||
CV_CALL(centers = cvCreateMat (num_of_clusters, dim, CV_32FC1));
|
||||
@ -143,16 +143,16 @@ CvMat* icvGenerateRandomClusterCenters ( int seed, const CvMat* data,
|
||||
{
|
||||
if( _centers && !ICV_IS_MAT_OF_TYPE (_centers, CV_64FC1) )
|
||||
{
|
||||
CV_ERROR(CV_StsBadArg,"");
|
||||
CV_ERROR(cv::Error::StsBadArg,"");
|
||||
}
|
||||
else if( !_centers )
|
||||
CV_CALL(centers = cvCreateMat (num_of_clusters, dim, CV_64FC1));
|
||||
}
|
||||
else
|
||||
CV_ERROR (CV_StsBadArg,"");
|
||||
CV_ERROR (cv::Error::StsBadArg,"");
|
||||
|
||||
if( num_of_clusters < 1 )
|
||||
CV_ERROR (CV_StsBadArg,"");
|
||||
CV_ERROR (cv::Error::StsBadArg,"");
|
||||
|
||||
rng = cvRNG(seed);
|
||||
for (i = 0; i < dim; i++)
|
||||
@ -208,10 +208,10 @@ cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, bool check_for_
|
||||
int* dsti;
|
||||
|
||||
if( !CV_IS_MAT(idx_arr) )
|
||||
CV_ERROR( CV_StsBadArg, "Invalid index array" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid index array" );
|
||||
|
||||
if( idx_arr->rows != 1 && idx_arr->cols != 1 )
|
||||
CV_ERROR( CV_StsBadSize, "the index array must be 1-dimensional" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "the index array must be 1-dimensional" );
|
||||
|
||||
idx_total = idx_arr->rows + idx_arr->cols - 1;
|
||||
srcb = idx_arr->data.ptr;
|
||||
@ -227,20 +227,20 @@ cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, bool check_for_
|
||||
// idx_arr is array of 1's and 0's -
|
||||
// i.e. it is a mask of the selected components
|
||||
if( idx_total != data_arr_size )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes,
|
||||
"Component mask should contain as many elements as the total number of input variables" );
|
||||
|
||||
for( i = 0; i < idx_total; i++ )
|
||||
idx_selected += srcb[i*step] != 0;
|
||||
|
||||
if( idx_selected == 0 )
|
||||
CV_ERROR( CV_StsOutOfRange, "No components/input_variables is selected!" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "No components/input_variables is selected!" );
|
||||
|
||||
break;
|
||||
case CV_32SC1:
|
||||
// idx_arr is array of integer indices of selected components
|
||||
if( idx_total > data_arr_size )
|
||||
CV_ERROR( CV_StsOutOfRange,
|
||||
CV_ERROR( cv::Error::StsOutOfRange,
|
||||
"index array may not contain more elements than the total number of input variables" );
|
||||
idx_selected = idx_total;
|
||||
// check if sorted already
|
||||
@ -256,7 +256,7 @@ cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, bool check_for_
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_ERROR( CV_StsUnsupportedFormat, "Unsupported index array data type "
|
||||
CV_ERROR( cv::Error::StsUnsupportedFormat, "Unsupported index array data type "
|
||||
"(it should be 8uC1, 8sC1 or 32sC1)" );
|
||||
}
|
||||
|
||||
@ -278,13 +278,13 @@ cvPreprocessIndexArray( const CvMat* idx_arr, int data_arr_size, bool check_for_
|
||||
qsort( dsti, idx_total, sizeof(dsti[0]), icvCmpIntegers );
|
||||
|
||||
if( dsti[0] < 0 || dsti[idx_total-1] >= data_arr_size )
|
||||
CV_ERROR( CV_StsOutOfRange, "the index array elements are out of range" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "the index array elements are out of range" );
|
||||
|
||||
if( check_for_duplicates )
|
||||
{
|
||||
for( i = 1; i < idx_total; i++ )
|
||||
if( dsti[i] <= dsti[i-1] )
|
||||
CV_ERROR( CV_StsBadArg, "There are duplicated index array elements" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "There are duplicated index array elements" );
|
||||
}
|
||||
}
|
||||
|
||||
@ -315,19 +315,19 @@ cvPreprocessVarType( const CvMat* var_type, const CvMat* var_idx,
|
||||
uchar* dst;
|
||||
|
||||
if( !CV_IS_MAT(var_type) )
|
||||
CV_ERROR( var_type ? CV_StsBadArg : CV_StsNullPtr, "Invalid or absent var_type array" );
|
||||
CV_ERROR( var_type ? cv::Error::StsBadArg : cv::Error::StsNullPtr, "Invalid or absent var_type array" );
|
||||
|
||||
if( var_type->rows != 1 && var_type->cols != 1 )
|
||||
CV_ERROR( CV_StsBadSize, "var_type array must be 1-dimensional" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "var_type array must be 1-dimensional" );
|
||||
|
||||
if( !CV_IS_MASK_ARR(var_type))
|
||||
CV_ERROR( CV_StsUnsupportedFormat, "type mask must be 8uC1 or 8sC1 array" );
|
||||
CV_ERROR( cv::Error::StsUnsupportedFormat, "type mask must be 8uC1 or 8sC1 array" );
|
||||
|
||||
tm_size = var_type->rows + var_type->cols - 1;
|
||||
tm_step = var_type->rows == 1 ? 1 : var_type->step/CV_ELEM_SIZE(var_type->type);
|
||||
|
||||
if( /*tm_size != var_count &&*/ tm_size != var_count + 1 )
|
||||
CV_ERROR( CV_StsBadArg,
|
||||
CV_ERROR( cv::Error::StsBadArg,
|
||||
"type mask must be of <input var count> + 1 size" );
|
||||
|
||||
if( response_type && tm_size > var_count )
|
||||
@ -337,9 +337,9 @@ cvPreprocessVarType( const CvMat* var_type, const CvMat* var_idx,
|
||||
{
|
||||
if( !CV_IS_MAT(var_idx) || CV_MAT_TYPE(var_idx->type) != CV_32SC1 ||
|
||||
(var_idx->rows != 1 && var_idx->cols != 1) || !CV_IS_MAT_CONT(var_idx->type) )
|
||||
CV_ERROR( CV_StsBadArg, "var index array should be continuous 1-dimensional integer vector" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "var index array should be continuous 1-dimensional integer vector" );
|
||||
if( var_idx->rows + var_idx->cols - 1 > var_count )
|
||||
CV_ERROR( CV_StsBadSize, "var index array is too large" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "var index array is too large" );
|
||||
//map = var_idx->data.i;
|
||||
var_count = var_idx->rows + var_idx->cols - 1;
|
||||
}
|
||||
@ -376,18 +376,18 @@ cvPreprocessOrderedResponses( const CvMat* responses, const CvMat* sample_idx, i
|
||||
int sample_count = sample_all;
|
||||
|
||||
if( !CV_IS_MAT(responses) )
|
||||
CV_ERROR( CV_StsBadArg, "Invalid response array" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid response array" );
|
||||
|
||||
if( responses->rows != 1 && responses->cols != 1 )
|
||||
CV_ERROR( CV_StsBadSize, "Response array must be 1-dimensional" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "Response array must be 1-dimensional" );
|
||||
|
||||
if( responses->rows + responses->cols - 1 != sample_count )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes,
|
||||
"Response array must contain as many elements as the total number of samples" );
|
||||
|
||||
r_type = CV_MAT_TYPE(responses->type);
|
||||
if( r_type != CV_32FC1 && r_type != CV_32SC1 )
|
||||
CV_ERROR( CV_StsUnsupportedFormat, "Unsupported response type" );
|
||||
CV_ERROR( cv::Error::StsUnsupportedFormat, "Unsupported response type" );
|
||||
|
||||
r_step = responses->step ? responses->step / CV_ELEM_SIZE(responses->type) : 1;
|
||||
|
||||
@ -401,9 +401,9 @@ cvPreprocessOrderedResponses( const CvMat* responses, const CvMat* sample_idx, i
|
||||
{
|
||||
if( !CV_IS_MAT(sample_idx) || CV_MAT_TYPE(sample_idx->type) != CV_32SC1 ||
|
||||
(sample_idx->rows != 1 && sample_idx->cols != 1) || !CV_IS_MAT_CONT(sample_idx->type) )
|
||||
CV_ERROR( CV_StsBadArg, "sample index array should be continuous 1-dimensional integer vector" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "sample index array should be continuous 1-dimensional integer vector" );
|
||||
if( sample_idx->rows + sample_idx->cols - 1 > sample_count )
|
||||
CV_ERROR( CV_StsBadSize, "sample index array is too large" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "sample index array is too large" );
|
||||
map = sample_idx->data.i;
|
||||
sample_count = sample_idx->rows + sample_idx->cols - 1;
|
||||
}
|
||||
@ -466,18 +466,18 @@ cvPreprocessCategoricalResponses( const CvMat* responses,
|
||||
int sample_count = sample_all;
|
||||
|
||||
if( !CV_IS_MAT(responses) )
|
||||
CV_ERROR( CV_StsBadArg, "Invalid response array" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid response array" );
|
||||
|
||||
if( responses->rows != 1 && responses->cols != 1 )
|
||||
CV_ERROR( CV_StsBadSize, "Response array must be 1-dimensional" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "Response array must be 1-dimensional" );
|
||||
|
||||
if( responses->rows + responses->cols - 1 != sample_count )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes,
|
||||
"Response array must contain as many elements as the total number of samples" );
|
||||
|
||||
r_type = CV_MAT_TYPE(responses->type);
|
||||
if( r_type != CV_32FC1 && r_type != CV_32SC1 )
|
||||
CV_ERROR( CV_StsUnsupportedFormat, "Unsupported response type" );
|
||||
CV_ERROR( cv::Error::StsUnsupportedFormat, "Unsupported response type" );
|
||||
|
||||
r_step = responses->rows == 1 ? 1 : responses->step / CV_ELEM_SIZE(responses->type);
|
||||
|
||||
@ -485,9 +485,9 @@ cvPreprocessCategoricalResponses( const CvMat* responses,
|
||||
{
|
||||
if( !CV_IS_MAT(sample_idx) || CV_MAT_TYPE(sample_idx->type) != CV_32SC1 ||
|
||||
(sample_idx->rows != 1 && sample_idx->cols != 1) || !CV_IS_MAT_CONT(sample_idx->type) )
|
||||
CV_ERROR( CV_StsBadArg, "sample index array should be continuous 1-dimensional integer vector" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "sample index array should be continuous 1-dimensional integer vector" );
|
||||
if( sample_idx->rows + sample_idx->cols - 1 > sample_count )
|
||||
CV_ERROR( CV_StsBadSize, "sample index array is too large" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "sample index array is too large" );
|
||||
map = sample_idx->data.i;
|
||||
sample_count = sample_idx->rows + sample_idx->cols - 1;
|
||||
}
|
||||
@ -495,7 +495,7 @@ cvPreprocessCategoricalResponses( const CvMat* responses,
|
||||
CV_CALL( out_responses = cvCreateMat( 1, sample_count, CV_32SC1 ));
|
||||
|
||||
if( !out_response_map )
|
||||
CV_ERROR( CV_StsNullPtr, "out_response_map pointer is NULL" );
|
||||
CV_ERROR( cv::Error::StsNullPtr, "out_response_map pointer is NULL" );
|
||||
|
||||
CV_CALL( response_ptr = (int**)cvAlloc( sample_count*sizeof(response_ptr[0])));
|
||||
|
||||
@ -517,7 +517,7 @@ cvPreprocessCategoricalResponses( const CvMat* responses,
|
||||
{
|
||||
char buf[100];
|
||||
snprintf( buf, sizeof(buf), "response #%d is not integral", idx );
|
||||
CV_ERROR( CV_StsBadArg, buf );
|
||||
CV_ERROR( cv::Error::StsBadArg, buf );
|
||||
}
|
||||
dst[i] = ri;
|
||||
}
|
||||
@ -531,7 +531,7 @@ cvPreprocessCategoricalResponses( const CvMat* responses,
|
||||
cls_count += *response_ptr[i] != *response_ptr[i-1];
|
||||
|
||||
if( cls_count < 2 )
|
||||
CV_ERROR( CV_StsBadArg, "There is only a single class" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "There is only a single class" );
|
||||
|
||||
CV_CALL( *out_response_map = cvCreateMat( 1, cls_count, CV_32SC1 ));
|
||||
|
||||
@ -588,7 +588,7 @@ cvGetTrainSamples( const CvMat* train_data, int tflag,
|
||||
const int *s_idx, *v_idx;
|
||||
|
||||
if( !CV_IS_MAT(train_data) )
|
||||
CV_ERROR( CV_StsBadArg, "Invalid or NULL training data matrix" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid or NULL training data matrix" );
|
||||
|
||||
var_count = var_idx ? var_idx->cols + var_idx->rows - 1 :
|
||||
tflag == CV_ROW_SAMPLE ? train_data->cols : train_data->rows;
|
||||
@ -659,18 +659,18 @@ cvCheckTrainData( const CvMat* train_data, int tflag,
|
||||
|
||||
// check parameter types and sizes
|
||||
if( !CV_IS_MAT(train_data) || CV_MAT_TYPE(train_data->type) != CV_32FC1 )
|
||||
CV_ERROR( CV_StsBadArg, "train data must be floating-point matrix" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "train data must be floating-point matrix" );
|
||||
|
||||
if( missing_mask )
|
||||
{
|
||||
if( !CV_IS_MAT(missing_mask) || !CV_IS_MASK_ARR(missing_mask) ||
|
||||
!CV_ARE_SIZES_EQ(train_data, missing_mask) )
|
||||
CV_ERROR( CV_StsBadArg,
|
||||
CV_ERROR( cv::Error::StsBadArg,
|
||||
"missing value mask must be 8-bit matrix of the same size as training data" );
|
||||
}
|
||||
|
||||
if( tflag != CV_ROW_SAMPLE && tflag != CV_COL_SAMPLE )
|
||||
CV_ERROR( CV_StsBadArg,
|
||||
CV_ERROR( cv::Error::StsBadArg,
|
||||
"Unknown training data layout (must be CV_ROW_SAMPLE or CV_COL_SAMPLE)" );
|
||||
|
||||
if( var_all )
|
||||
@ -736,7 +736,7 @@ cvPrepareTrainData( const char* /*funcname*/,
|
||||
__BEGIN__;
|
||||
|
||||
if( !out_train_samples )
|
||||
CV_ERROR( CV_StsBadArg, "output pointer to train samples is NULL" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "output pointer to train samples is NULL" );
|
||||
|
||||
CV_CALL( cvCheckTrainData( train_data, tflag, 0, &var_all, &sample_all ));
|
||||
|
||||
@ -748,7 +748,7 @@ cvPrepareTrainData( const char* /*funcname*/,
|
||||
if( responses )
|
||||
{
|
||||
if( !out_responses )
|
||||
CV_ERROR( CV_StsNullPtr, "output response pointer is NULL" );
|
||||
CV_ERROR( cv::Error::StsNullPtr, "output response pointer is NULL" );
|
||||
|
||||
if( response_type == CV_VAR_NUMERICAL )
|
||||
{
|
||||
@ -841,10 +841,10 @@ cvSortSamplesByClasses( const float** samples, const CvMat* classes,
|
||||
int i, k = 0, sample_count;
|
||||
|
||||
if( !samples || !classes || !class_ranges )
|
||||
CV_ERROR( CV_StsNullPtr, "INTERNAL ERROR: some of the args are NULL pointers" );
|
||||
CV_ERROR( cv::Error::StsNullPtr, "INTERNAL ERROR: some of the args are NULL pointers" );
|
||||
|
||||
if( classes->rows != 1 || CV_MAT_TYPE(classes->type) != CV_32SC1 )
|
||||
CV_ERROR( CV_StsBadArg, "classes array must be a single row of integers" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "classes array must be a single row of integers" );
|
||||
|
||||
sample_count = classes->cols;
|
||||
CV_CALL( pairs = (CvSampleResponsePair*)cvAlloc( (sample_count+1)*sizeof(pairs[0])));
|
||||
@ -901,45 +901,45 @@ cvPreparePredictData( const CvArr* _sample, int dims_all,
|
||||
int vec_size;
|
||||
|
||||
if( !is_sparse && !CV_IS_MAT(sample) )
|
||||
CV_ERROR( !sample ? CV_StsNullPtr : CV_StsBadArg, "The sample is not a valid vector" );
|
||||
CV_ERROR( !sample ? cv::Error::StsNullPtr : cv::Error::StsBadArg, "The sample is not a valid vector" );
|
||||
|
||||
if( cvGetElemType( sample ) != CV_32FC1 )
|
||||
CV_ERROR( CV_StsUnsupportedFormat, "Input sample must have 32fC1 type" );
|
||||
CV_ERROR( cv::Error::StsUnsupportedFormat, "Input sample must have 32fC1 type" );
|
||||
|
||||
CV_CALL( d = cvGetDims( sample, sizes ));
|
||||
|
||||
if( !((is_sparse && d == 1) || (!is_sparse && d == 2 && (sample->rows == 1 || sample->cols == 1))) )
|
||||
CV_ERROR( CV_StsBadSize, "Input sample must be 1-dimensional vector" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "Input sample must be 1-dimensional vector" );
|
||||
|
||||
if( d == 1 )
|
||||
sizes[1] = 1;
|
||||
|
||||
if( sizes[0] + sizes[1] - 1 != dims_all )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes,
|
||||
"The sample size is different from what has been used for training" );
|
||||
|
||||
if( !_row_sample )
|
||||
CV_ERROR( CV_StsNullPtr, "INTERNAL ERROR: The row_sample pointer is NULL" );
|
||||
CV_ERROR( cv::Error::StsNullPtr, "INTERNAL ERROR: The row_sample pointer is NULL" );
|
||||
|
||||
if( comp_idx && (!CV_IS_MAT(comp_idx) || comp_idx->rows != 1 ||
|
||||
CV_MAT_TYPE(comp_idx->type) != CV_32SC1) )
|
||||
CV_ERROR( CV_StsBadArg, "INTERNAL ERROR: invalid comp_idx" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "INTERNAL ERROR: invalid comp_idx" );
|
||||
|
||||
dims_selected = comp_idx ? comp_idx->cols : dims_all;
|
||||
|
||||
if( prob )
|
||||
{
|
||||
if( !CV_IS_MAT(prob) )
|
||||
CV_ERROR( CV_StsBadArg, "The output matrix of probabilities is invalid" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "The output matrix of probabilities is invalid" );
|
||||
|
||||
if( (prob->rows != 1 && prob->cols != 1) ||
|
||||
(CV_MAT_TYPE(prob->type) != CV_32FC1 &&
|
||||
CV_MAT_TYPE(prob->type) != CV_64FC1) )
|
||||
CV_ERROR( CV_StsBadSize,
|
||||
CV_ERROR( cv::Error::StsBadSize,
|
||||
"The matrix of probabilities must be 1-dimensional vector of 32fC1 type" );
|
||||
|
||||
if( prob->rows + prob->cols - 1 != class_count )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes,
|
||||
"The vector of probabilities must contain as many elements as "
|
||||
"the number of classes in the training set" );
|
||||
}
|
||||
@ -1071,7 +1071,7 @@ icvConvertDataToSparse( const uchar* src, int src_step, int src_type,
|
||||
dst_type = CV_MAT_TYPE(dst_type);
|
||||
|
||||
if( CV_MAT_CN(src_type) != 1 || CV_MAT_CN(dst_type) != 1 )
|
||||
CV_ERROR( CV_StsUnsupportedFormat, "The function supports only single-channel arrays" );
|
||||
CV_ERROR( cv::Error::StsUnsupportedFormat, "The function supports only single-channel arrays" );
|
||||
|
||||
if( src_step == 0 )
|
||||
src_step = CV_ELEM_SIZE(src_type);
|
||||
@ -1134,7 +1134,7 @@ icvConvertDataToSparse( const uchar* src, int src_step, int src_type,
|
||||
((float*)_dst)[j] = (float)((double*)src)[j];
|
||||
}
|
||||
else
|
||||
CV_ERROR( CV_StsUnsupportedFormat, "Unsupported combination of input and output vectors" );
|
||||
CV_ERROR( cv::Error::StsUnsupportedFormat, "Unsupported combination of input and output vectors" );
|
||||
|
||||
__END__;
|
||||
}
|
||||
@ -1154,15 +1154,15 @@ cvWritebackLabels( const CvMat* labels, CvMat* dst_labels,
|
||||
int samples_selected = samples_all, dims_selected = dims_all;
|
||||
|
||||
if( dst_labels && !CV_IS_MAT(dst_labels) )
|
||||
CV_ERROR( CV_StsBadArg, "Array of output labels is not a valid matrix" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Array of output labels is not a valid matrix" );
|
||||
|
||||
if( dst_centers )
|
||||
if( !ICV_IS_MAT_OF_TYPE(dst_centers, CV_32FC1) &&
|
||||
!ICV_IS_MAT_OF_TYPE(dst_centers, CV_64FC1) )
|
||||
CV_ERROR( CV_StsBadArg, "Array of cluster centers is not a valid matrix" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Array of cluster centers is not a valid matrix" );
|
||||
|
||||
if( dst_probs && !CV_IS_MAT(dst_probs) )
|
||||
CV_ERROR( CV_StsBadArg, "Probability matrix is not valid" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Probability matrix is not valid" );
|
||||
|
||||
if( sample_idx )
|
||||
{
|
||||
@ -1179,15 +1179,15 @@ cvWritebackLabels( const CvMat* labels, CvMat* dst_labels,
|
||||
if( dst_labels && (!labels || labels->data.ptr != dst_labels->data.ptr) )
|
||||
{
|
||||
if( !labels )
|
||||
CV_ERROR( CV_StsNullPtr, "NULL labels" );
|
||||
CV_ERROR( cv::Error::StsNullPtr, "NULL labels" );
|
||||
|
||||
CV_ASSERT( labels->rows == 1 );
|
||||
|
||||
if( dst_labels->rows != 1 && dst_labels->cols != 1 )
|
||||
CV_ERROR( CV_StsBadSize, "Array of output labels should be 1d vector" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "Array of output labels should be 1d vector" );
|
||||
|
||||
if( dst_labels->rows + dst_labels->cols - 1 != samples_all )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes,
|
||||
"Size of vector of output labels is not equal to the total number of input samples" );
|
||||
|
||||
CV_ASSERT( labels->cols == samples_selected );
|
||||
@ -1202,13 +1202,13 @@ cvWritebackLabels( const CvMat* labels, CvMat* dst_labels,
|
||||
int i;
|
||||
|
||||
if( !centers )
|
||||
CV_ERROR( CV_StsNullPtr, "NULL centers" );
|
||||
CV_ERROR( cv::Error::StsNullPtr, "NULL centers" );
|
||||
|
||||
if( centers->rows != dst_centers->rows )
|
||||
CV_ERROR( CV_StsUnmatchedSizes, "Invalid number of rows in matrix of output centers" );
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes, "Invalid number of rows in matrix of output centers" );
|
||||
|
||||
if( dst_centers->cols != dims_all )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes,
|
||||
"Number of columns in matrix of output centers is "
|
||||
"not equal to the total number of components in the input samples" );
|
||||
|
||||
@ -1223,13 +1223,13 @@ cvWritebackLabels( const CvMat* labels, CvMat* dst_labels,
|
||||
if( dst_probs && (!probs || probs->data.ptr != dst_probs->data.ptr) )
|
||||
{
|
||||
if( !probs )
|
||||
CV_ERROR( CV_StsNullPtr, "NULL probs" );
|
||||
CV_ERROR( cv::Error::StsNullPtr, "NULL probs" );
|
||||
|
||||
if( probs->cols != dst_probs->cols )
|
||||
CV_ERROR( CV_StsUnmatchedSizes, "Invalid number of columns in output probability matrix" );
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes, "Invalid number of columns in output probability matrix" );
|
||||
|
||||
if( dst_probs->rows != samples_all )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes,
|
||||
"Number of rows in output probability matrix is "
|
||||
"not equal to the total number of input samples" );
|
||||
|
||||
@ -1273,29 +1273,29 @@ cvStatModelMultiPredict( const CvStatModel* stat_model,
|
||||
CvMat* probs1 = probs ? &probs_part : 0;
|
||||
|
||||
if( !CV_IS_STAT_MODEL(stat_model) )
|
||||
CV_ERROR( !stat_model ? CV_StsNullPtr : CV_StsBadArg, "Invalid statistical model" );
|
||||
CV_ERROR( !stat_model ? cv::Error::StsNullPtr : cv::Error::StsBadArg, "Invalid statistical model" );
|
||||
|
||||
if( !stat_model->predict )
|
||||
CV_ERROR( CV_StsNotImplemented, "There is no \"predict\" method" );
|
||||
CV_ERROR( cv::Error::StsNotImplemented, "There is no \"predict\" method" );
|
||||
|
||||
if( !predict_input || !predict_output )
|
||||
CV_ERROR( CV_StsNullPtr, "NULL input or output matrices" );
|
||||
CV_ERROR( cv::Error::StsNullPtr, "NULL input or output matrices" );
|
||||
|
||||
if( !is_sparse && !CV_IS_MAT(predict_input) )
|
||||
CV_ERROR( CV_StsBadArg, "predict_input should be a matrix or a sparse matrix" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "predict_input should be a matrix or a sparse matrix" );
|
||||
|
||||
if( !CV_IS_MAT(predict_output) )
|
||||
CV_ERROR( CV_StsBadArg, "predict_output should be a matrix" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "predict_output should be a matrix" );
|
||||
|
||||
type = cvGetElemType( predict_input );
|
||||
if( type != CV_32FC1 ||
|
||||
(CV_MAT_TYPE(predict_output->type) != CV_32FC1 &&
|
||||
CV_MAT_TYPE(predict_output->type) != CV_32SC1 ))
|
||||
CV_ERROR( CV_StsUnsupportedFormat, "The input or output matrix has unsupported format" );
|
||||
CV_ERROR( cv::Error::StsUnsupportedFormat, "The input or output matrix has unsupported format" );
|
||||
|
||||
CV_CALL( d = cvGetDims( predict_input, sizes ));
|
||||
if( d > 2 )
|
||||
CV_ERROR( CV_StsBadSize, "The input matrix should be 1- or 2-dimensional" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "The input matrix should be 1- or 2-dimensional" );
|
||||
|
||||
if( !tflag )
|
||||
{
|
||||
@ -1311,30 +1311,30 @@ cvStatModelMultiPredict( const CvStatModel* stat_model,
|
||||
if( sample_idx )
|
||||
{
|
||||
if( !CV_IS_MAT(sample_idx) )
|
||||
CV_ERROR( CV_StsBadArg, "Invalid sample_idx matrix" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid sample_idx matrix" );
|
||||
|
||||
if( sample_idx->cols != 1 && sample_idx->rows != 1 )
|
||||
CV_ERROR( CV_StsBadSize, "sample_idx must be 1-dimensional matrix" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "sample_idx must be 1-dimensional matrix" );
|
||||
|
||||
samples_selected = sample_idx->rows + sample_idx->cols - 1;
|
||||
|
||||
if( CV_MAT_TYPE(sample_idx->type) == CV_32SC1 )
|
||||
{
|
||||
if( samples_selected > samples_all )
|
||||
CV_ERROR( CV_StsBadSize, "sample_idx is too large vector" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "sample_idx is too large vector" );
|
||||
}
|
||||
else if( samples_selected != samples_all )
|
||||
CV_ERROR( CV_StsUnmatchedSizes, "sample_idx has incorrect size" );
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes, "sample_idx has incorrect size" );
|
||||
|
||||
sample_idx_step = sample_idx->step ?
|
||||
sample_idx->step / CV_ELEM_SIZE(sample_idx->type) : 1;
|
||||
}
|
||||
|
||||
if( predict_output->rows != 1 && predict_output->cols != 1 )
|
||||
CV_ERROR( CV_StsBadSize, "predict_output should be a 1-dimensional matrix" );
|
||||
CV_ERROR( cv::Error::StsBadSize, "predict_output should be a 1-dimensional matrix" );
|
||||
|
||||
if( predict_output->rows + predict_output->cols - 1 != samples_all )
|
||||
CV_ERROR( CV_StsUnmatchedSizes, "predict_output and predict_input have uncoordinated sizes" );
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes, "predict_output and predict_input have uncoordinated sizes" );
|
||||
|
||||
predict_output_step = predict_output->step ?
|
||||
predict_output->step / CV_ELEM_SIZE(predict_output->type) : 1;
|
||||
@ -1342,14 +1342,14 @@ cvStatModelMultiPredict( const CvStatModel* stat_model,
|
||||
if( probs )
|
||||
{
|
||||
if( !CV_IS_MAT(probs) )
|
||||
CV_ERROR( CV_StsBadArg, "Invalid matrix of probabilities" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid matrix of probabilities" );
|
||||
|
||||
if( probs->rows != samples_all )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes,
|
||||
"matrix of probabilities must have as many rows as the total number of samples" );
|
||||
|
||||
if( CV_MAT_TYPE(probs->type) != CV_32FC1 )
|
||||
CV_ERROR( CV_StsUnsupportedFormat, "matrix of probabilities must have 32fC1 type" );
|
||||
CV_ERROR( cv::Error::StsUnsupportedFormat, "matrix of probabilities must have 32fC1 type" );
|
||||
}
|
||||
|
||||
if( is_sparse )
|
||||
@ -1414,7 +1414,7 @@ cvStatModelMultiPredict( const CvStatModel* stat_model,
|
||||
{
|
||||
idx = sample_idx->data.i[i*sample_idx_step];
|
||||
if( (unsigned)idx >= (unsigned)samples_all )
|
||||
CV_ERROR( CV_StsOutOfRange, "Some of sample_idx elements are out of range" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "Some of sample_idx elements are out of range" );
|
||||
}
|
||||
else if( CV_MAT_TYPE(sample_idx->type) == CV_8UC1 &&
|
||||
sample_idx->data.ptr[i*sample_idx_step] == 0 )
|
||||
@ -1494,7 +1494,7 @@ void cvCombineResponseMaps (CvMat* _responses,
|
||||
(!ICV_IS_MAT_OF_TYPE (old_response_map, CV_32SC1)) ||
|
||||
(!ICV_IS_MAT_OF_TYPE (new_response_map, CV_32SC1)))
|
||||
{
|
||||
CV_ERROR (CV_StsBadArg, "Some of input arguments is not the CvMat")
|
||||
CV_ERROR (cv::Error::StsBadArg, "Some of input arguments is not the CvMat")
|
||||
}
|
||||
|
||||
// Prepare sorted responses.
|
||||
|
@ -70,7 +70,7 @@
|
||||
/* Convert matrix to vector */
|
||||
#define ICV_MAT2VEC( mat, vdata, vstep, num ) \
|
||||
if( MIN( (mat).rows, (mat).cols ) != 1 ) \
|
||||
CV_ERROR( CV_StsBadArg, "" ); \
|
||||
CV_ERROR( cv::Error::StsBadArg, "" ); \
|
||||
(vdata) = ((mat).data.ptr); \
|
||||
if( (mat).rows == 1 ) \
|
||||
{ \
|
||||
@ -142,7 +142,7 @@
|
||||
#define ICV_TRAIN_DATA_REQUIRED( param, flags ) \
|
||||
if( !ICV_IS_MAT_OF_TYPE( (param), CV_32FC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
@ -154,21 +154,21 @@
|
||||
#define ICV_TRAIN_CLASSES_REQUIRED( param ) \
|
||||
if( !ICV_IS_MAT_OF_TYPE( (param), CV_32FC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_MAT2VEC( *(param), classes, clstep, ncl ); \
|
||||
if( m != ncl ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Unmatched sizes" ); \
|
||||
CV_ERROR( cv::Error::StsBadArg, "Unmatched sizes" ); \
|
||||
} \
|
||||
}
|
||||
|
||||
#define ICV_ARG_NULL( param ) \
|
||||
if( (param) != NULL ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, #param " parameter must be NULL" ); \
|
||||
CV_ERROR( cv::Error::StsBadArg, #param " parameter must be NULL" ); \
|
||||
}
|
||||
|
||||
#define ICV_MISSED_MEASUREMENTS_OPTIONAL( param, flags ) \
|
||||
@ -176,14 +176,14 @@
|
||||
{ \
|
||||
if( !ICV_IS_MAT_OF_TYPE( param, CV_8UC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_RAWDATA( *(param), (flags), missed, msstep, mcstep, mm, mn ); \
|
||||
if( mm != m || mn != n ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Unmatched sizes" ); \
|
||||
CV_ERROR( cv::Error::StsBadArg, "Unmatched sizes" ); \
|
||||
} \
|
||||
} \
|
||||
}
|
||||
@ -193,13 +193,13 @@
|
||||
{ \
|
||||
if( !ICV_IS_MAT_OF_TYPE( param, CV_32SC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_MAT2VEC( *(param), cidx, cistep, k ); \
|
||||
if( k > n ) \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
}
|
||||
|
||||
@ -208,13 +208,13 @@
|
||||
{ \
|
||||
if( !ICV_IS_MAT_OF_TYPE( param, CV_32SC1 ) ) \
|
||||
{ \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
else \
|
||||
{ \
|
||||
ICV_MAT2VEC( *sampleIdx, sidx, sistep, l ); \
|
||||
if( l > m ) \
|
||||
CV_ERROR( CV_StsBadArg, "Invalid " #param " parameter" ); \
|
||||
CV_ERROR( cv::Error::StsBadArg, "Invalid " #param " parameter" ); \
|
||||
} \
|
||||
}
|
||||
|
||||
|
@ -93,17 +93,17 @@ bool CvDTreeTrainData::set_params( const CvDTreeParams& _params )
|
||||
params = _params;
|
||||
|
||||
if( params.max_categories < 2 )
|
||||
CV_ERROR( CV_StsOutOfRange, "params.max_categories should be >= 2" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "params.max_categories should be >= 2" );
|
||||
params.max_categories = MIN( params.max_categories, 15 );
|
||||
|
||||
if( params.max_depth < 0 )
|
||||
CV_ERROR( CV_StsOutOfRange, "params.max_depth should be >= 0" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "params.max_depth should be >= 0" );
|
||||
params.max_depth = MIN( params.max_depth, 25 );
|
||||
|
||||
params.min_sample_count = MAX(params.min_sample_count,1);
|
||||
|
||||
if( params.cv_folds < 0 )
|
||||
CV_ERROR( CV_StsOutOfRange,
|
||||
CV_ERROR( cv::Error::StsOutOfRange,
|
||||
"params.cv_folds should be =0 (the tree is not pruned) "
|
||||
"or n>0 (tree is pruned using n-fold cross-validation)" );
|
||||
|
||||
@ -111,7 +111,7 @@ bool CvDTreeTrainData::set_params( const CvDTreeParams& _params )
|
||||
params.cv_folds = 0;
|
||||
|
||||
if( params.regression_accuracy < 0 )
|
||||
CV_ERROR( CV_StsOutOfRange, "params.regression_accuracy should be >= 0" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "params.regression_accuracy should be >= 0" );
|
||||
|
||||
ok = true;
|
||||
|
||||
@ -183,7 +183,7 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
cvNorm( data->var_type, var_type, CV_C ) < FLT_EPSILON &&
|
||||
cvNorm( data->cat_count, cat_count, CV_C ) < FLT_EPSILON &&
|
||||
cvNorm( data->cat_map, cat_map, CV_C ) < FLT_EPSILON) )
|
||||
CV_ERROR( CV_StsBadArg,
|
||||
CV_ERROR( cv::Error::StsBadArg,
|
||||
"The new training data must have the same types and the input and output variables "
|
||||
"and the same categories for categorical variables" );
|
||||
|
||||
@ -264,7 +264,7 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
CV_MAT_TYPE(_responses->type) != CV_32FC1) ||
|
||||
(_responses->rows != 1 && _responses->cols != 1) ||
|
||||
_responses->rows + _responses->cols - 1 != sample_all )
|
||||
CV_ERROR( CV_StsBadArg, "The array of _responses must be an integer or "
|
||||
CV_ERROR( cv::Error::StsBadArg, "The array of _responses must be an integer or "
|
||||
"floating-point vector containing as many elements as "
|
||||
"the total number of samples in the training data matrix" );
|
||||
|
||||
@ -317,7 +317,7 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
|
||||
if ((uint64)effective_buf_width * (uint64)effective_buf_height != effective_buf_size)
|
||||
{
|
||||
CV_Error(CV_StsBadArg, "The memory buffer cannot be allocated since its size exceeds integer fields limit");
|
||||
CV_Error(cv::Error::StsBadArg, "The memory buffer cannot be allocated since its size exceeds integer fields limit");
|
||||
}
|
||||
|
||||
|
||||
@ -360,7 +360,7 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
if( cv_n )
|
||||
{
|
||||
if( sample_count < cv_n*MAX(params.min_sample_count,10) )
|
||||
CV_ERROR( CV_StsOutOfRange,
|
||||
CV_ERROR( cv::Error::StsOutOfRange,
|
||||
"The many folds in cross-validation for such a small dataset" );
|
||||
|
||||
cv_size = cvAlign( cv_n*(sizeof(int) + sizeof(double)*2), sizeof(double) );
|
||||
@ -444,7 +444,7 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
{
|
||||
snprintf( err, sizeof(err), "%d-th value of %d-th (categorical) "
|
||||
"variable is not an integer", i, vi );
|
||||
CV_ERROR( CV_StsBadArg, err );
|
||||
CV_ERROR( cv::Error::StsBadArg, err );
|
||||
}
|
||||
}
|
||||
|
||||
@ -452,7 +452,7 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
{
|
||||
snprintf( err, sizeof(err), "%d-th value of %d-th (categorical) "
|
||||
"variable is too large", i, vi );
|
||||
CV_ERROR( CV_StsBadArg, err );
|
||||
CV_ERROR( cv::Error::StsBadArg, err );
|
||||
}
|
||||
num_valid++;
|
||||
}
|
||||
@ -559,7 +559,7 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
{
|
||||
snprintf( err, sizeof(err), "%d-th value of %d-th (ordered) "
|
||||
"variable (=%g) is too large", i, vi, val );
|
||||
CV_ERROR( CV_StsBadArg, err );
|
||||
CV_ERROR( cv::Error::StsBadArg, err );
|
||||
}
|
||||
num_valid++;
|
||||
}
|
||||
@ -652,7 +652,7 @@ void CvDTreeTrainData::set_data( const CvMat* _train_data, int _tflag,
|
||||
{
|
||||
double val = have_priors ? params.priors[i] : 1.;
|
||||
if( val <= 0 )
|
||||
CV_ERROR( CV_StsOutOfRange, "Every class weight should be positive" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "Every class weight should be positive" );
|
||||
priors->data.db[i] = val;
|
||||
sum += val;
|
||||
}
|
||||
@ -705,7 +705,7 @@ CvDTreeNode* CvDTreeTrainData::subsample_data( const CvMat* _subsample_idx )
|
||||
__BEGIN__;
|
||||
|
||||
if( !data_root )
|
||||
CV_ERROR( CV_StsError, "No training data has been set" );
|
||||
CV_ERROR( cv::Error::StsError, "No training data has been set" );
|
||||
|
||||
if( _subsample_idx )
|
||||
{
|
||||
@ -1396,7 +1396,7 @@ void CvDTreeTrainData::read_params( const cv::FileNode& node )
|
||||
auto tmat = cvMat( tparams_node[ "priors" ].mat() );
|
||||
priors = cvCloneMat( &tmat );
|
||||
if( !CV_IS_MAT(priors) )
|
||||
CV_ERROR( CV_StsParseError, "priors must stored as a matrix" );
|
||||
CV_ERROR( cv::Error::StsParseError, "priors must stored as a matrix" );
|
||||
priors_mult = cvCloneMat( priors );
|
||||
}
|
||||
}
|
||||
@ -1413,12 +1413,12 @@ void CvDTreeTrainData::read_params( const cv::FileNode& node )
|
||||
(var_idx->cols != 1 && var_idx->rows != 1) ||
|
||||
var_idx->cols + var_idx->rows - 1 != var_count ||
|
||||
CV_MAT_TYPE(var_idx->type) != CV_32SC1 )
|
||||
CV_ERROR( CV_StsParseError,
|
||||
CV_ERROR( cv::Error::StsParseError,
|
||||
"var_idx (if exist) must be valid 1d integer vector containing <var_count> elements" );
|
||||
|
||||
for( vi = 0; vi < var_count; vi++ )
|
||||
if( (unsigned)var_idx->data.i[vi] >= (unsigned)var_all )
|
||||
CV_ERROR( CV_StsOutOfRange, "some of var_idx elements are out of range" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "some of var_idx elements are out of range" );
|
||||
}
|
||||
|
||||
////// read var type
|
||||
@ -1434,7 +1434,7 @@ void CvDTreeTrainData::read_params( const cv::FileNode& node )
|
||||
{
|
||||
if( vartype_node.empty() || !vartype_node.isSeq() ||
|
||||
vartype_node.size() != (size_t) var_count )
|
||||
CV_ERROR( CV_StsParseError, "var_type must exist and be a sequence of 0's and 1's" );
|
||||
CV_ERROR( cv::Error::StsParseError, "var_type must exist and be a sequence of 0's and 1's" );
|
||||
|
||||
reader = vartype_node.begin();
|
||||
|
||||
@ -1442,7 +1442,7 @@ void CvDTreeTrainData::read_params( const cv::FileNode& node )
|
||||
{
|
||||
cv::FileNode n = *reader;
|
||||
if( !n.isInt() || ((int) n & ~1) )
|
||||
CV_ERROR( CV_StsParseError, "var_type must exist and be a sequence of 0's and 1's" );
|
||||
CV_ERROR( cv::Error::StsParseError, "var_type must exist and be a sequence of 0's and 1's" );
|
||||
var_type->data.i[vi] = (int) n ? cat_var_count++ : ord_var_count--;
|
||||
reader++;
|
||||
}
|
||||
@ -1468,7 +1468,7 @@ void CvDTreeTrainData::read_params( const cv::FileNode& node )
|
||||
cat_count->cols + cat_count->rows - 1 != cat_var_count + is_classifier ||
|
||||
(cat_map->cols != 1 && cat_map->rows != 1) ||
|
||||
CV_MAT_TYPE(cat_map->type) != CV_32SC1 )
|
||||
CV_ERROR( CV_StsParseError,
|
||||
CV_ERROR( cv::Error::StsParseError,
|
||||
"Both cat_count and cat_map must exist and be valid 1d integer vectors of an appropriate size" );
|
||||
|
||||
ccount = cat_var_count + is_classifier;
|
||||
@ -1481,13 +1481,13 @@ void CvDTreeTrainData::read_params( const cv::FileNode& node )
|
||||
{
|
||||
int val = cat_count->data.i[vi];
|
||||
if( val <= 0 )
|
||||
CV_ERROR( CV_StsOutOfRange, "some of cat_count elements are out of range" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "some of cat_count elements are out of range" );
|
||||
max_c_count = MAX( max_c_count, val );
|
||||
cat_ofs->data.i[vi+1] = total_c_count += val;
|
||||
}
|
||||
|
||||
if( cat_map->cols + cat_map->rows - 1 != total_c_count )
|
||||
CV_ERROR( CV_StsBadSize,
|
||||
CV_ERROR( cv::Error::StsBadSize,
|
||||
"cat_map vector length is not equal to the total number of categories in all categorical vars" );
|
||||
}
|
||||
|
||||
@ -3631,13 +3631,13 @@ CvDTreeNode* CvDTree::predict( const CvMat* _sample,
|
||||
CvDTreeNode* node = root;
|
||||
|
||||
if( !node )
|
||||
CV_Error( CV_StsError, "The tree has not been trained yet" );
|
||||
CV_Error( cv::Error::StsError, "The tree has not been trained yet" );
|
||||
|
||||
if( !CV_IS_MAT(_sample) || CV_MAT_TYPE(_sample->type) != CV_32FC1 ||
|
||||
(_sample->cols != 1 && _sample->rows != 1) ||
|
||||
(_sample->cols + _sample->rows - 1 != data->var_all && !preprocessed_input) ||
|
||||
(_sample->cols + _sample->rows - 1 != data->var_count && preprocessed_input) )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"the input sample must be 1d floating-point vector with the same "
|
||||
"number of elements as the total number of variables used for training" );
|
||||
|
||||
@ -3656,7 +3656,7 @@ CvDTreeNode* CvDTree::predict( const CvMat* _sample,
|
||||
{
|
||||
if( !CV_IS_MAT(_missing) || !CV_IS_MASK_ARR(_missing) ||
|
||||
!CV_ARE_SIZES_EQ(_missing, _sample) )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"the missing data mask must be 8-bit vector of the same size as input sample" );
|
||||
m = _missing->data.ptr;
|
||||
mstep = CV_IS_MAT_CONT(_missing->type) ? 1 : _missing->step/sizeof(m[0]);
|
||||
@ -3696,7 +3696,7 @@ CvDTreeNode* CvDTree::predict( const CvMat* _sample,
|
||||
|
||||
int ival = cvRound(val);
|
||||
if( ival != val )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"one of input categorical variable is not an integer" );
|
||||
|
||||
while( a < b )
|
||||
@ -3936,11 +3936,11 @@ CvDTreeSplit* CvDTree::read_split( const cv::FileNode& fnode )
|
||||
int vi, ci;
|
||||
|
||||
if( fnode.empty() || !fnode.isMap() )
|
||||
CV_ERROR( CV_StsParseError, "some of the splits are not stored properly" );
|
||||
CV_ERROR( cv::Error::StsParseError, "some of the splits are not stored properly" );
|
||||
|
||||
vi = fnode[ "var" ].empty() ? -1 : (int) fnode[ "var" ];
|
||||
if( (unsigned)vi >= (unsigned)data->var_count )
|
||||
CV_ERROR( CV_StsOutOfRange, "Split variable index is out of range" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "Split variable index is out of range" );
|
||||
|
||||
ci = data->get_var_type(vi);
|
||||
if( ci >= 0 ) // split on categorical var
|
||||
@ -3957,14 +3957,14 @@ CvDTreeSplit* CvDTree::read_split( const cv::FileNode& fnode )
|
||||
}
|
||||
if( inseq.empty() ||
|
||||
(!inseq.isSeq() && !inseq.isInt()))
|
||||
CV_ERROR( CV_StsParseError,
|
||||
CV_ERROR( cv::Error::StsParseError,
|
||||
"Either 'in' or 'not_in' tags should be inside a categorical split data" );
|
||||
|
||||
if( inseq.isInt() )
|
||||
{
|
||||
val = (int) inseq;
|
||||
if( (unsigned)val >= (unsigned)n )
|
||||
CV_ERROR( CV_StsOutOfRange, "some of in/not_in elements are out of range" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "some of in/not_in elements are out of range" );
|
||||
|
||||
split->subset[val >> 5] |= 1 << (val & 31);
|
||||
}
|
||||
@ -3977,7 +3977,7 @@ CvDTreeSplit* CvDTree::read_split( const cv::FileNode& fnode )
|
||||
cv::FileNode inode = *reader;
|
||||
val = (int) inode;
|
||||
if( !inode.isInt() || (unsigned)val >= (unsigned)n )
|
||||
CV_ERROR( CV_StsOutOfRange, "some of in/not_in elements are out of range" );
|
||||
CV_ERROR( cv::Error::StsOutOfRange, "some of in/not_in elements are out of range" );
|
||||
|
||||
split->subset[val >> 5] |= 1 << (val & 31);
|
||||
reader++;
|
||||
@ -4025,12 +4025,12 @@ CvDTreeNode* CvDTree::read_node( const cv::FileNode& fnode, CvDTreeNode* parent
|
||||
int i, depth;
|
||||
|
||||
if( fnode.empty() || !fnode.isMap() )
|
||||
CV_ERROR( CV_StsParseError, "some of the tree elements are not stored properly" );
|
||||
CV_ERROR( cv::Error::StsParseError, "some of the tree elements are not stored properly" );
|
||||
|
||||
CV_CALL( node = data->new_node( parent, 0, 0, 0 ));
|
||||
depth = fnode[ "depth" ].empty() ? -1 : (int) fnode[ "depth" ];
|
||||
if( depth != node->depth )
|
||||
CV_ERROR( CV_StsParseError, "incorrect node depth" );
|
||||
CV_ERROR( cv::Error::StsParseError, "incorrect node depth" );
|
||||
|
||||
node->sample_count = (int) fnode[ "sample_count" ];
|
||||
node->value = (double) fnode[ "value" ];
|
||||
@ -4051,7 +4051,7 @@ CvDTreeNode* CvDTree::read_node( const cv::FileNode& fnode, CvDTreeNode* parent
|
||||
CvDTreeSplit* last_split = 0;
|
||||
|
||||
if( !splits.isSeq() )
|
||||
CV_ERROR( CV_StsParseError, "splits tag must stored as a sequence" );
|
||||
CV_ERROR( cv::Error::StsParseError, "splits tag must stored as a sequence" );
|
||||
|
||||
reader = splits.begin();
|
||||
for( i = 0; i < (int) (*reader).size(); i++ )
|
||||
@ -4137,7 +4137,7 @@ void CvDTree::read( const cv::FileNode& node, CvDTreeTrainData* _data )
|
||||
|
||||
tree_nodes = node[ "nodes" ];
|
||||
if( tree_nodes.empty() || !tree_nodes.isSeq() )
|
||||
CV_ERROR( CV_StsParseError, "nodes tag is missing" );
|
||||
CV_ERROR( cv::Error::StsParseError, "nodes tag is missing" );
|
||||
|
||||
pruned_tree_idx = node[ "best_tree_idx" ].empty() ? -1 : node[ "best_tree_idx" ];
|
||||
read_tree_nodes( tree_nodes );
|
||||
|
@ -254,32 +254,32 @@ CV_IMPL int cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian )
|
||||
CvMat matJ = cvMat( 3, 9, CV_64F, J );
|
||||
|
||||
if( !CV_IS_MAT(src) )
|
||||
CV_Error( !src ? CV_StsNullPtr : CV_StsBadArg, "Input argument is not a valid matrix" );
|
||||
CV_Error( !src ? cv::Error::StsNullPtr : cv::Error::StsBadArg, "Input argument is not a valid matrix" );
|
||||
|
||||
if( !CV_IS_MAT(dst) )
|
||||
CV_Error( !dst ? CV_StsNullPtr : CV_StsBadArg,
|
||||
CV_Error( !dst ? cv::Error::StsNullPtr : cv::Error::StsBadArg,
|
||||
"The first output argument is not a valid matrix" );
|
||||
|
||||
int depth = CV_MAT_DEPTH(src->type);
|
||||
int elem_size = CV_ELEM_SIZE(depth);
|
||||
|
||||
if( depth != CV_32F && depth != CV_64F )
|
||||
CV_Error( CV_StsUnsupportedFormat, "The matrices must have 32f or 64f data type" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "The matrices must have 32f or 64f data type" );
|
||||
|
||||
if( !CV_ARE_DEPTHS_EQ(src, dst) )
|
||||
CV_Error( CV_StsUnmatchedFormats, "All the matrices must have the same data type" );
|
||||
CV_Error( cv::Error::StsUnmatchedFormats, "All the matrices must have the same data type" );
|
||||
|
||||
if( jacobian )
|
||||
{
|
||||
if( !CV_IS_MAT(jacobian) )
|
||||
CV_Error( CV_StsBadArg, "Jacobian is not a valid matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "Jacobian is not a valid matrix" );
|
||||
|
||||
if( !CV_ARE_DEPTHS_EQ(src, jacobian) || CV_MAT_CN(jacobian->type) != 1 )
|
||||
CV_Error( CV_StsUnmatchedFormats, "Jacobian must have 32fC1 or 64fC1 datatype" );
|
||||
CV_Error( cv::Error::StsUnmatchedFormats, "Jacobian must have 32fC1 or 64fC1 datatype" );
|
||||
|
||||
if( (jacobian->rows != 9 || jacobian->cols != 3) &&
|
||||
(jacobian->rows != 3 || jacobian->cols != 9))
|
||||
CV_Error( CV_StsBadSize, "Jacobian must be 3x9 or 9x3" );
|
||||
CV_Error( cv::Error::StsBadSize, "Jacobian must be 3x9 or 9x3" );
|
||||
}
|
||||
|
||||
if( src->cols == 1 || src->rows == 1 )
|
||||
@ -287,10 +287,10 @@ CV_IMPL int cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian )
|
||||
int step = src->rows > 1 ? src->step / elem_size : 1;
|
||||
|
||||
if( src->rows + src->cols*CV_MAT_CN(src->type) - 1 != 3 )
|
||||
CV_Error( CV_StsBadSize, "Input matrix must be 1x3, 3x1 or 3x3" );
|
||||
CV_Error( cv::Error::StsBadSize, "Input matrix must be 1x3, 3x1 or 3x3" );
|
||||
|
||||
if( dst->rows != 3 || dst->cols != 3 || CV_MAT_CN(dst->type) != 1 )
|
||||
CV_Error( CV_StsBadSize, "Output matrix must be 3x3, single-channel floating point matrix" );
|
||||
CV_Error( cv::Error::StsBadSize, "Output matrix must be 3x3, single-channel floating point matrix" );
|
||||
|
||||
Point3d r;
|
||||
if( depth == CV_32F )
|
||||
@ -368,7 +368,7 @@ CV_IMPL int cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian )
|
||||
|
||||
if( (dst->rows != 1 || dst->cols*CV_MAT_CN(dst->type) != 3) &&
|
||||
(dst->rows != 3 || dst->cols != 1 || CV_MAT_CN(dst->type) != 1))
|
||||
CV_Error( CV_StsBadSize, "Output matrix must be 1x3 or 3x1" );
|
||||
CV_Error( cv::Error::StsBadSize, "Output matrix must be 1x3 or 3x1" );
|
||||
|
||||
Matx33d R = cvarrToMat(src);
|
||||
|
||||
@ -490,7 +490,7 @@ CV_IMPL int cvRodrigues2( const CvMat* src, CvMat* dst, CvMat* jacobian )
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error(CV_StsBadSize, "Input matrix must be 1x3 or 3x1 for a rotation vector, or 3x3 for a rotation matrix");
|
||||
CV_Error(cv::Error::StsBadSize, "Input matrix must be 1x3 or 3x1 for a rotation vector, or 3x3 for a rotation matrix");
|
||||
}
|
||||
|
||||
if( jacobian )
|
||||
@ -553,13 +553,13 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
if( !CV_IS_MAT(objectPoints) || !CV_IS_MAT(r_vec) ||
|
||||
!CV_IS_MAT(t_vec) || !CV_IS_MAT(A) ||
|
||||
/*!CV_IS_MAT(distCoeffs) ||*/ !CV_IS_MAT(imagePoints) )
|
||||
CV_Error( CV_StsBadArg, "One of required arguments is not a valid matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "One of required arguments is not a valid matrix" );
|
||||
|
||||
int total = objectPoints->rows * objectPoints->cols * CV_MAT_CN(objectPoints->type);
|
||||
if(total % 3 != 0)
|
||||
{
|
||||
//we have stopped support of homogeneous coordinates because it cause ambiguity in interpretation of the input data
|
||||
CV_Error( CV_StsBadArg, "Homogeneous coordinates are not supported" );
|
||||
CV_Error( cv::Error::StsBadArg, "Homogeneous coordinates are not supported" );
|
||||
}
|
||||
count = total / 3;
|
||||
|
||||
@ -576,7 +576,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
{
|
||||
// matM = cvCreateMat( 1, count, CV_64FC3 );
|
||||
// cvConvertPointsHomogeneous( objectPoints, matM );
|
||||
CV_Error( CV_StsBadArg, "Homogeneous coordinates are not supported" );
|
||||
CV_Error( cv::Error::StsBadArg, "Homogeneous coordinates are not supported" );
|
||||
}
|
||||
|
||||
if( CV_IS_CONT_MAT(imagePoints->type) &&
|
||||
@ -591,7 +591,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
else
|
||||
{
|
||||
// _m = cvCreateMat( 1, count, CV_64FC2 );
|
||||
CV_Error( CV_StsBadArg, "Homogeneous coordinates are not supported" );
|
||||
CV_Error( cv::Error::StsBadArg, "Homogeneous coordinates are not supported" );
|
||||
}
|
||||
|
||||
M = (CvPoint3D64f*)matM->data.db;
|
||||
@ -601,7 +601,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
(((r_vec->rows != 1 && r_vec->cols != 1) ||
|
||||
r_vec->rows*r_vec->cols*CV_MAT_CN(r_vec->type) != 3) &&
|
||||
((r_vec->rows != 3 && r_vec->cols != 3) || CV_MAT_CN(r_vec->type) != 1)))
|
||||
CV_Error( CV_StsBadArg, "Rotation must be represented by 1x3 or 3x1 "
|
||||
CV_Error( cv::Error::StsBadArg, "Rotation must be represented by 1x3 or 3x1 "
|
||||
"floating-point rotation vector, or 3x3 rotation matrix" );
|
||||
|
||||
if( r_vec->rows == 3 && r_vec->cols == 3 )
|
||||
@ -621,7 +621,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
if( (CV_MAT_DEPTH(t_vec->type) != CV_64F && CV_MAT_DEPTH(t_vec->type) != CV_32F) ||
|
||||
(t_vec->rows != 1 && t_vec->cols != 1) ||
|
||||
t_vec->rows*t_vec->cols*CV_MAT_CN(t_vec->type) != 3 )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"Translation vector must be 1x3 or 3x1 floating-point vector" );
|
||||
|
||||
_t = cvMat( t_vec->rows, t_vec->cols, CV_MAKETYPE(CV_64F,CV_MAT_CN(t_vec->type)), t );
|
||||
@ -629,7 +629,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
|
||||
if( (CV_MAT_TYPE(A->type) != CV_64FC1 && CV_MAT_TYPE(A->type) != CV_32FC1) ||
|
||||
A->rows != 3 || A->cols != 3 )
|
||||
CV_Error( CV_StsBadArg, "Intrinsic parameters must be 3x3 floating-point matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "Intrinsic parameters must be 3x3 floating-point matrix" );
|
||||
|
||||
cvConvert( A, &_a );
|
||||
fx = a[0]; fy = a[4];
|
||||
@ -649,7 +649,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 8 &&
|
||||
distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 12 &&
|
||||
distCoeffs->rows*distCoeffs->cols*CV_MAT_CN(distCoeffs->type) != 14) )
|
||||
CV_Error( CV_StsBadArg, cvDistCoeffErr );
|
||||
CV_Error( cv::Error::StsBadArg, cvDistCoeffErr );
|
||||
|
||||
_k = cvMat( distCoeffs->rows, distCoeffs->cols,
|
||||
CV_MAKETYPE(CV_64F,CV_MAT_CN(distCoeffs->type)), k );
|
||||
@ -667,7 +667,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
(CV_MAT_TYPE(dpdr->type) != CV_32FC1 &&
|
||||
CV_MAT_TYPE(dpdr->type) != CV_64FC1) ||
|
||||
dpdr->rows != count*2 || dpdr->cols != 3 )
|
||||
CV_Error( CV_StsBadArg, "dp/drot must be 2Nx3 floating-point matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "dp/drot must be 2Nx3 floating-point matrix" );
|
||||
|
||||
if( CV_MAT_TYPE(dpdr->type) == CV_64FC1 )
|
||||
{
|
||||
@ -685,7 +685,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
(CV_MAT_TYPE(dpdt->type) != CV_32FC1 &&
|
||||
CV_MAT_TYPE(dpdt->type) != CV_64FC1) ||
|
||||
dpdt->rows != count*2 || dpdt->cols != 3 )
|
||||
CV_Error( CV_StsBadArg, "dp/dT must be 2Nx3 floating-point matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "dp/dT must be 2Nx3 floating-point matrix" );
|
||||
|
||||
if( CV_MAT_TYPE(dpdt->type) == CV_64FC1 )
|
||||
{
|
||||
@ -702,7 +702,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
if( !CV_IS_MAT(dpdf) ||
|
||||
(CV_MAT_TYPE(dpdf->type) != CV_32FC1 && CV_MAT_TYPE(dpdf->type) != CV_64FC1) ||
|
||||
dpdf->rows != count*2 || dpdf->cols != 2 )
|
||||
CV_Error( CV_StsBadArg, "dp/df must be 2Nx2 floating-point matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "dp/df must be 2Nx2 floating-point matrix" );
|
||||
|
||||
if( CV_MAT_TYPE(dpdf->type) == CV_64FC1 )
|
||||
{
|
||||
@ -719,7 +719,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
if( !CV_IS_MAT(dpdc) ||
|
||||
(CV_MAT_TYPE(dpdc->type) != CV_32FC1 && CV_MAT_TYPE(dpdc->type) != CV_64FC1) ||
|
||||
dpdc->rows != count*2 || dpdc->cols != 2 )
|
||||
CV_Error( CV_StsBadArg, "dp/dc must be 2Nx2 floating-point matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "dp/dc must be 2Nx2 floating-point matrix" );
|
||||
|
||||
if( CV_MAT_TYPE(dpdc->type) == CV_64FC1 )
|
||||
{
|
||||
@ -736,10 +736,10 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
if( !CV_IS_MAT(dpdk) ||
|
||||
(CV_MAT_TYPE(dpdk->type) != CV_32FC1 && CV_MAT_TYPE(dpdk->type) != CV_64FC1) ||
|
||||
dpdk->rows != count*2 || (dpdk->cols != 14 && dpdk->cols != 12 && dpdk->cols != 8 && dpdk->cols != 5 && dpdk->cols != 4 && dpdk->cols != 2) )
|
||||
CV_Error( CV_StsBadArg, "dp/df must be 2Nx14, 2Nx12, 2Nx8, 2Nx5, 2Nx4 or 2Nx2 floating-point matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "dp/df must be 2Nx14, 2Nx12, 2Nx8, 2Nx5, 2Nx4 or 2Nx2 floating-point matrix" );
|
||||
|
||||
if( !distCoeffs )
|
||||
CV_Error( CV_StsNullPtr, "distCoeffs is NULL while dpdk is not" );
|
||||
CV_Error( cv::Error::StsNullPtr, "distCoeffs is NULL while dpdk is not" );
|
||||
|
||||
if( CV_MAT_TYPE(dpdk->type) == CV_64FC1 )
|
||||
{
|
||||
@ -756,7 +756,7 @@ static void cvProjectPoints2Internal( const CvMat* objectPoints,
|
||||
if( !CV_IS_MAT( dpdo ) || ( CV_MAT_TYPE( dpdo->type ) != CV_32FC1
|
||||
&& CV_MAT_TYPE( dpdo->type ) != CV_64FC1 )
|
||||
|| dpdo->rows != count * 2 || dpdo->cols != count * 3 )
|
||||
CV_Error( CV_StsBadArg, "dp/do must be 2Nx3N floating-point matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "dp/do must be 2Nx3N floating-point matrix" );
|
||||
|
||||
if( CV_MAT_TYPE( dpdo->type ) == CV_64FC1 )
|
||||
{
|
||||
@ -1283,10 +1283,10 @@ CV_IMPL void cvInitIntrinsicParams2D( const CvMat* objectPoints,
|
||||
CV_MAT_TYPE(objectPoints->type) != CV_64FC3) ||
|
||||
(CV_MAT_TYPE(imagePoints->type) != CV_32FC2 &&
|
||||
CV_MAT_TYPE(imagePoints->type) != CV_64FC2) )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Both object points and image points must be 2D" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "Both object points and image points must be 2D" );
|
||||
|
||||
if( objectPoints->rows != 1 || imagePoints->rows != 1 )
|
||||
CV_Error( CV_StsBadSize, "object points and image points must be a single-row matrices" );
|
||||
CV_Error( cv::Error::StsBadSize, "object points and image points must be a single-row matrices" );
|
||||
|
||||
matA.reset(cvCreateMat( 2*nimages, 2, CV_64F ));
|
||||
_b.reset(cvCreateMat( 2*nimages, 1, CV_64F ));
|
||||
@ -1395,27 +1395,27 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
// 0. check the parameters & allocate buffers
|
||||
if( !CV_IS_MAT(objectPoints) || !CV_IS_MAT(imagePoints) ||
|
||||
!CV_IS_MAT(npoints) || !CV_IS_MAT(cameraMatrix) || !CV_IS_MAT(distCoeffs) )
|
||||
CV_Error( CV_StsBadArg, "One of required vector arguments is not a valid matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "One of required vector arguments is not a valid matrix" );
|
||||
|
||||
if( imageSize.width <= 0 || imageSize.height <= 0 )
|
||||
CV_Error( CV_StsOutOfRange, "image width and height must be positive" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "image width and height must be positive" );
|
||||
|
||||
if( CV_MAT_TYPE(npoints->type) != CV_32SC1 ||
|
||||
(npoints->rows != 1 && npoints->cols != 1) )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
CV_Error( cv::Error::StsUnsupportedFormat,
|
||||
"the array of point counters must be 1-dimensional integer vector" );
|
||||
if(flags & CALIB_TILTED_MODEL)
|
||||
{
|
||||
//when the tilted sensor model is used the distortion coefficients matrix must have 14 parameters
|
||||
if (distCoeffs->cols*distCoeffs->rows != 14)
|
||||
CV_Error( CV_StsBadArg, "The tilted sensor model must have 14 parameters in the distortion matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "The tilted sensor model must have 14 parameters in the distortion matrix" );
|
||||
}
|
||||
else
|
||||
{
|
||||
//when the thin prism model is used the distortion coefficients matrix must have 12 parameters
|
||||
if(flags & CALIB_THIN_PRISM_MODEL)
|
||||
if (distCoeffs->cols*distCoeffs->rows != 12)
|
||||
CV_Error( CV_StsBadArg, "Thin prism model must have 12 parameters in the distortion matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "Thin prism model must have 12 parameters in the distortion matrix" );
|
||||
}
|
||||
|
||||
nimages = npoints->rows*npoints->cols;
|
||||
@ -1428,7 +1428,7 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
(CV_MAT_DEPTH(rvecs->type) != CV_32F && CV_MAT_DEPTH(rvecs->type) != CV_64F) ||
|
||||
((rvecs->rows != nimages || (rvecs->cols*cn != 3 && rvecs->cols*cn != 9)) &&
|
||||
(rvecs->rows != 1 || rvecs->cols != nimages || cn != 3)) )
|
||||
CV_Error( CV_StsBadArg, "the output array of rotation vectors must be 3-channel "
|
||||
CV_Error( cv::Error::StsBadArg, "the output array of rotation vectors must be 3-channel "
|
||||
"1xn or nx1 array or 1-channel nx3 or nx9 array, where n is the number of views" );
|
||||
}
|
||||
|
||||
@ -1439,7 +1439,7 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
(CV_MAT_DEPTH(tvecs->type) != CV_32F && CV_MAT_DEPTH(tvecs->type) != CV_64F) ||
|
||||
((tvecs->rows != nimages || tvecs->cols*cn != 3) &&
|
||||
(tvecs->rows != 1 || tvecs->cols != nimages || cn != 3)) )
|
||||
CV_Error( CV_StsBadArg, "the output array of translation vectors must be 3-channel "
|
||||
CV_Error( cv::Error::StsBadArg, "the output array of translation vectors must be 3-channel "
|
||||
"1xn or nx1 array or 1-channel nx3 array, where n is the number of views" );
|
||||
}
|
||||
|
||||
@ -1454,7 +1454,7 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
(stdDevs->rows != 1 || stdDevs->cols != (nimages*6 + NINTRINSIC) || cn != 1)) )
|
||||
#define STR__(x) #x
|
||||
#define STR_(x) STR__(x)
|
||||
CV_Error( CV_StsBadArg, "the output array of standard deviations vectors must be 1-channel "
|
||||
CV_Error( cv::Error::StsBadArg, "the output array of standard deviations vectors must be 1-channel "
|
||||
"1x(n*6 + NINTRINSIC) or (n*6 + NINTRINSIC)x1 array, where n is the number of views,"
|
||||
" NINTRINSIC = " STR_(CV_CALIB_NINTRINSIC));
|
||||
}
|
||||
@ -1462,7 +1462,7 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
if( (CV_MAT_TYPE(cameraMatrix->type) != CV_32FC1 &&
|
||||
CV_MAT_TYPE(cameraMatrix->type) != CV_64FC1) ||
|
||||
cameraMatrix->rows != 3 || cameraMatrix->cols != 3 )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"Intrinsic parameters must be 3x3 floating-point matrix" );
|
||||
|
||||
if( (CV_MAT_TYPE(distCoeffs->type) != CV_32FC1 &&
|
||||
@ -1473,14 +1473,14 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
distCoeffs->cols*distCoeffs->rows != 8 &&
|
||||
distCoeffs->cols*distCoeffs->rows != 12 &&
|
||||
distCoeffs->cols*distCoeffs->rows != 14) )
|
||||
CV_Error( CV_StsBadArg, cvDistCoeffErr );
|
||||
CV_Error( cv::Error::StsBadArg, cvDistCoeffErr );
|
||||
|
||||
for( i = 0; i < nimages; i++ )
|
||||
{
|
||||
ni = npoints->data.i[i*npstep];
|
||||
if( ni < 4 )
|
||||
{
|
||||
CV_Error_( CV_StsOutOfRange, ("The number of points in the view #%d is < 4", i));
|
||||
CV_Error_( cv::Error::StsOutOfRange, ("The number of points in the view #%d is < 4", i));
|
||||
}
|
||||
maxPoints = MAX( maxPoints, ni );
|
||||
total += ni;
|
||||
@ -1493,7 +1493,7 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
(CV_MAT_DEPTH(newObjPoints->type) != CV_32F && CV_MAT_DEPTH(newObjPoints->type) != CV_64F) ||
|
||||
((newObjPoints->rows != maxPoints || newObjPoints->cols*cn != 3) &&
|
||||
(newObjPoints->rows != 1 || newObjPoints->cols != maxPoints || cn != 3)) )
|
||||
CV_Error( CV_StsBadArg, "the output array of refined object points must be 3-channel "
|
||||
CV_Error( cv::Error::StsBadArg, "the output array of refined object points must be 3-channel "
|
||||
"1xn or nx1 array or 1-channel nx3 array, where n is the number of object points per view" );
|
||||
}
|
||||
|
||||
@ -1504,7 +1504,7 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
(CV_MAT_DEPTH(stdDevs->type) != CV_32F && CV_MAT_DEPTH(stdDevs->type) != CV_64F) ||
|
||||
((stdDevs->rows != (nimages*6 + NINTRINSIC + maxPoints*3) || stdDevs->cols*cn != 1) &&
|
||||
(stdDevs->rows != 1 || stdDevs->cols != (nimages*6 + NINTRINSIC + maxPoints*3) || cn != 1)) )
|
||||
CV_Error( CV_StsBadArg, "the output array of standard deviations vectors must be 1-channel "
|
||||
CV_Error( cv::Error::StsBadArg, "the output array of standard deviations vectors must be 1-channel "
|
||||
"1x(n*6 + NINTRINSIC + m*3) or (n*6 + NINTRINSIC + m*3)x1 array, where n is the number of views,"
|
||||
" NINTRINSIC = " STR_(CV_CALIB_NINTRINSIC) ", m is the number of object points per view");
|
||||
}
|
||||
@ -1544,15 +1544,15 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
{
|
||||
cvConvert( cameraMatrix, &matA );
|
||||
if( A(0, 0) <= 0 || A(1, 1) <= 0 )
|
||||
CV_Error( CV_StsOutOfRange, "Focal length (fx and fy) must be positive" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Focal length (fx and fy) must be positive" );
|
||||
if( A(0, 2) < 0 || A(0, 2) >= imageSize.width ||
|
||||
A(1, 2) < 0 || A(1, 2) >= imageSize.height )
|
||||
CV_Error( CV_StsOutOfRange, "Principal point must be within the image" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Principal point must be within the image" );
|
||||
if( fabs(A(0, 1)) > 1e-5 )
|
||||
CV_Error( CV_StsOutOfRange, "Non-zero skew is not supported by the function" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Non-zero skew is not supported by the function" );
|
||||
if( fabs(A(1, 0)) > 1e-5 || fabs(A(2, 0)) > 1e-5 ||
|
||||
fabs(A(2, 1)) > 1e-5 || fabs(A(2,2)-1) > 1e-5 )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
CV_Error( cv::Error::StsOutOfRange,
|
||||
"The intrinsic matrix must have [fx 0 cx; 0 fy cy; 0 0 1] shape" );
|
||||
A(0, 1) = A(1, 0) = A(2, 0) = A(2, 1) = 0.;
|
||||
A(2, 2) = 1.;
|
||||
@ -1562,7 +1562,7 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
aspectRatio = A(0, 0)/A(1, 1);
|
||||
|
||||
if( aspectRatio < minValidAspectRatio || aspectRatio > maxValidAspectRatio )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
CV_Error( cv::Error::StsOutOfRange,
|
||||
"The specified aspect ratio (= cameraMatrix[0][0] / cameraMatrix[1][1]) is incorrect" );
|
||||
}
|
||||
cvConvert( distCoeffs, &_k );
|
||||
@ -1572,7 +1572,7 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
Scalar mean, sdv;
|
||||
meanStdDev(matM, mean, sdv);
|
||||
if( fabs(mean[2]) > 1e-5 || fabs(sdv[2]) > 1e-5 )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"For non-planar calibration rigs the initial intrinsic matrix must be specified" );
|
||||
for( i = 0; i < total; i++ )
|
||||
matM.at<Point3d>(i).z = 0.;
|
||||
@ -1582,7 +1582,7 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
aspectRatio = cvmGet(cameraMatrix,0,0);
|
||||
aspectRatio /= cvmGet(cameraMatrix,1,1);
|
||||
if( aspectRatio < minValidAspectRatio || aspectRatio > maxValidAspectRatio )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
CV_Error( cv::Error::StsOutOfRange,
|
||||
"The specified aspect ratio (= cameraMatrix[0][0] / cameraMatrix[1][1]) is incorrect" );
|
||||
}
|
||||
CvMat _matM = cvMat(matM), m = cvMat(_m);
|
||||
@ -1673,7 +1673,7 @@ static double cvCalibrateCamera2Internal( const CvMat* objectPoints,
|
||||
Mat mask = cvarrToMat(solver.mask);
|
||||
int nparams_nz = countNonZero(mask);
|
||||
if (nparams_nz >= 2 * total)
|
||||
CV_Error_(CV_StsBadArg,
|
||||
CV_Error_(cv::Error::StsBadArg,
|
||||
("There should be less vars to optimize (having %d) than the number of residuals (%d = 2 per point)", nparams_nz, 2 * total));
|
||||
|
||||
// 2. initialize extrinsic parameters
|
||||
@ -1889,10 +1889,10 @@ CV_IMPL double cvCalibrateCamera4( const CvMat* objectPoints,
|
||||
CvMat* rvecs, CvMat* tvecs, CvMat* newObjPoints, int flags, CvTermCriteria termCrit )
|
||||
{
|
||||
if( !CV_IS_MAT(npoints) )
|
||||
CV_Error( CV_StsBadArg, "npoints is not a valid matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "npoints is not a valid matrix" );
|
||||
if( CV_MAT_TYPE(npoints->type) != CV_32SC1 ||
|
||||
(npoints->rows != 1 && npoints->cols != 1) )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
CV_Error( cv::Error::StsUnsupportedFormat,
|
||||
"the array of point counters must be 1-dimensional integer vector" );
|
||||
|
||||
bool releaseObject = iFixedPoint > 0 && iFixedPoint < npoints->data.i[0] - 1;
|
||||
@ -1903,7 +1903,7 @@ CV_IMPL double cvCalibrateCamera4( const CvMat* objectPoints,
|
||||
if( releaseObject )
|
||||
{
|
||||
if( !CV_IS_MAT(objectPoints) )
|
||||
CV_Error( CV_StsBadArg, "objectPoints is not a valid matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "objectPoints is not a valid matrix" );
|
||||
Mat matM;
|
||||
if(CV_MAT_CN(objectPoints->type) == 3) {
|
||||
matM = cvarrToMat(objectPoints);
|
||||
@ -1917,14 +1917,14 @@ CV_IMPL double cvCalibrateCamera4( const CvMat* objectPoints,
|
||||
{
|
||||
if( npoints->data.i[i * npstep] != ni )
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "All objectPoints[i].size() should be equal when "
|
||||
CV_Error( cv::Error::StsBadArg, "All objectPoints[i].size() should be equal when "
|
||||
"object-releasing method is requested." );
|
||||
}
|
||||
Mat ocmp = matM.colRange(ni * i, ni * i + ni) != matM.colRange(0, ni);
|
||||
ocmp = ocmp.reshape(1);
|
||||
if( countNonZero(ocmp) )
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "All objectPoints[i] should be identical when object-releasing"
|
||||
CV_Error( cv::Error::StsBadArg, "All objectPoints[i] should be identical when object-releasing"
|
||||
" method is requested." );
|
||||
}
|
||||
}
|
||||
@ -1941,10 +1941,10 @@ void cvCalibrationMatrixValues( const CvMat *calibMatr, CvSize imgSize,
|
||||
{
|
||||
/* Validate parameters. */
|
||||
if(calibMatr == 0)
|
||||
CV_Error(CV_StsNullPtr, "Some of parameters is a NULL pointer!");
|
||||
CV_Error(cv::Error::StsNullPtr, "Some of parameters is a NULL pointer!");
|
||||
|
||||
if(!CV_IS_MAT(calibMatr))
|
||||
CV_Error(CV_StsUnsupportedFormat, "Input parameters must be matrices!");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "Input parameters must be matrices!");
|
||||
|
||||
double dummy = .0;
|
||||
Point2d pp;
|
||||
@ -2023,7 +2023,7 @@ static double cvStereoCalibrateImpl( const CvMat* _objectPoints, const CvMat* _i
|
||||
(CV_MAT_DEPTH(rvecs->type) != CV_32F && CV_MAT_DEPTH(rvecs->type) != CV_64F) ||
|
||||
((rvecs->rows != nimages || (rvecs->cols*cn != 3 && rvecs->cols*cn != 9)) &&
|
||||
(rvecs->rows != 1 || rvecs->cols != nimages || cn != 3)) )
|
||||
CV_Error( CV_StsBadArg, "the output array of rotation vectors must be 3-channel "
|
||||
CV_Error( cv::Error::StsBadArg, "the output array of rotation vectors must be 3-channel "
|
||||
"1xn or nx1 array or 1-channel nx3 or nx9 array, where n is the number of views" );
|
||||
}
|
||||
|
||||
@ -2034,7 +2034,7 @@ static double cvStereoCalibrateImpl( const CvMat* _objectPoints, const CvMat* _i
|
||||
(CV_MAT_DEPTH(tvecs->type) != CV_32F && CV_MAT_DEPTH(tvecs->type) != CV_64F) ||
|
||||
((tvecs->rows != nimages || tvecs->cols*cn != 3) &&
|
||||
(tvecs->rows != 1 || tvecs->cols != nimages || cn != 3)) )
|
||||
CV_Error( CV_StsBadArg, "the output array of translation vectors must be 3-channel "
|
||||
CV_Error( cv::Error::StsBadArg, "the output array of translation vectors must be 3-channel "
|
||||
"1xn or nx1 array or 1-channel nx3 array, where n is the number of views" );
|
||||
}
|
||||
|
||||
@ -3344,19 +3344,19 @@ cvDecomposeProjectionMatrix( const CvMat *projMatr, CvMat *calibMatr,
|
||||
|
||||
/* Validate parameters. */
|
||||
if(projMatr == 0 || calibMatr == 0 || rotMatr == 0 || posVect == 0)
|
||||
CV_Error(CV_StsNullPtr, "Some of parameters is a NULL pointer!");
|
||||
CV_Error(cv::Error::StsNullPtr, "Some of parameters is a NULL pointer!");
|
||||
|
||||
if(!CV_IS_MAT(projMatr) || !CV_IS_MAT(calibMatr) || !CV_IS_MAT(rotMatr) || !CV_IS_MAT(posVect))
|
||||
CV_Error(CV_StsUnsupportedFormat, "Input parameters must be matrices!");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "Input parameters must be matrices!");
|
||||
|
||||
if(projMatr->cols != 4 || projMatr->rows != 3)
|
||||
CV_Error(CV_StsUnmatchedSizes, "Size of projection matrix must be 3x4!");
|
||||
CV_Error(cv::Error::StsUnmatchedSizes, "Size of projection matrix must be 3x4!");
|
||||
|
||||
if(calibMatr->cols != 3 || calibMatr->rows != 3 || rotMatr->cols != 3 || rotMatr->rows != 3)
|
||||
CV_Error(CV_StsUnmatchedSizes, "Size of calibration and rotation matrices must be 3x3!");
|
||||
CV_Error(cv::Error::StsUnmatchedSizes, "Size of calibration and rotation matrices must be 3x3!");
|
||||
|
||||
if(posVect->cols != 1 || posVect->rows != 4)
|
||||
CV_Error(CV_StsUnmatchedSizes, "Size of position vector must be 4x1!");
|
||||
CV_Error(cv::Error::StsUnmatchedSizes, "Size of position vector must be 4x1!");
|
||||
|
||||
/* Compute position vector. */
|
||||
cvSetZero(&tmpProjMatr); // Add zero row to make matrix square.
|
||||
@ -3402,17 +3402,17 @@ static void collectCalibrationData( InputArrayOfArrays objectPoints,
|
||||
{
|
||||
Mat objectPoint = objectPoints.getMat(i);
|
||||
if (objectPoint.empty())
|
||||
CV_Error(CV_StsBadSize, "objectPoints should not contain empty vector of vectors of points");
|
||||
CV_Error(cv::Error::StsBadSize, "objectPoints should not contain empty vector of vectors of points");
|
||||
int numberOfObjectPoints = objectPoint.checkVector(3, CV_32F);
|
||||
if (numberOfObjectPoints <= 0)
|
||||
CV_Error(CV_StsUnsupportedFormat, "objectPoints should contain vector of vectors of points of type Point3f");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "objectPoints should contain vector of vectors of points of type Point3f");
|
||||
|
||||
Mat imagePoint1 = imagePoints1.getMat(i);
|
||||
if (imagePoint1.empty())
|
||||
CV_Error(CV_StsBadSize, "imagePoints1 should not contain empty vector of vectors of points");
|
||||
CV_Error(cv::Error::StsBadSize, "imagePoints1 should not contain empty vector of vectors of points");
|
||||
int numberOfImagePoints = imagePoint1.checkVector(2, CV_32F);
|
||||
if (numberOfImagePoints <= 0)
|
||||
CV_Error(CV_StsUnsupportedFormat, "imagePoints1 should contain vector of vectors of points of type Point2f");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "imagePoints1 should contain vector of vectors of points of type Point2f");
|
||||
CV_CheckEQ(numberOfObjectPoints, numberOfImagePoints, "Number of object and image points must be equal");
|
||||
|
||||
total += numberOfObjectPoints;
|
||||
@ -3467,14 +3467,14 @@ static void collectCalibrationData( InputArrayOfArrays objectPoints,
|
||||
{
|
||||
if( npoints.at<int>(i) != ni )
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "All objectPoints[i].size() should be equal when "
|
||||
CV_Error( cv::Error::StsBadArg, "All objectPoints[i].size() should be equal when "
|
||||
"object-releasing method is requested." );
|
||||
}
|
||||
Mat ocmp = objPtMat.colRange(ni * i, ni * i + ni) != objPtMat.colRange(0, ni);
|
||||
ocmp = ocmp.reshape(1);
|
||||
if( countNonZero(ocmp) )
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "All objectPoints[i] should be identical when object-releasing"
|
||||
CV_Error( cv::Error::StsBadArg, "All objectPoints[i] should be identical when object-releasing"
|
||||
" method is requested." );
|
||||
}
|
||||
}
|
||||
@ -3884,7 +3884,7 @@ void cv::calibrationMatrixValues( InputArray _cameraMatrix, Size imageSize,
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
if(_cameraMatrix.size() != Size(3, 3))
|
||||
CV_Error(CV_StsUnmatchedSizes, "Size of cameraMatrix must be 3x3!");
|
||||
CV_Error(cv::Error::StsUnmatchedSizes, "Size of cameraMatrix must be 3x3!");
|
||||
|
||||
Matx33d K = _cameraMatrix.getMat();
|
||||
|
||||
|
@ -1041,7 +1041,7 @@ int solvePnPGeneric( InputArray _opoints, InputArray _ipoints,
|
||||
vec_tvecs.push_back(tvec);
|
||||
}*/
|
||||
else
|
||||
CV_Error(CV_StsBadArg, "The flags argument must be one of SOLVEPNP_ITERATIVE, SOLVEPNP_P3P, "
|
||||
CV_Error(cv::Error::StsBadArg, "The flags argument must be one of SOLVEPNP_ITERATIVE, SOLVEPNP_P3P, "
|
||||
"SOLVEPNP_EPNP, SOLVEPNP_DLS, SOLVEPNP_UPNP, SOLVEPNP_AP3P, SOLVEPNP_IPPE, SOLVEPNP_IPPE_SQUARE or SOLVEPNP_SQPNP");
|
||||
|
||||
CV_Assert(vec_rvecs.size() == vec_tvecs.size());
|
||||
|
@ -56,30 +56,30 @@ icvTriangulatePoints(CvMat* projMatr1, CvMat* projMatr2, CvMat* projPoints1, CvM
|
||||
if( projMatr1 == 0 || projMatr2 == 0 ||
|
||||
projPoints1 == 0 || projPoints2 == 0 ||
|
||||
points4D == 0)
|
||||
CV_Error( CV_StsNullPtr, "Some of parameters is a NULL pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Some of parameters is a NULL pointer" );
|
||||
|
||||
if( !CV_IS_MAT(projMatr1) || !CV_IS_MAT(projMatr2) ||
|
||||
!CV_IS_MAT(projPoints1) || !CV_IS_MAT(projPoints2) ||
|
||||
!CV_IS_MAT(points4D) )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Input parameters must be matrices" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "Input parameters must be matrices" );
|
||||
|
||||
int numPoints = projPoints1->cols;
|
||||
|
||||
if( numPoints < 1 )
|
||||
CV_Error( CV_StsOutOfRange, "Number of points must be more than zero" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Number of points must be more than zero" );
|
||||
|
||||
if( projPoints2->cols != numPoints || points4D->cols != numPoints )
|
||||
CV_Error( CV_StsUnmatchedSizes, "Number of points must be the same" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "Number of points must be the same" );
|
||||
|
||||
if( projPoints1->rows != 2 || projPoints2->rows != 2)
|
||||
CV_Error( CV_StsUnmatchedSizes, "Number of proj points coordinates must be == 2" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "Number of proj points coordinates must be == 2" );
|
||||
|
||||
if( points4D->rows != 4 )
|
||||
CV_Error( CV_StsUnmatchedSizes, "Number of world points coordinates must be == 4" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "Number of world points coordinates must be == 4" );
|
||||
|
||||
if( projMatr1->cols != 4 || projMatr1->rows != 3 ||
|
||||
projMatr2->cols != 4 || projMatr2->rows != 3)
|
||||
CV_Error( CV_StsUnmatchedSizes, "Size of projection matrices must be 3x4" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "Size of projection matrices must be 3x4" );
|
||||
|
||||
// preallocate SVD matrices on stack
|
||||
cv::Matx<double, 4, 4> matrA;
|
||||
@ -147,30 +147,30 @@ icvCorrectMatches(CvMat *F_, CvMat *points1_, CvMat *points2_, CvMat *new_points
|
||||
cv::Ptr<CvMat> F;
|
||||
|
||||
if (!CV_IS_MAT(F_) || !CV_IS_MAT(points1_) || !CV_IS_MAT(points2_) )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Input parameters must be matrices" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "Input parameters must be matrices" );
|
||||
if (!( F_->cols == 3 && F_->rows == 3))
|
||||
CV_Error( CV_StsUnmatchedSizes, "The fundamental matrix must be a 3x3 matrix");
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "The fundamental matrix must be a 3x3 matrix");
|
||||
if (!(((F_->type & CV_MAT_TYPE_MASK) >> 3) == 0 ))
|
||||
CV_Error( CV_StsUnsupportedFormat, "The fundamental matrix must be a single-channel matrix" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "The fundamental matrix must be a single-channel matrix" );
|
||||
if (!(points1_->rows == 1 && points2_->rows == 1 && points1_->cols == points2_->cols))
|
||||
CV_Error( CV_StsUnmatchedSizes, "The point-matrices must have one row, and an equal number of columns" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "The point-matrices must have one row, and an equal number of columns" );
|
||||
if (((points1_->type & CV_MAT_TYPE_MASK) >> 3) != 1 )
|
||||
CV_Error( CV_StsUnmatchedSizes, "The first set of points must contain two channels; one for x and one for y" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "The first set of points must contain two channels; one for x and one for y" );
|
||||
if (((points2_->type & CV_MAT_TYPE_MASK) >> 3) != 1 )
|
||||
CV_Error( CV_StsUnmatchedSizes, "The second set of points must contain two channels; one for x and one for y" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "The second set of points must contain two channels; one for x and one for y" );
|
||||
if (new_points1 != NULL) {
|
||||
CV_Assert(CV_IS_MAT(new_points1));
|
||||
if (new_points1->cols != points1_->cols || new_points1->rows != 1)
|
||||
CV_Error( CV_StsUnmatchedSizes, "The first output matrix must have the same dimensions as the input matrices" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "The first output matrix must have the same dimensions as the input matrices" );
|
||||
if (CV_MAT_CN(new_points1->type) != 2)
|
||||
CV_Error( CV_StsUnsupportedFormat, "The first output matrix must have two channels; one for x and one for y" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "The first output matrix must have two channels; one for x and one for y" );
|
||||
}
|
||||
if (new_points2 != NULL) {
|
||||
CV_Assert(CV_IS_MAT(new_points2));
|
||||
if (new_points2->cols != points2_->cols || new_points2->rows != 1)
|
||||
CV_Error( CV_StsUnmatchedSizes, "The second output matrix must have the same dimensions as the input matrices" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "The second output matrix must have the same dimensions as the input matrices" );
|
||||
if (CV_MAT_CN(new_points2->type) != 2)
|
||||
CV_Error( CV_StsUnsupportedFormat, "The second output matrix must have two channels; one for x and one for y" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "The second output matrix must have two channels; one for x and one for y" );
|
||||
}
|
||||
|
||||
// Make sure F uses double precision
|
||||
|
@ -149,49 +149,49 @@ void CV_CameraCalibrationBadArgTest::run( int /* start_from */ )
|
||||
|
||||
caller.initArgs();
|
||||
caller.objPts_arg = noArray();
|
||||
errors += run_test_case( CV_StsBadArg, "None passed in objPts", caller);
|
||||
errors += run_test_case( cv::Error::StsBadArg, "None passed in objPts", caller);
|
||||
|
||||
caller.initArgs();
|
||||
caller.imgPts_arg = noArray();
|
||||
errors += run_test_case( CV_StsBadArg, "None passed in imgPts", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "None passed in imgPts", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.cameraMatrix_arg = noArray();
|
||||
errors += run_test_case( CV_StsBadArg, "Zero passed in cameraMatrix", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Zero passed in cameraMatrix", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.distCoeffs_arg = noArray();
|
||||
errors += run_test_case( CV_StsBadArg, "Zero passed in distCoeffs", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Zero passed in distCoeffs", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.imageSize.width = -1;
|
||||
errors += run_test_case( CV_StsOutOfRange, "Bad image width", caller );
|
||||
errors += run_test_case( cv::Error::StsOutOfRange, "Bad image width", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.imageSize.height = -1;
|
||||
errors += run_test_case( CV_StsOutOfRange, "Bad image height", caller );
|
||||
errors += run_test_case( cv::Error::StsOutOfRange, "Bad image height", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.imgPts[0].clear();
|
||||
errors += run_test_case( CV_StsBadSize, "Bad imgpts[0]", caller );
|
||||
errors += run_test_case( cv::Error::StsBadSize, "Bad imgpts[0]", caller );
|
||||
caller.imgPts[0] = caller.imgPts[1];
|
||||
|
||||
caller.initArgs();
|
||||
caller.objPts[1].clear();
|
||||
errors += run_test_case( CV_StsBadSize, "Bad objpts[1]", caller );
|
||||
errors += run_test_case( cv::Error::StsBadSize, "Bad objpts[1]", caller );
|
||||
caller.objPts[1] = caller.objPts[0];
|
||||
|
||||
caller.initArgs();
|
||||
Mat badCM = Mat::zeros(4, 4, CV_64F);
|
||||
caller.cameraMatrix_arg = badCM;
|
||||
caller.flags = CALIB_USE_INTRINSIC_GUESS;
|
||||
errors += run_test_case( CV_StsBadArg, "Bad camearaMatrix header", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Bad camearaMatrix header", caller );
|
||||
|
||||
caller.initArgs();
|
||||
Mat badDC = Mat::zeros(10, 10, CV_64F);
|
||||
caller.distCoeffs_arg = badDC;
|
||||
caller.flags = CALIB_USE_INTRINSIC_GUESS;
|
||||
errors += run_test_case( CV_StsBadArg, "Bad camearaMatrix header", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Bad camearaMatrix header", caller );
|
||||
|
||||
if (errors)
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
||||
@ -244,15 +244,15 @@ protected:
|
||||
|
||||
caller.initArgs();
|
||||
caller.src_arg = noArray();
|
||||
errors += run_test_case( CV_StsBadArg, "Src is empty matrix", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Src is empty matrix", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.src = Mat::zeros(3, 1, CV_8U);
|
||||
errors += run_test_case( CV_StsUnsupportedFormat, "Bad src formart", caller );
|
||||
errors += run_test_case( cv::Error::StsUnsupportedFormat, "Bad src formart", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.src = Mat::zeros(1, 1, CV_32F);
|
||||
errors += run_test_case( CV_StsBadSize, "Bad src size", caller );
|
||||
errors += run_test_case( cv::Error::StsBadSize, "Bad src size", caller );
|
||||
|
||||
if (errors)
|
||||
ts->set_failed_test_info(cvtest::TS::FAIL_MISMATCH);
|
||||
@ -331,57 +331,57 @@ protected:
|
||||
|
||||
caller.initArgs();
|
||||
caller.objectPoints_arg = noArray();
|
||||
errors += run_test_case( CV_StsBadArg, "Zero objectPoints", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Zero objectPoints", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.rvec_arg = noArray();
|
||||
errors += run_test_case( CV_StsBadArg, "Zero r_vec", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Zero r_vec", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.tvec_arg = noArray();
|
||||
errors += run_test_case( CV_StsBadArg, "Zero t_vec", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Zero t_vec", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.A_arg = noArray();
|
||||
errors += run_test_case( CV_StsBadArg, "Zero camMat", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Zero camMat", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.imagePoints_arg = noArray();
|
||||
errors += run_test_case( CV_StsBadArg, "Zero imagePoints", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Zero imagePoints", caller );
|
||||
|
||||
Mat save_rvec = caller.r_vec;
|
||||
caller.initArgs();
|
||||
caller.r_vec.create(2, 2, CV_32F);
|
||||
errors += run_test_case( CV_StsBadArg, "Bad rvec format", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Bad rvec format", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.r_vec.create(1, 3, CV_8U);
|
||||
errors += run_test_case( CV_StsBadArg, "Bad rvec format", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Bad rvec format", caller );
|
||||
caller.r_vec = save_rvec;
|
||||
|
||||
/****************************/
|
||||
Mat save_tvec = caller.t_vec;
|
||||
caller.initArgs();
|
||||
caller.t_vec.create(3, 3, CV_32F);
|
||||
errors += run_test_case( CV_StsBadArg, "Bad tvec format", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Bad tvec format", caller );
|
||||
|
||||
caller.initArgs();
|
||||
caller.t_vec.create(1, 3, CV_8U);
|
||||
errors += run_test_case( CV_StsBadArg, "Bad tvec format", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Bad tvec format", caller );
|
||||
caller.t_vec = save_tvec;
|
||||
|
||||
/****************************/
|
||||
Mat save_A = caller.A;
|
||||
caller.initArgs();
|
||||
caller.A.create(2, 2, CV_32F);
|
||||
errors += run_test_case( CV_StsBadArg, "Bad A format", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Bad A format", caller );
|
||||
caller.A = save_A;
|
||||
|
||||
/****************************/
|
||||
Mat save_DC = caller.distCoeffs;
|
||||
caller.initArgs();
|
||||
caller.distCoeffs.create(3, 3, CV_32F);
|
||||
errors += run_test_case( CV_StsBadArg, "Bad distCoeffs format", caller );
|
||||
errors += run_test_case( cv::Error::StsBadArg, "Bad distCoeffs format", caller );
|
||||
caller.distCoeffs = save_DC;
|
||||
|
||||
if (errors)
|
||||
|
@ -106,15 +106,15 @@ void CV_UndistortPointsBadArgTest::run(int)
|
||||
src_points = cv::cvarrToMat(&_src_points_orig);
|
||||
|
||||
src_points.create(2, 2, CV_32FC2);
|
||||
errcount += run_test_case( CV_StsAssert, "Invalid input data matrix size" );
|
||||
errcount += run_test_case( cv::Error::StsAssert, "Invalid input data matrix size" );
|
||||
src_points = cv::cvarrToMat(&_src_points_orig);
|
||||
|
||||
src_points.create(1, 4, CV_64FC2);
|
||||
errcount += run_test_case( CV_StsAssert, "Invalid input data matrix type" );
|
||||
errcount += run_test_case( cv::Error::StsAssert, "Invalid input data matrix type" );
|
||||
src_points = cv::cvarrToMat(&_src_points_orig);
|
||||
|
||||
src_points = cv::Mat();
|
||||
errcount += run_test_case( CV_StsBadArg, "Input data matrix is not continuous" );
|
||||
errcount += run_test_case( cv::Error::StsBadArg, "Input data matrix is not continuous" );
|
||||
src_points = cv::cvarrToMat(&_src_points_orig);
|
||||
|
||||
//------------
|
||||
@ -181,19 +181,19 @@ void CV_InitUndistortRectifyMapBadArgTest::run(int)
|
||||
mapy = cv::cvarrToMat(&_mapy_orig);
|
||||
|
||||
mat_type = CV_64F;
|
||||
errcount += run_test_case( CV_StsAssert, "Invalid map matrix type" );
|
||||
errcount += run_test_case( cv::Error::StsAssert, "Invalid map matrix type" );
|
||||
mat_type = mat_type_orig;
|
||||
|
||||
camera_mat.create(3, 2, CV_32F);
|
||||
errcount += run_test_case( CV_StsAssert, "Invalid camera data matrix size" );
|
||||
errcount += run_test_case( cv::Error::StsAssert, "Invalid camera data matrix size" );
|
||||
camera_mat = cv::cvarrToMat(&_camera_mat_orig);
|
||||
|
||||
R.create(4, 3, CV_32F);
|
||||
errcount += run_test_case( CV_StsAssert, "Invalid R data matrix size" );
|
||||
errcount += run_test_case( cv::Error::StsAssert, "Invalid R data matrix size" );
|
||||
R = cv::cvarrToMat(&_R_orig);
|
||||
|
||||
distortion_coeffs.create(6, 1, CV_32F);
|
||||
errcount += run_test_case( CV_StsAssert, "Invalid distortion coefficients data matrix size" );
|
||||
errcount += run_test_case( cv::Error::StsAssert, "Invalid distortion coefficients data matrix size" );
|
||||
distortion_coeffs = cv::cvarrToMat(&_distortion_coeffs_orig);
|
||||
|
||||
//------------
|
||||
@ -256,7 +256,7 @@ void CV_UndistortBadArgTest::run(int)
|
||||
dst = cv::cvarrToMat(&_dst_orig);
|
||||
|
||||
camera_mat.create(5, 5, CV_64F);
|
||||
errcount += run_test_case( CV_StsAssert, "Invalid camera data matrix size" );
|
||||
errcount += run_test_case( cv::Error::StsAssert, "Invalid camera data matrix size" );
|
||||
|
||||
//------------
|
||||
ts->set_failed_test_info(errcount > 0 ? cvtest::TS::FAIL_BAD_ARG_CHECK : cvtest::TS::OK);
|
||||
|
@ -70,7 +70,7 @@ namespace cv {
|
||||
|
||||
static void* OutOfMemoryError(size_t size)
|
||||
{
|
||||
CV_Error_(CV_StsNoMem, ("Failed to allocate %llu bytes", (unsigned long long)size));
|
||||
CV_Error_(cv::Error::StsNoMem, ("Failed to allocate %llu bytes", (unsigned long long)size));
|
||||
}
|
||||
|
||||
CV_EXPORTS cv::utils::AllocatorStatisticsInterface& getAllocatorStatistics();
|
||||
|
@ -209,7 +209,7 @@ static void binary_op( InputArray _src1, InputArray _src2, OutputArray _dst,
|
||||
swap(sz1, sz2);
|
||||
}
|
||||
else if( !checkScalar(*psrc2, type1, kind2, kind1) )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
CV_Error( cv::Error::StsUnmatchedSizes,
|
||||
"The operation is neither 'array op array' (where arrays have the same size and type), "
|
||||
"nor 'array op scalar', nor 'scalar op array'" );
|
||||
haveScalar = true;
|
||||
@ -644,7 +644,7 @@ static void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
|
||||
oclop = OCL_OP_RDIV_SCALE;
|
||||
}
|
||||
else if( !checkScalar(*psrc2, type1, kind2, kind1) )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
CV_Error( cv::Error::StsUnmatchedSizes,
|
||||
"The operation is neither 'array op array' "
|
||||
"(where arrays have the same size and the same number of channels), "
|
||||
"nor 'array op scalar', nor 'scalar op array'" );
|
||||
@ -669,7 +669,7 @@ static void arithm_op(InputArray _src1, InputArray _src2, OutputArray _dst,
|
||||
else
|
||||
{
|
||||
if( !haveScalar && type1 != type2 )
|
||||
CV_Error(CV_StsBadArg,
|
||||
CV_Error(cv::Error::StsBadArg,
|
||||
"When the input arrays in add/subtract/multiply/divide functions have different types, "
|
||||
"the output array type must be explicitly specified");
|
||||
dtype = type1;
|
||||
@ -1206,7 +1206,7 @@ void cv::compare(InputArray _src1, InputArray _src2, OutputArray _dst, int op)
|
||||
return;
|
||||
}
|
||||
else if(is_src1_scalar == is_src2_scalar)
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
CV_Error( cv::Error::StsUnmatchedSizes,
|
||||
"The operation is neither 'array op array' (where arrays have the same size and the same type), "
|
||||
"nor 'array op scalar', nor 'scalar op array'" );
|
||||
haveScalar = true;
|
||||
@ -1615,7 +1615,7 @@ static bool ocl_inRange( InputArray _src, InputArray _lowerb,
|
||||
ssize != lsize || stype != ltype )
|
||||
{
|
||||
if( !checkScalar(_lowerb, stype, lkind, skind) )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
CV_Error( cv::Error::StsUnmatchedSizes,
|
||||
"The lower boundary is neither an array of the same size and same type as src, nor a scalar");
|
||||
lbScalar = true;
|
||||
}
|
||||
@ -1624,7 +1624,7 @@ static bool ocl_inRange( InputArray _src, InputArray _lowerb,
|
||||
ssize != usize || stype != utype )
|
||||
{
|
||||
if( !checkScalar(_upperb, stype, ukind, skind) )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
CV_Error( cv::Error::StsUnmatchedSizes,
|
||||
"The upper boundary is neither an array of the same size and same type as src, nor a scalar");
|
||||
ubScalar = true;
|
||||
}
|
||||
@ -1738,7 +1738,7 @@ void cv::inRange(InputArray _src, InputArray _lowerb,
|
||||
src.size != lb.size || src.type() != lb.type() )
|
||||
{
|
||||
if( !checkScalar(lb, src.type(), lkind, skind) )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
CV_Error( cv::Error::StsUnmatchedSizes,
|
||||
"The lower boundary is neither an array of the same size and same type as src, nor a scalar");
|
||||
lbScalar = true;
|
||||
}
|
||||
@ -1747,7 +1747,7 @@ void cv::inRange(InputArray _src, InputArray _lowerb,
|
||||
src.size != ub.size || src.type() != ub.type() )
|
||||
{
|
||||
if( !checkScalar(ub, src.type(), ukind, skind) )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
CV_Error( cv::Error::StsUnmatchedSizes,
|
||||
"The upper boundary is neither an array of the same size and same type as src, nor a scalar");
|
||||
ubScalar = true;
|
||||
}
|
||||
|
File diff suppressed because it is too large
Load Diff
@ -377,7 +377,7 @@ void cv::batchDistance( InputArray _src1, InputArray _src2,
|
||||
}
|
||||
|
||||
if( func == 0 )
|
||||
CV_Error_(CV_StsUnsupportedFormat,
|
||||
CV_Error_(cv::Error::StsUnsupportedFormat,
|
||||
("The combination of type=%d, dtype=%d and normType=%d is not supported",
|
||||
type, dtype, normType));
|
||||
|
||||
|
@ -464,7 +464,7 @@ std::vector<String> CommandLineParser::Impl::split_range_string(const String& _s
|
||||
{
|
||||
if (begin == true)
|
||||
{
|
||||
throw cv::Exception(CV_StsParseError,
|
||||
throw cv::Exception(cv::Error::StsParseError,
|
||||
String("error in split_range_string(")
|
||||
+ str
|
||||
+ String(", ")
|
||||
@ -484,7 +484,7 @@ std::vector<String> CommandLineParser::Impl::split_range_string(const String& _s
|
||||
{
|
||||
if (begin == false)
|
||||
{
|
||||
throw cv::Exception(CV_StsParseError,
|
||||
throw cv::Exception(cv::Error::StsParseError,
|
||||
String("error in split_range_string(")
|
||||
+ str
|
||||
+ String(", ")
|
||||
@ -508,7 +508,7 @@ std::vector<String> CommandLineParser::Impl::split_range_string(const String& _s
|
||||
|
||||
if (begin == true)
|
||||
{
|
||||
throw cv::Exception(CV_StsParseError,
|
||||
throw cv::Exception(cv::Error::StsParseError,
|
||||
String("error in split_range_string(")
|
||||
+ str
|
||||
+ String(", ")
|
||||
|
@ -96,7 +96,7 @@ void scalarToRawData(const Scalar& s, void* _buf, int type, int unroll_to)
|
||||
scalarToRawData_<float16_t>(s, (float16_t*)_buf, cn, unroll_to);
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsUnsupportedFormat,"");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat,"");
|
||||
}
|
||||
}
|
||||
|
||||
@ -788,7 +788,7 @@ int cv::borderInterpolate( int p, int len, int borderType )
|
||||
else if( borderType == BORDER_CONSTANT )
|
||||
p = -1;
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown/unsupported border type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown/unsupported border type" );
|
||||
return p;
|
||||
}
|
||||
|
||||
|
@ -91,7 +91,7 @@ static void
|
||||
icvInitMemStorage( CvMemStorage* storage, int block_size )
|
||||
{
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( block_size <= 0 )
|
||||
block_size = CV_STORAGE_BLOCK_SIZE;
|
||||
@ -120,7 +120,7 @@ CV_IMPL CvMemStorage *
|
||||
cvCreateChildMemStorage( CvMemStorage * parent )
|
||||
{
|
||||
if( !parent )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
CvMemStorage* storage = cvCreateMemStorage(parent->block_size);
|
||||
storage->parent = parent;
|
||||
@ -137,7 +137,7 @@ icvDestroyMemStorage( CvMemStorage* storage )
|
||||
CvMemBlock *dst_top = 0;
|
||||
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( storage->parent )
|
||||
dst_top = storage->parent->top;
|
||||
@ -180,7 +180,7 @@ CV_IMPL void
|
||||
cvReleaseMemStorage( CvMemStorage** storage )
|
||||
{
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
CvMemStorage* st = *storage;
|
||||
*storage = 0;
|
||||
@ -197,7 +197,7 @@ CV_IMPL void
|
||||
cvClearMemStorage( CvMemStorage * storage )
|
||||
{
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( storage->parent )
|
||||
icvDestroyMemStorage( storage );
|
||||
@ -215,7 +215,7 @@ static void
|
||||
icvGoNextMemBlock( CvMemStorage * storage )
|
||||
{
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( !storage->top || !storage->top->next )
|
||||
{
|
||||
@ -273,7 +273,7 @@ CV_IMPL void
|
||||
cvSaveMemStoragePos( const CvMemStorage * storage, CvMemStoragePos * pos )
|
||||
{
|
||||
if( !storage || !pos )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
pos->top = storage->top;
|
||||
pos->free_space = storage->free_space;
|
||||
@ -285,9 +285,9 @@ CV_IMPL void
|
||||
cvRestoreMemStoragePos( CvMemStorage * storage, CvMemStoragePos * pos )
|
||||
{
|
||||
if( !storage || !pos )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
if( pos->free_space > storage->block_size )
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
CV_Error( cv::Error::StsBadSize, "" );
|
||||
|
||||
/*
|
||||
// this breaks icvGoNextMemBlock, so comment it off for now
|
||||
@ -324,10 +324,10 @@ cvMemStorageAlloc( CvMemStorage* storage, size_t size )
|
||||
{
|
||||
schar *ptr = 0;
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL storage pointer" );
|
||||
|
||||
if( size > INT_MAX )
|
||||
CV_Error( CV_StsOutOfRange, "Too large memory block is requested" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Too large memory block is requested" );
|
||||
|
||||
CV_Assert( storage->free_space % CV_STRUCT_ALIGN == 0 );
|
||||
|
||||
@ -335,7 +335,7 @@ cvMemStorageAlloc( CvMemStorage* storage, size_t size )
|
||||
{
|
||||
size_t max_free_space = cvAlignLeft(storage->block_size - sizeof(CvMemBlock), CV_STRUCT_ALIGN);
|
||||
if( max_free_space < size )
|
||||
CV_Error( CV_StsOutOfRange, "requested size is negative or too big" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "requested size is negative or too big" );
|
||||
|
||||
icvGoNextMemBlock( storage );
|
||||
}
|
||||
@ -374,9 +374,9 @@ cvCreateSeq( int seq_flags, size_t header_size, size_t elem_size, CvMemStorage*
|
||||
CvSeq *seq = 0;
|
||||
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
if( header_size < sizeof( CvSeq ) || elem_size <= 0 )
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
CV_Error( cv::Error::StsBadSize, "" );
|
||||
|
||||
/* allocate sequence header */
|
||||
seq = (CvSeq*)cvMemStorageAlloc( storage, header_size );
|
||||
@ -390,7 +390,7 @@ cvCreateSeq( int seq_flags, size_t header_size, size_t elem_size, CvMemStorage*
|
||||
|
||||
if( elemtype != CV_SEQ_ELTYPE_GENERIC && elemtype != CV_SEQ_ELTYPE_PTR &&
|
||||
typesize != 0 && typesize != (int)elem_size )
|
||||
CV_Error( CV_StsBadSize,
|
||||
CV_Error( cv::Error::StsBadSize,
|
||||
"Specified element size doesn't match to the size of the specified element type "
|
||||
"(try to use 0 for element type)" );
|
||||
}
|
||||
@ -412,9 +412,9 @@ cvSetSeqBlockSize( CvSeq *seq, int delta_elements )
|
||||
int useful_block_size;
|
||||
|
||||
if( !seq || !seq->storage )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
if( delta_elements < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
|
||||
useful_block_size = cvAlignLeft(seq->storage->block_size - sizeof(CvMemBlock) -
|
||||
sizeof(CvSeqBlock), CV_STRUCT_ALIGN);
|
||||
@ -429,7 +429,7 @@ cvSetSeqBlockSize( CvSeq *seq, int delta_elements )
|
||||
{
|
||||
delta_elements = useful_block_size / elem_size;
|
||||
if( delta_elements == 0 )
|
||||
CV_Error( CV_StsOutOfRange, "Storage block size is too small "
|
||||
CV_Error( cv::Error::StsOutOfRange, "Storage block size is too small "
|
||||
"to fit the sequence elements" );
|
||||
}
|
||||
|
||||
@ -487,7 +487,7 @@ cvSeqElemIdx( const CvSeq* seq, const void* _element, CvSeqBlock** _block )
|
||||
CvSeqBlock *block;
|
||||
|
||||
if( !seq || !element )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
block = first_block = seq->first;
|
||||
elem_size = seq->elem_size;
|
||||
@ -548,7 +548,7 @@ cvCvtSeqToArray( const CvSeq *seq, void *array, CvSlice slice )
|
||||
char *dst = (char*)array;
|
||||
|
||||
if( !seq || !array )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
elem_size = seq->elem_size;
|
||||
total = cvSliceLength( slice, seq )*elem_size;
|
||||
@ -587,10 +587,10 @@ cvMakeSeqHeaderForArray( int seq_flags, int header_size, int elem_size,
|
||||
CvSeq* result = 0;
|
||||
|
||||
if( elem_size <= 0 || header_size < (int)sizeof( CvSeq ) || total < 0 )
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
CV_Error( cv::Error::StsBadSize, "" );
|
||||
|
||||
if( !seq || ((!array || !block) && total > 0) )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
memset( seq, 0, header_size );
|
||||
|
||||
@ -602,7 +602,7 @@ cvMakeSeqHeaderForArray( int seq_flags, int header_size, int elem_size,
|
||||
|
||||
if( elemtype != CV_SEQ_ELTYPE_GENERIC &&
|
||||
typesize != 0 && typesize != elem_size )
|
||||
CV_Error( CV_StsBadSize,
|
||||
CV_Error( cv::Error::StsBadSize,
|
||||
"Element size doesn't match to the size of predefined element type "
|
||||
"(try to use 0 for sequence element type)" );
|
||||
}
|
||||
@ -634,7 +634,7 @@ icvGrowSeq( CvSeq *seq, int in_front_of )
|
||||
CvSeqBlock *block;
|
||||
|
||||
if( !seq )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
block = seq->free_blocks;
|
||||
|
||||
if( !block )
|
||||
@ -647,7 +647,7 @@ icvGrowSeq( CvSeq *seq, int in_front_of )
|
||||
cvSetSeqBlockSize( seq, delta_elems*2 );
|
||||
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "The sequence has NULL storage pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "The sequence has NULL storage pointer" );
|
||||
|
||||
/* If there is a free space just after last allocated block
|
||||
and it is big enough then enlarge the last block.
|
||||
@ -817,7 +817,7 @@ CV_IMPL void
|
||||
cvStartAppendToSeq( CvSeq *seq, CvSeqWriter * writer )
|
||||
{
|
||||
if( !seq || !writer )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
memset( writer, 0, sizeof( *writer ));
|
||||
writer->header_size = sizeof( CvSeqWriter );
|
||||
@ -835,7 +835,7 @@ cvStartWriteSeq( int seq_flags, int header_size,
|
||||
int elem_size, CvMemStorage * storage, CvSeqWriter * writer )
|
||||
{
|
||||
if( !storage || !writer )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
CvSeq* seq = cvCreateSeq( seq_flags, header_size, elem_size, storage );
|
||||
cvStartAppendToSeq( seq, writer );
|
||||
@ -847,7 +847,7 @@ CV_IMPL void
|
||||
cvFlushSeqWriter( CvSeqWriter * writer )
|
||||
{
|
||||
if( !writer )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
CvSeq* seq = writer->seq;
|
||||
seq->ptr = writer->ptr;
|
||||
@ -878,7 +878,7 @@ CV_IMPL CvSeq *
|
||||
cvEndWriteSeq( CvSeqWriter * writer )
|
||||
{
|
||||
if( !writer )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
cvFlushSeqWriter( writer );
|
||||
CvSeq* seq = writer->seq;
|
||||
@ -909,7 +909,7 @@ CV_IMPL void
|
||||
cvCreateSeqBlock( CvSeqWriter * writer )
|
||||
{
|
||||
if( !writer || !writer->seq )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
CvSeq* seq = writer->seq;
|
||||
|
||||
@ -942,7 +942,7 @@ cvStartReadSeq( const CvSeq *seq, CvSeqReader * reader, int reverse )
|
||||
}
|
||||
|
||||
if( !seq || !reader )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
reader->header_size = sizeof( CvSeqReader );
|
||||
reader->seq = (CvSeq*)seq;
|
||||
@ -992,7 +992,7 @@ cvChangeSeqBlock( void* _reader, int direction )
|
||||
CvSeqReader* reader = (CvSeqReader*)_reader;
|
||||
|
||||
if( !reader )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( direction > 0 )
|
||||
{
|
||||
@ -1017,7 +1017,7 @@ cvGetSeqReaderPos( CvSeqReader* reader )
|
||||
int index = -1;
|
||||
|
||||
if( !reader || !reader->ptr )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
elem_size = reader->seq->elem_size;
|
||||
if( elem_size <= ICV_SHIFT_TAB_MAX && (index = icvPower2ShiftTab[elem_size - 1]) >= 0 )
|
||||
@ -1042,7 +1042,7 @@ cvSetSeqReaderPos( CvSeqReader* reader, int index, int is_relative )
|
||||
int elem_size, count, total;
|
||||
|
||||
if( !reader || !reader->seq )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
total = reader->seq->total;
|
||||
elem_size = reader->seq->elem_size;
|
||||
@ -1052,14 +1052,14 @@ cvSetSeqReaderPos( CvSeqReader* reader, int index, int is_relative )
|
||||
if( index < 0 )
|
||||
{
|
||||
if( index < -total )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
index += total;
|
||||
}
|
||||
else if( index >= total )
|
||||
{
|
||||
index -= total;
|
||||
if( index >= total )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
}
|
||||
|
||||
block = reader->seq->first;
|
||||
@ -1135,7 +1135,7 @@ cvSeqPush( CvSeq *seq, const void *element )
|
||||
size_t elem_size;
|
||||
|
||||
if( !seq )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
elem_size = seq->elem_size;
|
||||
ptr = seq->ptr;
|
||||
@ -1166,9 +1166,9 @@ cvSeqPop( CvSeq *seq, void *element )
|
||||
int elem_size;
|
||||
|
||||
if( !seq )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
if( seq->total <= 0 )
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
CV_Error( cv::Error::StsBadSize, "" );
|
||||
|
||||
elem_size = seq->elem_size;
|
||||
seq->ptr = ptr = seq->ptr - elem_size;
|
||||
@ -1195,7 +1195,7 @@ cvSeqPushFront( CvSeq *seq, const void *element )
|
||||
CvSeqBlock *block;
|
||||
|
||||
if( !seq )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
elem_size = seq->elem_size;
|
||||
block = seq->first;
|
||||
@ -1228,9 +1228,9 @@ cvSeqPopFront( CvSeq *seq, void *element )
|
||||
CvSeqBlock *block;
|
||||
|
||||
if( !seq )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
if( seq->total <= 0 )
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
CV_Error( cv::Error::StsBadSize, "" );
|
||||
|
||||
elem_size = seq->elem_size;
|
||||
block = seq->first;
|
||||
@ -1257,14 +1257,14 @@ cvSeqInsert( CvSeq *seq, int before_index, const void *element )
|
||||
schar* ret_ptr = 0;
|
||||
|
||||
if( !seq )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
total = seq->total;
|
||||
before_index += before_index < 0 ? total : 0;
|
||||
before_index -= before_index > total ? total : 0;
|
||||
|
||||
if( (unsigned)before_index > (unsigned)total )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
|
||||
if( before_index == total )
|
||||
{
|
||||
@ -1375,7 +1375,7 @@ cvSeqRemove( CvSeq *seq, int index )
|
||||
int total, front = 0;
|
||||
|
||||
if( !seq )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
total = seq->total;
|
||||
|
||||
@ -1383,7 +1383,7 @@ cvSeqRemove( CvSeq *seq, int index )
|
||||
index -= index >= total ? total : 0;
|
||||
|
||||
if( (unsigned) index >= (unsigned) total )
|
||||
CV_Error( CV_StsOutOfRange, "Invalid index" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Invalid index" );
|
||||
|
||||
if( index == total - 1 )
|
||||
{
|
||||
@ -1456,9 +1456,9 @@ cvSeqPushMulti( CvSeq *seq, const void *_elements, int count, int front )
|
||||
char *elements = (char *) _elements;
|
||||
|
||||
if( !seq )
|
||||
CV_Error( CV_StsNullPtr, "NULL sequence pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL sequence pointer" );
|
||||
if( count < 0 )
|
||||
CV_Error( CV_StsBadSize, "number of removed elements is negative" );
|
||||
CV_Error( cv::Error::StsBadSize, "number of removed elements is negative" );
|
||||
|
||||
int elem_size = seq->elem_size;
|
||||
|
||||
@ -1525,9 +1525,9 @@ cvSeqPopMulti( CvSeq *seq, void *_elements, int count, int front )
|
||||
char *elements = (char *) _elements;
|
||||
|
||||
if( !seq )
|
||||
CV_Error( CV_StsNullPtr, "NULL sequence pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL sequence pointer" );
|
||||
if( count < 0 )
|
||||
CV_Error( CV_StsBadSize, "number of removed elements is negative" );
|
||||
CV_Error( cv::Error::StsBadSize, "number of removed elements is negative" );
|
||||
|
||||
count = MIN( count, seq->total );
|
||||
|
||||
@ -1593,7 +1593,7 @@ CV_IMPL void
|
||||
cvClearSeq( CvSeq *seq )
|
||||
{
|
||||
if( !seq )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
cvSeqPopMulti( seq, 0, seq->total );
|
||||
}
|
||||
|
||||
@ -1607,13 +1607,13 @@ cvSeqSlice( const CvSeq* seq, CvSlice slice, CvMemStorage* storage, int copy_dat
|
||||
CvSeqBlock *block, *first_block = 0, *last_block = 0;
|
||||
|
||||
if( !CV_IS_SEQ(seq) )
|
||||
CV_Error( CV_StsBadArg, "Invalid sequence header" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid sequence header" );
|
||||
|
||||
if( !storage )
|
||||
{
|
||||
storage = seq->storage;
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL storage pointer" );
|
||||
}
|
||||
|
||||
elem_size = seq->elem_size;
|
||||
@ -1624,7 +1624,7 @@ cvSeqSlice( const CvSeq* seq, CvSlice slice, CvMemStorage* storage, int copy_dat
|
||||
slice.start_index -= seq->total;
|
||||
if( (unsigned)length > (unsigned)seq->total ||
|
||||
((unsigned)slice.start_index >= (unsigned)seq->total && length != 0) )
|
||||
CV_Error( CV_StsOutOfRange, "Bad sequence slice" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Bad sequence slice" );
|
||||
|
||||
subseq = cvCreateSeq( seq->flags, seq->header_size, elem_size, storage );
|
||||
|
||||
@ -1680,7 +1680,7 @@ cvSeqRemoveSlice( CvSeq* seq, CvSlice slice )
|
||||
int total, length;
|
||||
|
||||
if( !CV_IS_SEQ(seq) )
|
||||
CV_Error( CV_StsBadArg, "Invalid sequence header" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid sequence header" );
|
||||
|
||||
length = cvSliceLength( slice, seq );
|
||||
total = seq->total;
|
||||
@ -1691,7 +1691,7 @@ cvSeqRemoveSlice( CvSeq* seq, CvSlice slice )
|
||||
slice.start_index -= total;
|
||||
|
||||
if( (unsigned)slice.start_index >= (unsigned)total )
|
||||
CV_Error( CV_StsOutOfRange, "start slice index is out of range" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "start slice index is out of range" );
|
||||
|
||||
slice.end_index = slice.start_index + length;
|
||||
|
||||
@ -1757,16 +1757,16 @@ cvSeqInsertSlice( CvSeq* seq, int index, const CvArr* from_arr )
|
||||
CvSeqBlock block;
|
||||
|
||||
if( !CV_IS_SEQ(seq) )
|
||||
CV_Error( CV_StsBadArg, "Invalid destination sequence header" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid destination sequence header" );
|
||||
|
||||
if( !CV_IS_SEQ(from))
|
||||
{
|
||||
CvMat* mat = (CvMat*)from;
|
||||
if( !CV_IS_MAT(mat))
|
||||
CV_Error( CV_StsBadArg, "Source is not a sequence nor matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "Source is not a sequence nor matrix" );
|
||||
|
||||
if( !CV_IS_MAT_CONT(mat->type) || (mat->rows != 1 && mat->cols != 1) )
|
||||
CV_Error( CV_StsBadArg, "The source array must be 1d continuous vector" );
|
||||
CV_Error( cv::Error::StsBadArg, "The source array must be 1d continuous vector" );
|
||||
|
||||
from = cvMakeSeqHeaderForArray( CV_SEQ_KIND_GENERIC, sizeof(from_header),
|
||||
CV_ELEM_SIZE(mat->type),
|
||||
@ -1775,7 +1775,7 @@ cvSeqInsertSlice( CvSeq* seq, int index, const CvArr* from_arr )
|
||||
}
|
||||
|
||||
if( seq->elem_size != from->elem_size )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
CV_Error( cv::Error::StsUnmatchedSizes,
|
||||
"Source and destination sequence element sizes are different." );
|
||||
|
||||
from_total = from->total;
|
||||
@ -1788,7 +1788,7 @@ cvSeqInsertSlice( CvSeq* seq, int index, const CvArr* from_arr )
|
||||
index -= index > total ? total : 0;
|
||||
|
||||
if( (unsigned)index > (unsigned)total )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
|
||||
elem_size = seq->elem_size;
|
||||
|
||||
@ -1918,10 +1918,10 @@ cvSeqSort( CvSeq* seq, CvCmpFunc cmp_func, void* aux )
|
||||
stack[48];
|
||||
|
||||
if( !CV_IS_SEQ(seq) )
|
||||
CV_Error( !seq ? CV_StsNullPtr : CV_StsBadArg, "Bad input sequence" );
|
||||
CV_Error( !seq ? cv::Error::StsNullPtr : cv::Error::StsBadArg, "Bad input sequence" );
|
||||
|
||||
if( !cmp_func )
|
||||
CV_Error( CV_StsNullPtr, "Null compare function" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Null compare function" );
|
||||
|
||||
if( seq->total <= 1 )
|
||||
return;
|
||||
@ -2195,10 +2195,10 @@ cvSeqSearch( CvSeq* seq, const void* _elem, CvCmpFunc cmp_func,
|
||||
*_idx = idx;
|
||||
|
||||
if( !CV_IS_SEQ(seq) )
|
||||
CV_Error( !seq ? CV_StsNullPtr : CV_StsBadArg, "Bad input sequence" );
|
||||
CV_Error( !seq ? cv::Error::StsNullPtr : cv::Error::StsBadArg, "Bad input sequence" );
|
||||
|
||||
if( !elem )
|
||||
CV_Error( CV_StsNullPtr, "Null element pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Null element pointer" );
|
||||
|
||||
int elem_size = seq->elem_size;
|
||||
int total = seq->total;
|
||||
@ -2256,7 +2256,7 @@ cvSeqSearch( CvSeq* seq, const void* _elem, CvCmpFunc cmp_func,
|
||||
else
|
||||
{
|
||||
if( !cmp_func )
|
||||
CV_Error( CV_StsNullPtr, "Null compare function" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Null compare function" );
|
||||
|
||||
i = 0, j = total;
|
||||
|
||||
@ -2340,16 +2340,16 @@ cvSeqPartition( const CvSeq* seq, CvMemStorage* storage, CvSeq** labels,
|
||||
int is_set;
|
||||
|
||||
if( !labels )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( !seq || !is_equal )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( !storage )
|
||||
storage = seq->storage;
|
||||
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
is_set = CV_IS_SET(seq);
|
||||
|
||||
@ -2483,11 +2483,11 @@ CV_IMPL CvSet*
|
||||
cvCreateSet( int set_flags, int header_size, int elem_size, CvMemStorage * storage )
|
||||
{
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
if( header_size < (int)sizeof( CvSet ) ||
|
||||
elem_size < (int)sizeof(void*)*2 ||
|
||||
(elem_size & (sizeof(void*)-1)) != 0 )
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
CV_Error( cv::Error::StsBadSize, "" );
|
||||
|
||||
CvSet* set = (CvSet*) cvCreateSeq( set_flags, header_size, elem_size, storage );
|
||||
set->flags = (set->flags & ~CV_MAGIC_MASK) | CV_SET_MAGIC_VAL;
|
||||
@ -2504,7 +2504,7 @@ cvSetAdd( CvSet* set, CvSetElem* element, CvSetElem** inserted_element )
|
||||
CvSetElem *free_elem;
|
||||
|
||||
if( !set )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( !(set->free_elems) )
|
||||
{
|
||||
@ -2552,7 +2552,7 @@ cvSetRemove( CvSet* set, int index )
|
||||
if( elem )
|
||||
cvSetRemoveByPtr( set, elem );
|
||||
else if( !set )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
}
|
||||
|
||||
|
||||
@ -2583,7 +2583,7 @@ cvCreateGraph( int graph_type, int header_size,
|
||||
|| edge_size < (int) sizeof( CvGraphEdge )
|
||||
|| vtx_size < (int) sizeof( CvGraphVtx )
|
||||
){
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
CV_Error( cv::Error::StsBadSize, "" );
|
||||
}
|
||||
|
||||
vertices = cvCreateSet( graph_type, header_size, vtx_size, storage );
|
||||
@ -2602,7 +2602,7 @@ CV_IMPL void
|
||||
cvClearGraph( CvGraph * graph )
|
||||
{
|
||||
if( !graph )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
cvClearSet( graph->edges );
|
||||
cvClearSet( (CvSet*)graph );
|
||||
@ -2617,7 +2617,7 @@ cvGraphAddVtx( CvGraph* graph, const CvGraphVtx* _vertex, CvGraphVtx** _inserted
|
||||
int index = -1;
|
||||
|
||||
if( !graph )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
vertex = (CvGraphVtx*)cvSetNew((CvSet*)graph);
|
||||
if( vertex )
|
||||
@ -2642,10 +2642,10 @@ cvGraphRemoveVtxByPtr( CvGraph* graph, CvGraphVtx* vtx )
|
||||
int count = -1;
|
||||
|
||||
if( !graph || !vtx )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( !CV_IS_SET_ELEM(vtx))
|
||||
CV_Error( CV_StsBadArg, "The vertex does not belong to the graph" );
|
||||
CV_Error( cv::Error::StsBadArg, "The vertex does not belong to the graph" );
|
||||
|
||||
count = graph->edges->active_count;
|
||||
for( ;; )
|
||||
@ -2670,11 +2670,11 @@ cvGraphRemoveVtx( CvGraph* graph, int index )
|
||||
CvGraphVtx *vtx = 0;
|
||||
|
||||
if( !graph )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
vtx = cvGetGraphVtx( graph, index );
|
||||
if( !vtx )
|
||||
CV_Error( CV_StsBadArg, "The vertex is not found" );
|
||||
CV_Error( cv::Error::StsBadArg, "The vertex is not found" );
|
||||
|
||||
count = graph->edges->active_count;
|
||||
for( ;; )
|
||||
@ -2702,7 +2702,7 @@ cvFindGraphEdgeByPtr( const CvGraph* graph,
|
||||
int ofs = 0;
|
||||
|
||||
if( !graph || !start_vtx || !end_vtx )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( start_vtx == end_vtx )
|
||||
return 0;
|
||||
@ -2735,7 +2735,7 @@ cvFindGraphEdge( const CvGraph* graph, int start_idx, int end_idx )
|
||||
CvGraphVtx *end_vtx;
|
||||
|
||||
if( !graph )
|
||||
CV_Error( CV_StsNullPtr, "graph pointer is NULL" );
|
||||
CV_Error( cv::Error::StsNullPtr, "graph pointer is NULL" );
|
||||
|
||||
start_vtx = cvGetGraphVtx( graph, start_idx );
|
||||
end_vtx = cvGetGraphVtx( graph, end_idx );
|
||||
@ -2759,7 +2759,7 @@ cvGraphAddEdgeByPtr( CvGraph* graph,
|
||||
int delta;
|
||||
|
||||
if( !graph )
|
||||
CV_Error( CV_StsNullPtr, "graph pointer is NULL" );
|
||||
CV_Error( cv::Error::StsNullPtr, "graph pointer is NULL" );
|
||||
|
||||
if( !CV_IS_GRAPH_ORIENTED( graph ) &&
|
||||
(start_vtx->flags & CV_SET_ELEM_IDX_MASK) > (end_vtx->flags & CV_SET_ELEM_IDX_MASK) )
|
||||
@ -2778,7 +2778,7 @@ cvGraphAddEdgeByPtr( CvGraph* graph,
|
||||
}
|
||||
|
||||
if( start_vtx == end_vtx )
|
||||
CV_Error( start_vtx ? CV_StsBadArg : CV_StsNullPtr,
|
||||
CV_Error( start_vtx ? cv::Error::StsBadArg : cv::Error::StsNullPtr,
|
||||
"vertex pointers coincide (or set to NULL)" );
|
||||
|
||||
edge = (CvGraphEdge*)cvSetNew( (CvSet*)(graph->edges) );
|
||||
@ -2826,7 +2826,7 @@ cvGraphAddEdge( CvGraph* graph,
|
||||
CvGraphVtx *end_vtx;
|
||||
|
||||
if( !graph )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
start_vtx = cvGetGraphVtx( graph, start_idx );
|
||||
end_vtx = cvGetGraphVtx( graph, end_idx );
|
||||
@ -2843,7 +2843,7 @@ cvGraphRemoveEdgeByPtr( CvGraph* graph, CvGraphVtx* start_vtx, CvGraphVtx* end_v
|
||||
CvGraphEdge *edge, *next_edge, *prev_edge;
|
||||
|
||||
if( !graph || !start_vtx || !end_vtx )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( start_vtx == end_vtx )
|
||||
return;
|
||||
@ -2902,7 +2902,7 @@ cvGraphRemoveEdge( CvGraph* graph, int start_idx, int end_idx )
|
||||
CvGraphVtx *end_vtx;
|
||||
|
||||
if( !graph )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
start_vtx = cvGetGraphVtx( graph, start_idx );
|
||||
end_vtx = cvGetGraphVtx( graph, end_idx );
|
||||
@ -2919,7 +2919,7 @@ cvGraphVtxDegreeByPtr( const CvGraph* graph, const CvGraphVtx* vertex )
|
||||
int count;
|
||||
|
||||
if( !graph || !vertex )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
for( edge = vertex->first, count = 0; edge; )
|
||||
{
|
||||
@ -2940,11 +2940,11 @@ cvGraphVtxDegree( const CvGraph* graph, int vtx_idx )
|
||||
int count;
|
||||
|
||||
if( !graph )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
vertex = cvGetGraphVtx( graph, vtx_idx );
|
||||
if( !vertex )
|
||||
CV_Error( CV_StsObjectNotFound, "" );
|
||||
CV_Error( cv::Error::StsObjectNotFound, "" );
|
||||
|
||||
for( edge = vertex->first, count = 0; edge; )
|
||||
{
|
||||
@ -2971,13 +2971,13 @@ icvSeqElemsClearFlags( CvSeq* seq, int offset, int clear_mask )
|
||||
int i, total, elem_size;
|
||||
|
||||
if( !seq )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
elem_size = seq->elem_size;
|
||||
total = seq->total;
|
||||
|
||||
if( (unsigned)offset > (unsigned)elem_size )
|
||||
CV_Error( CV_StsBadArg, "" );
|
||||
CV_Error( cv::Error::StsBadArg, "" );
|
||||
|
||||
cvStartReadSeq( seq, &reader );
|
||||
|
||||
@ -3001,14 +3001,14 @@ icvSeqFindNextElem( CvSeq* seq, int offset, int mask,
|
||||
int total, elem_size, index;
|
||||
|
||||
if( !seq || !start_index )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
elem_size = seq->elem_size;
|
||||
total = seq->total;
|
||||
index = *start_index;
|
||||
|
||||
if( (unsigned)offset > (unsigned)elem_size )
|
||||
CV_Error( CV_StsBadArg, "" );
|
||||
CV_Error( cv::Error::StsBadArg, "" );
|
||||
|
||||
if( total == 0 )
|
||||
return 0;
|
||||
@ -3048,7 +3048,7 @@ CV_IMPL CvGraphScanner*
|
||||
cvCreateGraphScanner( CvGraph* graph, CvGraphVtx* vtx, int mask )
|
||||
{
|
||||
if( !graph )
|
||||
CV_Error( CV_StsNullPtr, "Null graph pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Null graph pointer" );
|
||||
|
||||
CV_Assert( graph->storage != 0 );
|
||||
|
||||
@ -3082,7 +3082,7 @@ CV_IMPL void
|
||||
cvReleaseGraphScanner( CvGraphScanner** scanner )
|
||||
{
|
||||
if( !scanner )
|
||||
CV_Error( CV_StsNullPtr, "Null double pointer to graph scanner" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Null double pointer to graph scanner" );
|
||||
|
||||
if( *scanner )
|
||||
{
|
||||
@ -3103,7 +3103,7 @@ cvNextGraphItem( CvGraphScanner* scanner )
|
||||
CvGraphItem item;
|
||||
|
||||
if( !scanner || !(scanner->stack))
|
||||
CV_Error( CV_StsNullPtr, "Null graph scanner" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Null graph scanner" );
|
||||
|
||||
dst = scanner->dst;
|
||||
vtx = scanner->vtx;
|
||||
@ -3259,13 +3259,13 @@ cvCloneGraph( const CvGraph* graph, CvMemStorage* storage )
|
||||
CvSeqReader reader;
|
||||
|
||||
if( !CV_IS_GRAPH(graph))
|
||||
CV_Error( CV_StsBadArg, "Invalid graph pointer" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid graph pointer" );
|
||||
|
||||
if( !storage )
|
||||
storage = graph->storage;
|
||||
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL storage pointer" );
|
||||
|
||||
vtx_size = graph->elem_size;
|
||||
edge_size = graph->edges->elem_size;
|
||||
@ -3343,7 +3343,7 @@ cvTreeToNodeSeq( const void* first, int header_size, CvMemStorage* storage )
|
||||
CvTreeNodeIterator iterator;
|
||||
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL storage pointer" );
|
||||
|
||||
allseq = cvCreateSeq( 0, header_size, sizeof(first), storage );
|
||||
|
||||
@ -3389,7 +3389,7 @@ cvInsertNodeIntoTree( void* _node, void* _parent, void* _frame )
|
||||
CvTreeNode* parent = (CvTreeNode*)_parent;
|
||||
|
||||
if( !node || !parent )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
node->v_prev = _parent != _frame ? parent : 0;
|
||||
node->h_next = parent->v_next;
|
||||
@ -3410,10 +3410,10 @@ cvRemoveNodeFromTree( void* _node, void* _frame )
|
||||
CvTreeNode* frame = (CvTreeNode*)_frame;
|
||||
|
||||
if( !node )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( node == frame )
|
||||
CV_Error( CV_StsBadArg, "frame node could not be deleted" );
|
||||
CV_Error( cv::Error::StsBadArg, "frame node could not be deleted" );
|
||||
|
||||
if( node->h_next )
|
||||
node->h_next->h_prev = node->h_prev;
|
||||
@ -3440,10 +3440,10 @@ cvInitTreeNodeIterator( CvTreeNodeIterator* treeIterator,
|
||||
const void* first, int max_level )
|
||||
{
|
||||
if( !treeIterator || !first )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( max_level < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
|
||||
treeIterator->node = (void*)first;
|
||||
treeIterator->level = 0;
|
||||
@ -3459,7 +3459,7 @@ cvNextTreeNode( CvTreeNodeIterator* treeIterator )
|
||||
int level;
|
||||
|
||||
if( !treeIterator )
|
||||
CV_Error( CV_StsNullPtr, "NULL iterator pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL iterator pointer" );
|
||||
|
||||
prevNode = node = (CvTreeNode*)treeIterator->node;
|
||||
level = treeIterator->level;
|
||||
@ -3500,7 +3500,7 @@ cvPrevTreeNode( CvTreeNodeIterator* treeIterator )
|
||||
int level;
|
||||
|
||||
if( !treeIterator )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
prevNode = node = (CvTreeNode*)treeIterator->node;
|
||||
level = treeIterator->level;
|
||||
|
@ -3469,7 +3469,7 @@ Ptr<DFT2D> DFT2D::create(int width, int height, int depth,
|
||||
{
|
||||
if(width == 1 && nonzero_rows > 0 )
|
||||
{
|
||||
CV_Error( CV_StsNotImplemented,
|
||||
CV_Error( cv::Error::StsNotImplemented,
|
||||
"This mode (using nonzero_rows with a single-column matrix) breaks the function's logic, so it is prohibited.\n"
|
||||
"For fast convolution/correlation use 2-column matrix or single-row matrix instead" );
|
||||
}
|
||||
@ -4317,7 +4317,7 @@ public:
|
||||
if( len != prev_len )
|
||||
{
|
||||
if( len > 1 && (len & 1) )
|
||||
CV_Error( CV_StsNotImplemented, "Odd-size DCT\'s are not implemented" );
|
||||
CV_Error( cv::Error::StsNotImplemented, "Odd-size DCT\'s are not implemented" );
|
||||
|
||||
opt.nf = DFTFactorize( len, opt.factors );
|
||||
bool inplace_transform = opt.factors[0] == opt.factors[opt.nf-1];
|
||||
|
@ -276,7 +276,7 @@ static void glob_rec(const cv::String& directory, const cv::String& wildchart, s
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error_(CV_StsObjectNotFound, ("could not open directory: %s", directory.c_str()));
|
||||
CV_Error_(cv::Error::StsObjectNotFound, ("could not open directory: %s", directory.c_str()));
|
||||
}
|
||||
}
|
||||
#endif // OPENCV_HAVE_FILESYSTEM_SUPPORT
|
||||
|
@ -1191,7 +1191,7 @@ bool solve( InputArray _src, InputArray _src2arg, OutputArray _dst, int method )
|
||||
Mat dst = _dst.getMat();
|
||||
|
||||
if( m < n )
|
||||
CV_Error(CV_StsBadArg, "The function can not solve under-determined linear systems" );
|
||||
CV_Error(cv::Error::StsBadArg, "The function can not solve under-determined linear systems" );
|
||||
|
||||
if( m == n )
|
||||
is_normal = false;
|
||||
@ -1515,7 +1515,7 @@ void SVD::backSubst( InputArray _w, InputArray _u, InputArray _vt,
|
||||
vt.ptr<double>(), vt.step, true, rhs.ptr<double>(), rhs.step, nb,
|
||||
dst.ptr<double>(), dst.step, buffer.data());
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "" );
|
||||
}
|
||||
|
||||
|
||||
|
@ -1566,7 +1566,7 @@ bool checkRange(InputArray _src, bool quiet, Point* pt, double minVal, double ma
|
||||
{
|
||||
cv::String value_str;
|
||||
value_str << src(cv::Range(badPt.y, badPt.y + 1), cv::Range(badPt.x, badPt.x + 1));
|
||||
CV_Error_( CV_StsOutOfRange,
|
||||
CV_Error_( cv::Error::StsOutOfRange,
|
||||
("the value at (%d, %d)=%s is out of range [%f, %f)", badPt.x, badPt.y, value_str.c_str(), minVal, maxVal));
|
||||
}
|
||||
return false;
|
||||
|
@ -921,7 +921,7 @@ void mulTransposed(InputArray _src, OutputArray _dst, bool ata,
|
||||
{
|
||||
MulTransposedFunc func = getMulTransposedFunc(stype, dtype, ata);
|
||||
if( !func )
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "" );
|
||||
|
||||
func( src, dst, delta, scale );
|
||||
completeSymm( dst, false );
|
||||
|
@ -267,7 +267,7 @@ void setSize( Mat& m, int _dims, const int* _sz, const size_t* _steps, bool auto
|
||||
m.step.p[i] = total;
|
||||
uint64 total1 = (uint64)total*s;
|
||||
if( (uint64)total1 != (size_t)total1 )
|
||||
CV_Error( CV_StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" );
|
||||
total = (size_t)total1;
|
||||
}
|
||||
}
|
||||
@ -1072,9 +1072,9 @@ void Mat::push_back(const Mat& elems)
|
||||
bool eq = size == elems.size;
|
||||
size.p[0] = int(r);
|
||||
if( !eq )
|
||||
CV_Error(CV_StsUnmatchedSizes, "Pushed vector length is not equal to matrix row length");
|
||||
CV_Error(cv::Error::StsUnmatchedSizes, "Pushed vector length is not equal to matrix row length");
|
||||
if( type() != elems.type() )
|
||||
CV_Error(CV_StsUnmatchedFormats, "Pushed vector type is not the same as matrix type");
|
||||
CV_Error(cv::Error::StsUnmatchedFormats, "Pushed vector type is not the same as matrix type");
|
||||
|
||||
if( isSubmatrix() || dataend + step.p[0]*delta > datalimit )
|
||||
reserve( std::max(r + delta, (r*3+1)/2) );
|
||||
@ -1170,16 +1170,16 @@ Mat Mat::reshape(int new_cn, int new_rows) const
|
||||
{
|
||||
int total_size = total_width * rows;
|
||||
if( !isContinuous() )
|
||||
CV_Error( CV_BadStep,
|
||||
CV_Error( cv::Error::BadStep,
|
||||
"The matrix is not continuous, thus its number of rows can not be changed" );
|
||||
|
||||
if( (unsigned)new_rows > (unsigned)total_size )
|
||||
CV_Error( CV_StsOutOfRange, "Bad new number of rows" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Bad new number of rows" );
|
||||
|
||||
total_width = total_size / new_rows;
|
||||
|
||||
if( total_width * new_rows != total_size )
|
||||
CV_Error( CV_StsBadArg, "The total number of matrix elements "
|
||||
CV_Error( cv::Error::StsBadArg, "The total number of matrix elements "
|
||||
"is not divisible by the new number of rows" );
|
||||
|
||||
hdr.rows = new_rows;
|
||||
@ -1189,7 +1189,7 @@ Mat Mat::reshape(int new_cn, int new_rows) const
|
||||
int new_width = total_width / new_cn;
|
||||
|
||||
if( new_width * new_cn != total_width )
|
||||
CV_Error( CV_BadNumChannels,
|
||||
CV_Error( cv::Error::BadNumChannels,
|
||||
"The total width is not divisible by the new number of channels" );
|
||||
|
||||
hdr.cols = new_width;
|
||||
@ -1231,13 +1231,13 @@ Mat Mat::reshape(int _cn, int _newndims, const int* _newsz) const
|
||||
else if (i < dims)
|
||||
newsz_buf[i] = this->size[i];
|
||||
else
|
||||
CV_Error(CV_StsOutOfRange, "Copy dimension (which has zero size) is not present in source matrix");
|
||||
CV_Error(cv::Error::StsOutOfRange, "Copy dimension (which has zero size) is not present in source matrix");
|
||||
|
||||
total_elem1 *= (size_t)newsz_buf[i];
|
||||
}
|
||||
|
||||
if (total_elem1 != total_elem1_ref)
|
||||
CV_Error(CV_StsUnmatchedSizes, "Requested and source matrices have different count of elements");
|
||||
CV_Error(cv::Error::StsUnmatchedSizes, "Requested and source matrices have different count of elements");
|
||||
|
||||
Mat hdr = *this;
|
||||
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((_cn-1) << CV_CN_SHIFT);
|
||||
@ -1246,7 +1246,7 @@ Mat Mat::reshape(int _cn, int _newndims, const int* _newsz) const
|
||||
return hdr;
|
||||
}
|
||||
|
||||
CV_Error(CV_StsNotImplemented, "Reshaping of n-dimensional non-continuous matrices is not supported yet");
|
||||
CV_Error(cv::Error::StsNotImplemented, "Reshaping of n-dimensional non-continuous matrices is not supported yet");
|
||||
// TBD
|
||||
}
|
||||
|
||||
|
@ -163,7 +163,7 @@ Mat cvarrToMat(const CvArr* arr, bool copyData,
|
||||
{
|
||||
const IplImage* iplimg = (const IplImage*)arr;
|
||||
if( coiMode == 0 && iplimg->roi && iplimg->roi->coi > 0 )
|
||||
CV_Error(CV_BadCOI, "COI is not supported by the function");
|
||||
CV_Error(cv::Error::BadCOI, "COI is not supported by the function");
|
||||
return iplImageToMat(iplimg, copyData);
|
||||
}
|
||||
if( CV_IS_SEQ(arr) )
|
||||
@ -187,7 +187,7 @@ Mat cvarrToMat(const CvArr* arr, bool copyData,
|
||||
cvCvtSeqToArray(seq, buf.ptr(), CV_WHOLE_SEQ);
|
||||
return buf;
|
||||
}
|
||||
CV_Error(CV_StsBadArg, "Unknown array type");
|
||||
CV_Error(cv::Error::StsBadArg, "Unknown array type");
|
||||
}
|
||||
|
||||
void extractImageCOI(const CvArr* arr, OutputArray _ch, int coi)
|
||||
@ -269,14 +269,14 @@ cvReduce( const CvArr* srcarr, CvArr* dstarr, int dim, int op )
|
||||
dim = src.rows > dst.rows ? 0 : src.cols > dst.cols ? 1 : dst.cols == 1;
|
||||
|
||||
if( dim > 1 )
|
||||
CV_Error( CV_StsOutOfRange, "The reduced dimensionality index is out of range" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "The reduced dimensionality index is out of range" );
|
||||
|
||||
if( (dim == 0 && (dst.cols != src.cols || dst.rows != 1)) ||
|
||||
(dim == 1 && (dst.rows != src.rows || dst.cols != 1)) )
|
||||
CV_Error( CV_StsBadSize, "The output array size is incorrect" );
|
||||
CV_Error( cv::Error::StsBadSize, "The output array size is incorrect" );
|
||||
|
||||
if( src.channels() != dst.channels() )
|
||||
CV_Error( CV_StsUnmatchedFormats, "Input and output arrays must have the same number of channels" );
|
||||
CV_Error( cv::Error::StsUnmatchedFormats, "Input and output arrays must have the same number of channels" );
|
||||
|
||||
cv::reduce(src, dst, dim, op, dst.type());
|
||||
}
|
||||
@ -333,7 +333,7 @@ cvRange( CvArr* arr, double start, double end )
|
||||
fdata[j] = (float)val;
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "The function only supports 32sC1 and 32fC1 datatypes" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "The function only supports 32sC1 and 32fC1 datatypes" );
|
||||
|
||||
return arr;
|
||||
}
|
||||
|
@ -21,7 +21,7 @@ static void checkOperandsExist(const Mat& a)
|
||||
{
|
||||
if (a.empty())
|
||||
{
|
||||
CV_Error(CV_StsBadArg, "Matrix operand is an empty matrix.");
|
||||
CV_Error(cv::Error::StsBadArg, "Matrix operand is an empty matrix.");
|
||||
}
|
||||
}
|
||||
|
||||
@ -29,7 +29,7 @@ static void checkOperandsExist(const Mat& a, const Mat& b)
|
||||
{
|
||||
if (a.empty() || b.empty())
|
||||
{
|
||||
CV_Error(CV_StsBadArg, "One or more matrix operands are empty.");
|
||||
CV_Error(cv::Error::StsBadArg, "One or more matrix operands are empty.");
|
||||
}
|
||||
}
|
||||
|
||||
@ -1456,7 +1456,7 @@ void MatOp_Bin::assign(const MatExpr& e, Mat& m, int _type) const
|
||||
else if( e.flags == 'a' && !e.b.data )
|
||||
cv::absdiff(e.a, e.s, dst);
|
||||
else
|
||||
CV_Error(CV_StsError, "Unknown operation");
|
||||
CV_Error(cv::Error::StsError, "Unknown operation");
|
||||
|
||||
if( dst.data != m.data )
|
||||
dst.convertTo(m, _type);
|
||||
@ -1691,7 +1691,7 @@ void MatOp_Initializer::assign(const MatExpr& e, Mat& m, int _type) const
|
||||
else if( e.flags == '1' )
|
||||
m = Scalar(e.alpha);
|
||||
else
|
||||
CV_Error(CV_StsError, "Invalid matrix initializer type");
|
||||
CV_Error(cv::Error::StsError, "Invalid matrix initializer type");
|
||||
}
|
||||
|
||||
void MatOp_Initializer::multiply(const MatExpr& e, double s, MatExpr& res) const
|
||||
|
@ -954,7 +954,7 @@ void cv::reduce(InputArray _src, OutputArray _dst, int dim, int op, int dtype)
|
||||
}
|
||||
|
||||
if( !func )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
CV_Error( cv::Error::StsUnsupportedFormat,
|
||||
"Unsupported combination of input and output array formats" );
|
||||
|
||||
func( src, temp );
|
||||
|
@ -758,7 +758,7 @@ double norm( const SparseMat& src, int normType )
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 32f and 64f are supported" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "Only 32f and 64f are supported" );
|
||||
|
||||
if( normType == NORM_L2 )
|
||||
result = std::sqrt(result);
|
||||
@ -821,7 +821,7 @@ void minMaxLoc( const SparseMat& src, double* _minval, double* _maxval, int* _mi
|
||||
*_maxval = maxval;
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 32f and 64f are supported" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "Only 32f and 64f are supported" );
|
||||
|
||||
if( _minidx && minidx )
|
||||
for( i = 0; i < d; i++ )
|
||||
@ -843,7 +843,7 @@ void normalize( const SparseMat& src, SparseMat& dst, double a, int norm_type )
|
||||
scale = scale > DBL_EPSILON ? a/scale : 0.;
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown/unsupported norm type" );
|
||||
|
||||
src.convertTo( dst, -1, scale );
|
||||
}
|
||||
|
@ -948,7 +948,7 @@ bool _InputArray::isContinuous(int i) const
|
||||
if( k == CUDA_GPU_MAT )
|
||||
return i < 0 ? ((const cuda::GpuMat*)obj)->isContinuous() : true;
|
||||
|
||||
CV_Error(CV_StsNotImplemented, "Unknown/unsupported array type");
|
||||
CV_Error(cv::Error::StsNotImplemented, "Unknown/unsupported array type");
|
||||
}
|
||||
|
||||
bool _InputArray::isSubmatrix(int i) const
|
||||
@ -986,7 +986,7 @@ bool _InputArray::isSubmatrix(int i) const
|
||||
return vv[i].isSubmatrix();
|
||||
}
|
||||
|
||||
CV_Error(CV_StsNotImplemented, "");
|
||||
CV_Error(cv::Error::StsNotImplemented, "");
|
||||
}
|
||||
|
||||
size_t _InputArray::offset(int i) const
|
||||
@ -1466,14 +1466,14 @@ void _OutputArray::create(int d, const int* sizes, int mtype, int i,
|
||||
((std::vector<Vec<int, 128> >*)v)->resize(len);
|
||||
break;
|
||||
default:
|
||||
CV_Error_(CV_StsBadArg, ("Vectors with element size %d are not supported. Please, modify OutputArray::create()\n", esz));
|
||||
CV_Error_(cv::Error::StsBadArg, ("Vectors with element size %d are not supported. Please, modify OutputArray::create()\n", esz));
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
if( k == NONE )
|
||||
{
|
||||
CV_Error(CV_StsNullPtr, "create() called for the missing output array" );
|
||||
CV_Error(cv::Error::StsNullPtr, "create() called for the missing output array" );
|
||||
}
|
||||
|
||||
if( k == STD_VECTOR_MAT )
|
||||
|
@ -1392,7 +1392,7 @@ void normalize(InputArray _src, InputOutputArray _dst, double a, double b,
|
||||
shift = 0;
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown/unsupported norm type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown/unsupported norm type" );
|
||||
|
||||
CV_OCL_RUN(_dst.isUMat(),
|
||||
ocl_normalize(_src, _dst, _mask, rtype, scale, shift))
|
||||
|
@ -574,7 +574,7 @@ void RNG::fill( InputOutputArray _mat, int disttype,
|
||||
CV_Assert( scaleFunc != 0 );
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown distribution type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown distribution type" );
|
||||
|
||||
const Mat* arrays[] = {&mat, 0};
|
||||
uchar* ptr;
|
||||
|
@ -1377,38 +1377,38 @@ CV_IMPL const char* cvErrorStr( int status )
|
||||
|
||||
switch (status)
|
||||
{
|
||||
case CV_StsOk : return "No Error";
|
||||
case CV_StsBackTrace : return "Backtrace";
|
||||
case CV_StsError : return "Unspecified error";
|
||||
case CV_StsInternal : return "Internal error";
|
||||
case CV_StsNoMem : return "Insufficient memory";
|
||||
case CV_StsBadArg : return "Bad argument";
|
||||
case CV_StsNoConv : return "Iterations do not converge";
|
||||
case CV_StsAutoTrace : return "Autotrace call";
|
||||
case CV_StsBadSize : return "Incorrect size of input array";
|
||||
case CV_StsNullPtr : return "Null pointer";
|
||||
case CV_StsDivByZero : return "Division by zero occurred";
|
||||
case CV_BadStep : return "Image step is wrong";
|
||||
case CV_StsInplaceNotSupported : return "Inplace operation is not supported";
|
||||
case CV_StsObjectNotFound : return "Requested object was not found";
|
||||
case CV_BadDepth : return "Input image depth is not supported by function";
|
||||
case CV_StsUnmatchedFormats : return "Formats of input arguments do not match";
|
||||
case CV_StsUnmatchedSizes : return "Sizes of input arguments do not match";
|
||||
case CV_StsOutOfRange : return "One of the arguments\' values is out of range";
|
||||
case CV_StsUnsupportedFormat : return "Unsupported format or combination of formats";
|
||||
case CV_BadCOI : return "Input COI is not supported";
|
||||
case CV_BadNumChannels : return "Bad number of channels";
|
||||
case CV_StsBadFlag : return "Bad flag (parameter or structure field)";
|
||||
case CV_StsBadPoint : return "Bad parameter of type CvPoint";
|
||||
case CV_StsBadMask : return "Bad type of mask argument";
|
||||
case CV_StsParseError : return "Parsing error";
|
||||
case CV_StsNotImplemented : return "The function/feature is not implemented";
|
||||
case CV_StsBadMemBlock : return "Memory block has been corrupted";
|
||||
case CV_StsAssert : return "Assertion failed";
|
||||
case CV_GpuNotSupported : return "No CUDA support";
|
||||
case CV_GpuApiCallError : return "Gpu API call";
|
||||
case CV_OpenGlNotSupported : return "No OpenGL support";
|
||||
case CV_OpenGlApiCallError : return "OpenGL API call";
|
||||
case cv::Error::StsOk : return "No Error";
|
||||
case cv::Error::StsBackTrace : return "Backtrace";
|
||||
case cv::Error::StsError : return "Unspecified error";
|
||||
case cv::Error::StsInternal : return "Internal error";
|
||||
case cv::Error::StsNoMem : return "Insufficient memory";
|
||||
case cv::Error::StsBadArg : return "Bad argument";
|
||||
case cv::Error::StsNoConv : return "Iterations do not converge";
|
||||
case cv::Error::StsAutoTrace : return "Autotrace call";
|
||||
case cv::Error::StsBadSize : return "Incorrect size of input array";
|
||||
case cv::Error::StsNullPtr : return "Null pointer";
|
||||
case cv::Error::StsDivByZero : return "Division by zero occurred";
|
||||
case cv::Error::BadStep : return "Image step is wrong";
|
||||
case cv::Error::StsInplaceNotSupported : return "Inplace operation is not supported";
|
||||
case cv::Error::StsObjectNotFound : return "Requested object was not found";
|
||||
case cv::Error::BadDepth : return "Input image depth is not supported by function";
|
||||
case cv::Error::StsUnmatchedFormats : return "Formats of input arguments do not match";
|
||||
case cv::Error::StsUnmatchedSizes : return "Sizes of input arguments do not match";
|
||||
case cv::Error::StsOutOfRange : return "One of the arguments\' values is out of range";
|
||||
case cv::Error::StsUnsupportedFormat : return "Unsupported format or combination of formats";
|
||||
case cv::Error::BadCOI : return "Input COI is not supported";
|
||||
case cv::Error::BadNumChannels : return "Bad number of channels";
|
||||
case cv::Error::StsBadFlag : return "Bad flag (parameter or structure field)";
|
||||
case cv::Error::StsBadPoint : return "Bad parameter of type CvPoint";
|
||||
case cv::Error::StsBadMask : return "Bad type of mask argument";
|
||||
case cv::Error::StsParseError : return "Parsing error";
|
||||
case cv::Error::StsNotImplemented : return "The function/feature is not implemented";
|
||||
case cv::Error::StsBadMemBlock : return "Memory block has been corrupted";
|
||||
case cv::Error::StsAssert : return "Assertion failed";
|
||||
case cv::Error::GpuNotSupported : return "No CUDA support";
|
||||
case cv::Error::GpuApiCallError : return "Gpu API call";
|
||||
case cv::Error::OpenGlNotSupported : return "No OpenGL support";
|
||||
case cv::Error::OpenGlApiCallError : return "OpenGL API call";
|
||||
};
|
||||
|
||||
snprintf(buf, sizeof(buf), "Unknown %s code %d", status >= 0 ? "status":"error", status);
|
||||
@ -1448,29 +1448,29 @@ cvErrorFromIppStatus( int status )
|
||||
{
|
||||
switch (status)
|
||||
{
|
||||
case CV_BADSIZE_ERR: return CV_StsBadSize;
|
||||
case CV_BADMEMBLOCK_ERR: return CV_StsBadMemBlock;
|
||||
case CV_NULLPTR_ERR: return CV_StsNullPtr;
|
||||
case CV_DIV_BY_ZERO_ERR: return CV_StsDivByZero;
|
||||
case CV_BADSTEP_ERR: return CV_BadStep;
|
||||
case CV_OUTOFMEM_ERR: return CV_StsNoMem;
|
||||
case CV_BADARG_ERR: return CV_StsBadArg;
|
||||
case CV_NOTDEFINED_ERR: return CV_StsError;
|
||||
case CV_INPLACE_NOT_SUPPORTED_ERR: return CV_StsInplaceNotSupported;
|
||||
case CV_NOTFOUND_ERR: return CV_StsObjectNotFound;
|
||||
case CV_BADCONVERGENCE_ERR: return CV_StsNoConv;
|
||||
case CV_BADDEPTH_ERR: return CV_BadDepth;
|
||||
case CV_UNMATCHED_FORMATS_ERR: return CV_StsUnmatchedFormats;
|
||||
case CV_UNSUPPORTED_COI_ERR: return CV_BadCOI;
|
||||
case CV_UNSUPPORTED_CHANNELS_ERR: return CV_BadNumChannels;
|
||||
case CV_BADFLAG_ERR: return CV_StsBadFlag;
|
||||
case CV_BADRANGE_ERR: return CV_StsBadArg;
|
||||
case CV_BADCOEF_ERR: return CV_StsBadArg;
|
||||
case CV_BADFACTOR_ERR: return CV_StsBadArg;
|
||||
case CV_BADPOINT_ERR: return CV_StsBadPoint;
|
||||
case CV_BADSIZE_ERR: return cv::Error::StsBadSize;
|
||||
case CV_BADMEMBLOCK_ERR: return cv::Error::StsBadMemBlock;
|
||||
case CV_NULLPTR_ERR: return cv::Error::StsNullPtr;
|
||||
case CV_DIV_BY_ZERO_ERR: return cv::Error::StsDivByZero;
|
||||
case CV_BADSTEP_ERR: return cv::Error::BadStep;
|
||||
case CV_OUTOFMEM_ERR: return cv::Error::StsNoMem;
|
||||
case CV_BADARG_ERR: return cv::Error::StsBadArg;
|
||||
case CV_NOTDEFINED_ERR: return cv::Error::StsError;
|
||||
case CV_INPLACE_NOT_SUPPORTED_ERR: return cv::Error::StsInplaceNotSupported;
|
||||
case CV_NOTFOUND_ERR: return cv::Error::StsObjectNotFound;
|
||||
case CV_BADCONVERGENCE_ERR: return cv::Error::StsNoConv;
|
||||
case CV_BADDEPTH_ERR: return cv::Error::BadDepth;
|
||||
case CV_UNMATCHED_FORMATS_ERR: return cv::Error::StsUnmatchedFormats;
|
||||
case CV_UNSUPPORTED_COI_ERR: return cv::Error::BadCOI;
|
||||
case CV_UNSUPPORTED_CHANNELS_ERR: return cv::Error::BadNumChannels;
|
||||
case CV_BADFLAG_ERR: return cv::Error::StsBadFlag;
|
||||
case CV_BADRANGE_ERR: return cv::Error::StsBadArg;
|
||||
case CV_BADCOEF_ERR: return cv::Error::StsBadArg;
|
||||
case CV_BADFACTOR_ERR: return cv::Error::StsBadArg;
|
||||
case CV_BADPOINT_ERR: return cv::Error::StsBadPoint;
|
||||
|
||||
default:
|
||||
return CV_StsError;
|
||||
return cv::Error::StsError;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -83,7 +83,7 @@ void KeyPoint::convert(const std::vector<KeyPoint>& keypoints, std::vector<Point
|
||||
points2f[i] = keypoints[idx].pt;
|
||||
else
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "keypointIndexes has element < 0. TODO: process this case" );
|
||||
CV_Error( cv::Error::StsBadArg, "keypointIndexes has element < 0. TODO: process this case" );
|
||||
//points2f[i] = Point2f(-1, -1);
|
||||
}
|
||||
}
|
||||
|
@ -539,7 +539,7 @@ void setSize( UMat& m, int _dims, const int* _sz,
|
||||
m.step.p[i] = total;
|
||||
int64 total1 = (int64)total*s;
|
||||
if( (uint64)total1 != (size_t)total1 )
|
||||
CV_Error( CV_StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "The total matrix size does not fit to \"size_t\" type" );
|
||||
total = (size_t)total1;
|
||||
}
|
||||
}
|
||||
@ -965,16 +965,16 @@ UMat UMat::reshape(int new_cn, int new_rows) const
|
||||
{
|
||||
int total_size = total_width * rows;
|
||||
if( !isContinuous() )
|
||||
CV_Error( CV_BadStep,
|
||||
CV_Error( cv::Error::BadStep,
|
||||
"The matrix is not continuous, thus its number of rows can not be changed" );
|
||||
|
||||
if( (unsigned)new_rows > (unsigned)total_size )
|
||||
CV_Error( CV_StsOutOfRange, "Bad new number of rows" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Bad new number of rows" );
|
||||
|
||||
total_width = total_size / new_rows;
|
||||
|
||||
if( total_width * new_rows != total_size )
|
||||
CV_Error( CV_StsBadArg, "The total number of matrix elements "
|
||||
CV_Error( cv::Error::StsBadArg, "The total number of matrix elements "
|
||||
"is not divisible by the new number of rows" );
|
||||
|
||||
hdr.rows = new_rows;
|
||||
@ -984,7 +984,7 @@ UMat UMat::reshape(int new_cn, int new_rows) const
|
||||
int new_width = total_width / new_cn;
|
||||
|
||||
if( new_width * new_cn != total_width )
|
||||
CV_Error( CV_BadNumChannels,
|
||||
CV_Error( cv::Error::BadNumChannels,
|
||||
"The total width is not divisible by the new number of channels" );
|
||||
|
||||
hdr.cols = new_width;
|
||||
@ -1050,13 +1050,13 @@ UMat UMat::reshape(int _cn, int _newndims, const int* _newsz) const
|
||||
else if (i < dims)
|
||||
newsz_buf[i] = this->size[i];
|
||||
else
|
||||
CV_Error(CV_StsOutOfRange, "Copy dimension (which has zero size) is not present in source matrix");
|
||||
CV_Error(cv::Error::StsOutOfRange, "Copy dimension (which has zero size) is not present in source matrix");
|
||||
|
||||
total_elem1 *= (size_t)newsz_buf[i];
|
||||
}
|
||||
|
||||
if (total_elem1 != total_elem1_ref)
|
||||
CV_Error(CV_StsUnmatchedSizes, "Requested and source matrices have different count of elements");
|
||||
CV_Error(cv::Error::StsUnmatchedSizes, "Requested and source matrices have different count of elements");
|
||||
|
||||
UMat hdr = *this;
|
||||
hdr.flags = (hdr.flags & ~CV_MAT_CN_MASK) | ((_cn-1) << CV_CN_SHIFT);
|
||||
@ -1065,7 +1065,7 @@ UMat UMat::reshape(int _cn, int _newndims, const int* _newsz) const
|
||||
return hdr;
|
||||
}
|
||||
|
||||
CV_Error(CV_StsNotImplemented, "Reshaping of n-dimensional non-continuous matrices is not supported yet");
|
||||
CV_Error(cv::Error::StsNotImplemented, "Reshaping of n-dimensional non-continuous matrices is not supported yet");
|
||||
}
|
||||
|
||||
Mat UMat::getMat(AccessFlag accessFlags) const
|
||||
|
@ -593,7 +593,7 @@ static void inRange(const Mat& src, const Mat& lb, const Mat& rb, Mat& dst)
|
||||
inRange_((const double*)sptr, (const double*)aptr, (const double*)bptr, dptr, total, cn);
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "");
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -642,7 +642,7 @@ static void inRangeS(const Mat& src, const Scalar& lb, const Scalar& rb, Mat& ds
|
||||
inRangeS_((const double*)sptr, lbuf.d, rbuf.d, dptr, total, cn);
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -97,7 +97,7 @@ static void DFT_1D( const Mat& _src, Mat& _dst, int flags, const Mat& _wave=Mat(
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "");
|
||||
}
|
||||
|
||||
|
||||
@ -878,7 +878,7 @@ protected:
|
||||
{
|
||||
cout << "actual:\n" << dst << endl << endl;
|
||||
cout << "reference:\n" << dstz << endl << endl;
|
||||
CV_Error(CV_StsError, "");
|
||||
CV_Error(cv::Error::StsError, "");
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -598,7 +598,7 @@ static void setValue(SparseMat& M, const int* idx, double value, RNG& rng)
|
||||
else if( M.type() == CV_64F )
|
||||
*(double*)ptr = value;
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "");
|
||||
}
|
||||
|
||||
#if defined(__GNUC__) && (__GNUC__ == 11 || __GNUC__ == 12 || __GNUC__ == 13)
|
||||
|
@ -438,7 +438,7 @@ void Image2BlobParams::blobRectsToImageRects(const std::vector<Rect> &rBlob, std
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error(CV_StsBadArg, "Unknown padding mode");
|
||||
CV_Error(cv::Error::StsBadArg, "Unknown padding mode");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -548,7 +548,7 @@ public:
|
||||
{
|
||||
// for Conv1d
|
||||
if (group != 1)
|
||||
CV_Error( CV_StsNotImplemented, " Grouped Conv1d or Depth-Wise Conv1d are not supported by "
|
||||
CV_Error( cv::Error::StsNotImplemented, " Grouped Conv1d or Depth-Wise Conv1d are not supported by "
|
||||
"TimVX Backend. Please try OpenCV Backend.");
|
||||
tvConv = graph->CreateOperation<tim::vx::ops::Conv1d>(
|
||||
tvConvWeightShape[2], tvPadType, (uint32_t)kernel_size[0],
|
||||
|
@ -450,7 +450,7 @@ Ptr<FastConv> initFastConv(
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "Unknown convolution type.");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "Unknown convolution type.");
|
||||
|
||||
// store bias; append some zero's to make sure that
|
||||
// we can always read MR elements starting from any valid index
|
||||
|
@ -225,7 +225,7 @@ void Context::createInstance()
|
||||
|
||||
if (result != VK_SUCCESS)
|
||||
{
|
||||
CV_Error(CV_StsError, "Vulkan: vkEnumerateInstanceLayerProperties failed!");
|
||||
CV_Error(cv::Error::StsError, "Vulkan: vkEnumerateInstanceLayerProperties failed!");
|
||||
return;
|
||||
}
|
||||
|
||||
@ -234,7 +234,7 @@ void Context::createInstance()
|
||||
|
||||
if (result != VK_SUCCESS)
|
||||
{
|
||||
CV_Error(CV_StsError, "Vulkan: vkEnumerateInstanceLayerProperties failed!");
|
||||
CV_Error(cv::Error::StsError, "Vulkan: vkEnumerateInstanceLayerProperties failed!");
|
||||
return;
|
||||
}
|
||||
|
||||
@ -388,7 +388,7 @@ Context::Context()
|
||||
vkEnumeratePhysicalDevices(kInstance, &deviceCount, NULL);
|
||||
if (deviceCount == 0)
|
||||
{
|
||||
CV_Error(CV_StsError, "Vulkan Backend: could not find a device with vulkan support!");
|
||||
CV_Error(cv::Error::StsError, "Vulkan Backend: could not find a device with vulkan support!");
|
||||
}
|
||||
|
||||
std::vector<VkPhysicalDevice> devices(deviceCount);
|
||||
@ -442,7 +442,7 @@ Context::Context()
|
||||
if (!cmdPoolPtr)
|
||||
cmdPoolPtr = CommandPool::create(kQueue, kQueueFamilyIndex);
|
||||
else
|
||||
CV_Error(CV_StsError, "cmdPoolPtr has been created before!!");
|
||||
CV_Error(cv::Error::StsError, "cmdPoolPtr has been created before!!");
|
||||
|
||||
pipelineFactoryPtr = PipelineFactory::create();
|
||||
}
|
||||
|
@ -244,7 +244,7 @@ bool OpConv::computeGroupCount()
|
||||
group_z_ = 1;
|
||||
}
|
||||
else
|
||||
CV_Error(CV_StsNotImplemented, "shader type is not supported at compute GroupCount.");
|
||||
CV_Error(cv::Error::StsNotImplemented, "shader type is not supported at compute GroupCount.");
|
||||
|
||||
CV_Assert(group_x_ <= MAX_GROUP_COUNT_X);
|
||||
CV_Assert(group_y_ <= MAX_GROUP_COUNT_Y);
|
||||
|
@ -182,7 +182,7 @@ bool OpNary::computeGroupCount()
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, "shader type is not supported at compute GroupCount.");
|
||||
CV_Error(cv::Error::StsNotImplemented, "shader type is not supported at compute GroupCount.");
|
||||
}
|
||||
|
||||
CV_Assert(group_x_ <= MAX_GROUP_COUNT_X);
|
||||
|
@ -279,7 +279,7 @@ Ptr<Pipeline> PipelineFactory::getPipeline(const std::string& key, const std::ve
|
||||
// retrieve spv from SPVMaps with given key
|
||||
auto iterSPV = SPVMaps.find(key);
|
||||
if (iterSPV == SPVMaps.end())
|
||||
CV_Error(CV_StsError, "Can not create SPV with the given name:"+key+"!");
|
||||
CV_Error(cv::Error::StsError, "Can not create SPV with the given name:"+key+"!");
|
||||
|
||||
const uint32_t* spv = iterSPV->second.first;
|
||||
size_t length = iterSPV->second.second;
|
||||
@ -292,7 +292,7 @@ Ptr<Pipeline> PipelineFactory::getPipeline(const std::string& key, const std::ve
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error(CV_StsError, "Can not Created the VkPipeline "+key);
|
||||
CV_Error(cv::Error::StsError, "Can not Created the VkPipeline "+key);
|
||||
}
|
||||
|
||||
return pipeline;
|
||||
|
@ -1097,17 +1097,17 @@ void cv::imshow(const String& winname, const ogl::Texture2D& _tex)
|
||||
|
||||
CV_IMPL void cvSetOpenGlDrawCallback(const char*, CvOpenGlDrawCallback, void*)
|
||||
{
|
||||
CV_Error(CV_OpenGlNotSupported, "The library is compiled without OpenGL support");
|
||||
CV_Error(cv::Error::OpenGlNotSupported, "The library is compiled without OpenGL support");
|
||||
}
|
||||
|
||||
CV_IMPL void cvSetOpenGlContext(const char*)
|
||||
{
|
||||
CV_Error(CV_OpenGlNotSupported, "The library is compiled without OpenGL support");
|
||||
CV_Error(cv::Error::OpenGlNotSupported, "The library is compiled without OpenGL support");
|
||||
}
|
||||
|
||||
CV_IMPL void cvUpdateWindow(const char*)
|
||||
{
|
||||
CV_Error(CV_OpenGlNotSupported, "The library is compiled without OpenGL support");
|
||||
CV_Error(cv::Error::OpenGlNotSupported, "The library is compiled without OpenGL support");
|
||||
}
|
||||
|
||||
#endif // !HAVE_OPENGL
|
||||
@ -1176,52 +1176,52 @@ static const char* NO_QT_ERR_MSG = "The library is compiled without QT support";
|
||||
|
||||
cv::QtFont cv::fontQt(const String&, int, Scalar, int, int, int)
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, NO_QT_ERR_MSG);
|
||||
CV_Error(cv::Error::StsNotImplemented, NO_QT_ERR_MSG);
|
||||
}
|
||||
|
||||
void cv::addText( const Mat&, const String&, Point, const QtFont&)
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, NO_QT_ERR_MSG);
|
||||
CV_Error(cv::Error::StsNotImplemented, NO_QT_ERR_MSG);
|
||||
}
|
||||
|
||||
void cv::addText(const Mat&, const String&, Point, const String&, int, Scalar, int, int, int)
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, NO_QT_ERR_MSG);
|
||||
CV_Error(cv::Error::StsNotImplemented, NO_QT_ERR_MSG);
|
||||
}
|
||||
|
||||
void cv::displayStatusBar(const String&, const String&, int)
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, NO_QT_ERR_MSG);
|
||||
CV_Error(cv::Error::StsNotImplemented, NO_QT_ERR_MSG);
|
||||
}
|
||||
|
||||
void cv::displayOverlay(const String&, const String&, int )
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, NO_QT_ERR_MSG);
|
||||
CV_Error(cv::Error::StsNotImplemented, NO_QT_ERR_MSG);
|
||||
}
|
||||
|
||||
int cv::startLoop(int (*)(int argc, char *argv[]), int , char**)
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, NO_QT_ERR_MSG);
|
||||
CV_Error(cv::Error::StsNotImplemented, NO_QT_ERR_MSG);
|
||||
}
|
||||
|
||||
void cv::stopLoop()
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, NO_QT_ERR_MSG);
|
||||
CV_Error(cv::Error::StsNotImplemented, NO_QT_ERR_MSG);
|
||||
}
|
||||
|
||||
void cv::saveWindowParameters(const String&)
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, NO_QT_ERR_MSG);
|
||||
CV_Error(cv::Error::StsNotImplemented, NO_QT_ERR_MSG);
|
||||
}
|
||||
|
||||
void cv::loadWindowParameters(const String&)
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, NO_QT_ERR_MSG);
|
||||
CV_Error(cv::Error::StsNotImplemented, NO_QT_ERR_MSG);
|
||||
}
|
||||
|
||||
int cv::createButton(const String&, ButtonCallback, void*, int , bool )
|
||||
{
|
||||
CV_Error(CV_StsNotImplemented, NO_QT_ERR_MSG);
|
||||
CV_Error(cv::Error::StsNotImplemented, NO_QT_ERR_MSG);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -147,7 +147,7 @@ CV_IMPL CvFont cvFontQt(const char* nameFont, int pointSize,CvScalar color,int w
|
||||
CV_IMPL void cvAddText(const CvArr* img, const char* text, CvPoint org, CvFont* font)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"putText",
|
||||
@ -162,7 +162,7 @@ CV_IMPL void cvAddText(const CvArr* img, const char* text, CvPoint org, CvFont*
|
||||
double cvGetRatioWindow_QT(const char* name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
double result = -1;
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
@ -176,7 +176,7 @@ double cvGetRatioWindow_QT(const char* name)
|
||||
|
||||
double cvGetPropVisible_QT(const char* name) {
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
double result = 0;
|
||||
|
||||
@ -193,7 +193,7 @@ void cvSetRatioWindow_QT(const char* name,double prop_value)
|
||||
{
|
||||
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"setRatioWindow",
|
||||
@ -205,7 +205,7 @@ void cvSetRatioWindow_QT(const char* name,double prop_value)
|
||||
double cvGetPropWindow_QT(const char* name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
double result = -1;
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
@ -221,7 +221,7 @@ double cvGetPropWindow_QT(const char* name)
|
||||
void cvSetPropWindow_QT(const char* name,double prop_value)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"setPropWindow",
|
||||
@ -246,7 +246,7 @@ void setWindowTitle_QT(const String& winname, const String& title)
|
||||
void cvSetModeWindow_QT(const char* name, double prop_value)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"toggleFullScreen",
|
||||
@ -258,7 +258,7 @@ void cvSetModeWindow_QT(const char* name, double prop_value)
|
||||
CvRect cvGetWindowRect_QT(const char* name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
CvRect result = cvRect(-1, -1, -1, -1);
|
||||
|
||||
@ -274,7 +274,7 @@ CvRect cvGetWindowRect_QT(const char* name)
|
||||
double cvGetModeWindow_QT(const char* name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
double result = -1;
|
||||
|
||||
@ -291,7 +291,7 @@ double cvGetModeWindow_QT(const char* name)
|
||||
CV_IMPL void cvDisplayOverlay(const char* name, const char* text, int delayms)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"displayInfo",
|
||||
@ -305,7 +305,7 @@ CV_IMPL void cvDisplayOverlay(const char* name, const char* text, int delayms)
|
||||
CV_IMPL void cvSaveWindowParameters(const char* name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"saveWindowParameters",
|
||||
@ -317,7 +317,7 @@ CV_IMPL void cvSaveWindowParameters(const char* name)
|
||||
CV_IMPL void cvLoadWindowParameters(const char* name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"loadWindowParameters",
|
||||
@ -329,7 +329,7 @@ CV_IMPL void cvLoadWindowParameters(const char* name)
|
||||
CV_IMPL void cvDisplayStatusBar(const char* name, const char* text, int delayms)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"displayStatusBar",
|
||||
@ -492,7 +492,7 @@ static CvTrackbar* icvFindTrackBarByName(const char* name_trackbar, const char*
|
||||
QPointer<CvWindow> w = icvFindWindowByName(nameWinQt);
|
||||
|
||||
if (!w)
|
||||
CV_Error(CV_StsNullPtr, "NULL window handler");
|
||||
CV_Error(cv::Error::StsNullPtr, "NULL window handler");
|
||||
|
||||
if (w->param_gui_mode == CV_GUI_NORMAL)
|
||||
return (CvTrackbar*) icvFindBarByName(w->myBarLayout, nameQt, type_CvTrackbar);
|
||||
@ -575,7 +575,7 @@ CV_IMPL int cvNamedWindow(const char* name, int flags)
|
||||
CV_IMPL void cvDestroyWindow(const char* name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"destroyWindow",
|
||||
@ -598,7 +598,7 @@ CV_IMPL void cvDestroyAllWindows()
|
||||
CV_IMPL void* cvGetWindowHandle(const char* name)
|
||||
{
|
||||
if (!name)
|
||||
CV_Error( CV_StsNullPtr, "NULL name string" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL name string" );
|
||||
|
||||
return (void*) icvFindWindowByName(QLatin1String(name));
|
||||
}
|
||||
@ -607,7 +607,7 @@ CV_IMPL void* cvGetWindowHandle(const char* name)
|
||||
CV_IMPL const char* cvGetWindowName(void* window_handle)
|
||||
{
|
||||
if( !window_handle )
|
||||
CV_Error( CV_StsNullPtr, "NULL window handler" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL window handler" );
|
||||
|
||||
return ((CvWindow*)window_handle)->objectName().toLatin1().data();
|
||||
}
|
||||
@ -616,7 +616,7 @@ CV_IMPL const char* cvGetWindowName(void* window_handle)
|
||||
CV_IMPL void cvMoveWindow(const char* name, int x, int y)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"moveWindow",
|
||||
autoBlockingConnection(),
|
||||
@ -628,7 +628,7 @@ CV_IMPL void cvMoveWindow(const char* name, int x, int y)
|
||||
CV_IMPL void cvResizeWindow(const char* name, int width, int height)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"resizeWindow",
|
||||
autoBlockingConnection(),
|
||||
@ -641,7 +641,7 @@ CV_IMPL void cvResizeWindow(const char* name, int width, int height)
|
||||
CV_IMPL int cvCreateTrackbar2(const char* name_bar, const char* window_name, int* val, int count, CvTrackbarCallback2 on_notify, void* userdata)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"addSlider2",
|
||||
@ -666,7 +666,7 @@ CV_IMPL int cvStartWindowThread()
|
||||
CV_IMPL int cvCreateTrackbar(const char* name_bar, const char* window_name, int* value, int count, CvTrackbarCallback on_change)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"addSlider",
|
||||
@ -684,7 +684,7 @@ CV_IMPL int cvCreateTrackbar(const char* name_bar, const char* window_name, int*
|
||||
CV_IMPL int cvCreateButton(const char* button_name, CvButtonCallback on_change, void* userdata, int button_type, int initial_button_state)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
if (initial_button_state < 0 || initial_button_state > 1)
|
||||
return 0;
|
||||
@ -750,7 +750,7 @@ CV_IMPL void cvSetMouseCallback(const char* window_name, CvMouseCallback on_mous
|
||||
QPointer<CvWindow> w = icvFindWindowByName(QLatin1String(window_name));
|
||||
|
||||
if (!w)
|
||||
CV_Error(CV_StsNullPtr, "NULL window handler");
|
||||
CV_Error(cv::Error::StsNullPtr, "NULL window handler");
|
||||
|
||||
w->setMouseCallBack(on_mouse, param);
|
||||
|
||||
@ -780,7 +780,7 @@ CV_IMPL void cvShowImage(const char* name, const CvArr* arr)
|
||||
CV_IMPL void cvSetOpenGlDrawCallback(const char* window_name, CvOpenGlDrawCallback callback, void* userdata)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"setOpenGlDrawCallback",
|
||||
@ -794,7 +794,7 @@ CV_IMPL void cvSetOpenGlDrawCallback(const char* window_name, CvOpenGlDrawCallba
|
||||
CV_IMPL void cvSetOpenGlContext(const char* window_name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"setOpenGlContext",
|
||||
@ -806,7 +806,7 @@ CV_IMPL void cvSetOpenGlContext(const char* window_name)
|
||||
CV_IMPL void cvUpdateWindow(const char* window_name)
|
||||
{
|
||||
if (!guiMainThread)
|
||||
CV_Error( CV_StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL guiReceiver (please create a window)" );
|
||||
|
||||
QMetaObject::invokeMethod(guiMainThread,
|
||||
"updateWindow",
|
||||
@ -1036,7 +1036,7 @@ void GuiReceiver::toggleFullScreen(QString name, double arg2)
|
||||
void GuiReceiver::createWindow(QString name, int flags)
|
||||
{
|
||||
if (!qApp)
|
||||
CV_Error(CV_StsNullPtr, "NULL session handler" );
|
||||
CV_Error(cv::Error::StsNullPtr, "NULL session handler" );
|
||||
|
||||
// Check the name in the storage
|
||||
if (icvFindWindowByName(name.toLatin1().data()))
|
||||
@ -1127,7 +1127,7 @@ void GuiReceiver::destroyWindow(QString name)
|
||||
void GuiReceiver::destroyAllWindow()
|
||||
{
|
||||
if (!qApp)
|
||||
CV_Error(CV_StsNullPtr, "NULL session handler" );
|
||||
CV_Error(cv::Error::StsNullPtr, "NULL session handler" );
|
||||
|
||||
if (multiThreads)
|
||||
{
|
||||
@ -1256,7 +1256,7 @@ void GuiReceiver::addSlider2(QString bar_name, QString window_name, void* value,
|
||||
return;
|
||||
|
||||
if (count <= 0) //count is the max value of the slider, so must be bigger than 0
|
||||
CV_Error(CV_StsNullPtr, "Max value of the slider must be bigger than 0" );
|
||||
CV_Error(cv::Error::StsNullPtr, "Max value of the slider must be bigger than 0" );
|
||||
|
||||
CvWindow::addSlider2(w, bar_name, (int*)value, count, (CvTrackbarCallback2) on_change, userdata);
|
||||
}
|
||||
@ -1286,10 +1286,10 @@ void GuiReceiver::addSlider(QString bar_name, QString window_name, void* value,
|
||||
return;
|
||||
|
||||
if (!value)
|
||||
CV_Error(CV_StsNullPtr, "NULL value pointer" );
|
||||
CV_Error(cv::Error::StsNullPtr, "NULL value pointer" );
|
||||
|
||||
if (count <= 0) //count is the max value of the slider, so must be bigger than 0
|
||||
CV_Error(CV_StsNullPtr, "Max value of the slider must be bigger than 0" );
|
||||
CV_Error(cv::Error::StsNullPtr, "Max value of the slider must be bigger than 0" );
|
||||
|
||||
CvWindow::addSlider(w, bar_name, (int*)value, count, (CvTrackbarCallback) on_change);
|
||||
}
|
||||
@ -1703,7 +1703,7 @@ CvWindow::CvWindow(QString name, int arg2)
|
||||
//3: my view
|
||||
#ifndef HAVE_QT_OPENGL
|
||||
if (arg2 & CV_WINDOW_OPENGL)
|
||||
CV_Error( CV_OpenGlNotSupported, "Library was built without OpenGL support" );
|
||||
CV_Error( cv::Error::OpenGlNotSupported, "Library was built without OpenGL support" );
|
||||
mode_display = CV_MODE_NORMAL;
|
||||
#else
|
||||
mode_display = arg2 & CV_WINDOW_OPENGL ? CV_MODE_OPENGL : CV_MODE_NORMAL;
|
||||
@ -2662,19 +2662,19 @@ void DefaultViewPort::startDisplayInfo(QString text, int delayms)
|
||||
|
||||
void DefaultViewPort::setOpenGlDrawCallback(CvOpenGlDrawCallback /*callback*/, void* /*userdata*/)
|
||||
{
|
||||
CV_Error(CV_OpenGlNotSupported, "Window doesn't support OpenGL");
|
||||
CV_Error(cv::Error::OpenGlNotSupported, "Window doesn't support OpenGL");
|
||||
}
|
||||
|
||||
|
||||
void DefaultViewPort::makeCurrentOpenGlContext()
|
||||
{
|
||||
CV_Error(CV_OpenGlNotSupported, "Window doesn't support OpenGL");
|
||||
CV_Error(cv::Error::OpenGlNotSupported, "Window doesn't support OpenGL");
|
||||
}
|
||||
|
||||
|
||||
void DefaultViewPort::updateGl()
|
||||
{
|
||||
CV_Error(CV_OpenGlNotSupported, "Window doesn't support OpenGL");
|
||||
CV_Error(cv::Error::OpenGlNotSupported, "Window doesn't support OpenGL");
|
||||
}
|
||||
|
||||
|
||||
@ -2777,7 +2777,7 @@ void DefaultViewPort::saveView()
|
||||
return;
|
||||
}
|
||||
|
||||
CV_Error(CV_StsNullPtr, "file extension not recognized, please choose between JPG, JPEG, BMP or PNG");
|
||||
CV_Error(cv::Error::StsNullPtr, "file extension not recognized, please choose between JPG, JPEG, BMP or PNG");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -744,7 +744,7 @@ CvRect cvGetWindowRect_GTK(const char* name)
|
||||
CV_LOCK_MUTEX();
|
||||
const auto window = icvFindWindowByName(name);
|
||||
if (!window)
|
||||
CV_Error( CV_StsNullPtr, "NULL window" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL window" );
|
||||
|
||||
return cvRect(getImageRect_(window));
|
||||
}
|
||||
@ -786,7 +786,7 @@ double cvGetModeWindow_GTK(const char* name)//YV
|
||||
CV_LOCK_MUTEX();
|
||||
const auto window = icvFindWindowByName(name);
|
||||
if (!window)
|
||||
CV_Error( CV_StsNullPtr, "NULL window" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL window" );
|
||||
|
||||
double result = window->status;
|
||||
return result;
|
||||
@ -801,7 +801,7 @@ void cvSetModeWindow_GTK( const char* name, double prop_value)//Yannick Verdie
|
||||
|
||||
const auto window = icvFindWindowByName(name);
|
||||
if (!window)
|
||||
CV_Error( CV_StsNullPtr, "NULL window" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL window" );
|
||||
|
||||
setModeWindow_(window, (int)prop_value);
|
||||
}
|
||||
@ -917,11 +917,11 @@ namespace
|
||||
// Try double-buffered visual
|
||||
glconfig = gdk_gl_config_new_by_mode((GdkGLConfigMode)(GDK_GL_MODE_RGB | GDK_GL_MODE_DEPTH | GDK_GL_MODE_DOUBLE));
|
||||
if (!glconfig)
|
||||
CV_Error( CV_OpenGlApiCallError, "Can't Create A GL Device Context" );
|
||||
CV_Error( cv::Error::OpenGlApiCallError, "Can't Create A GL Device Context" );
|
||||
|
||||
// Set OpenGL-capability to the widget
|
||||
if (!gtk_widget_set_gl_capability(window->widget, glconfig, NULL, TRUE, GDK_GL_RGBA_TYPE))
|
||||
CV_Error( CV_OpenGlApiCallError, "Can't Create A GL Device Context" );
|
||||
CV_Error( cv::Error::OpenGlApiCallError, "Can't Create A GL Device Context" );
|
||||
|
||||
window->useGl = true;
|
||||
}
|
||||
@ -932,7 +932,7 @@ namespace
|
||||
GdkGLDrawable* gldrawable = gtk_widget_get_gl_drawable(window->widget);
|
||||
|
||||
if (!gdk_gl_drawable_gl_begin (gldrawable, glcontext))
|
||||
CV_Error( CV_OpenGlApiCallError, "Can't Activate The GL Rendering Context" );
|
||||
CV_Error( cv::Error::OpenGlApiCallError, "Can't Activate The GL Rendering Context" );
|
||||
|
||||
glViewport(0, 0, gtk_widget_get_allocated_width(window->widget), gtk_widget_get_allocated_height(window->widget));
|
||||
|
||||
@ -1050,7 +1050,7 @@ static std::shared_ptr<CvWindow> namedWindow_(const std::string& name, int flags
|
||||
|
||||
#ifndef HAVE_OPENGL
|
||||
if (flags & CV_WINDOW_OPENGL)
|
||||
CV_Error( CV_OpenGlNotSupported, "Library was built without OpenGL support" );
|
||||
CV_Error( cv::Error::OpenGlNotSupported, "Library was built without OpenGL support" );
|
||||
#else
|
||||
if (flags & CV_WINDOW_OPENGL)
|
||||
createGlContext(window);
|
||||
@ -1131,16 +1131,16 @@ CV_IMPL void cvSetOpenGlContext(const char* name)
|
||||
|
||||
auto window = icvFindWindowByName(name);
|
||||
if (!window)
|
||||
CV_Error( CV_StsNullPtr, "NULL window" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL window" );
|
||||
|
||||
if (!window->useGl)
|
||||
CV_Error( CV_OpenGlNotSupported, "Window doesn't support OpenGL" );
|
||||
CV_Error( cv::Error::OpenGlNotSupported, "Window doesn't support OpenGL" );
|
||||
|
||||
glcontext = gtk_widget_get_gl_context(window->widget);
|
||||
gldrawable = gtk_widget_get_gl_drawable(window->widget);
|
||||
|
||||
if (!gdk_gl_drawable_make_current(gldrawable, glcontext))
|
||||
CV_Error( CV_OpenGlApiCallError, "Can't Activate The GL Rendering Context" );
|
||||
CV_Error( cv::Error::OpenGlApiCallError, "Can't Activate The GL Rendering Context" );
|
||||
}
|
||||
|
||||
CV_IMPL void cvUpdateWindow(const char* name)
|
||||
@ -1168,7 +1168,7 @@ CV_IMPL void cvSetOpenGlDrawCallback(const char* name, CvOpenGlDrawCallback call
|
||||
return;
|
||||
|
||||
if (!window->useGl)
|
||||
CV_Error( CV_OpenGlNotSupported, "Window was created without OpenGL context" );
|
||||
CV_Error( cv::Error::OpenGlNotSupported, "Window was created without OpenGL context" );
|
||||
|
||||
window->glDrawCallback = callback;
|
||||
window->glDrawData = userdata;
|
||||
@ -1384,7 +1384,7 @@ icvCreateTrackbar( const char* trackbar_name, const char* window_name,
|
||||
CV_Assert(trackbar_name && "NULL trackbar name");
|
||||
|
||||
if( count <= 0 )
|
||||
CV_Error( CV_StsOutOfRange, "Bad trackbar maximal value" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Bad trackbar maximal value" );
|
||||
|
||||
CV_LOCK_MUTEX();
|
||||
|
||||
@ -1557,7 +1557,7 @@ CV_IMPL void cvSetTrackbarPos( const char* trackbar_name, const char* window_nam
|
||||
const auto trackbar = icvFindTrackbarByName(window, trackbar_name);
|
||||
if (!trackbar)
|
||||
{
|
||||
CV_Error( CV_StsNullPtr, "No trackbar found" );
|
||||
CV_Error( cv::Error::StsNullPtr, "No trackbar found" );
|
||||
}
|
||||
|
||||
return setTrackbarPos_(trackbar, pos);
|
||||
|
@ -36,7 +36,7 @@
|
||||
|
||||
#define CV_WINRT_NO_GUI_ERROR( funcname ) \
|
||||
{ \
|
||||
cvError( CV_StsNotImplemented, funcname, \
|
||||
cvError( cv::Error::StsNotImplemented, funcname, \
|
||||
"The function is not implemented. ", \
|
||||
__FILE__, __LINE__ ); \
|
||||
}
|
||||
@ -65,7 +65,7 @@ CV_IMPL void cvShowImage(const char* name, const CvArr* arr)
|
||||
CvMat stub, *image;
|
||||
|
||||
if (!name)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL name");
|
||||
CV_ERROR(cv::Error::StsNullPtr, "NULL name");
|
||||
|
||||
CvWindow* window = HighguiBridge::getInstance().namedWindow(name);
|
||||
|
||||
@ -89,7 +89,7 @@ CV_IMPL int cvNamedWindow(const char* name, int flags)
|
||||
CV_FUNCNAME("cvNamedWindow");
|
||||
|
||||
if (!name)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL name");
|
||||
CV_ERROR(cv::Error::StsNullPtr, "NULL name");
|
||||
|
||||
HighguiBridge::getInstance().namedWindow(name);
|
||||
|
||||
@ -101,7 +101,7 @@ CV_IMPL void cvDestroyWindow(const char* name)
|
||||
CV_FUNCNAME("cvDestroyWindow");
|
||||
|
||||
if (!name)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL name string");
|
||||
CV_ERROR(cv::Error::StsNullPtr, "NULL name string");
|
||||
|
||||
HighguiBridge::getInstance().destroyWindow(name);
|
||||
}
|
||||
@ -119,16 +119,16 @@ CV_IMPL int cvCreateTrackbar2(const char* trackbar_name, const char* window_name
|
||||
int pos = 0;
|
||||
|
||||
if (!window_name || !trackbar_name)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL window or trackbar name");
|
||||
CV_ERROR(cv::Error::StsNullPtr, "NULL window or trackbar name");
|
||||
|
||||
if (count < 0)
|
||||
CV_ERROR(CV_StsOutOfRange, "Bad trackbar max value");
|
||||
CV_ERROR(cv::Error::StsOutOfRange, "Bad trackbar max value");
|
||||
|
||||
CvWindow* window = HighguiBridge::getInstance().namedWindow(window_name);
|
||||
|
||||
if (!window)
|
||||
{
|
||||
CV_ERROR(CV_StsNullPtr, "NULL window");
|
||||
CV_ERROR(cv::Error::StsNullPtr, "NULL window");
|
||||
}
|
||||
|
||||
window->createSlider(trackbar_name, val, count, on_notify, userdata);
|
||||
@ -143,7 +143,7 @@ CV_IMPL void cvSetTrackbarPos(const char* trackbar_name, const char* window_name
|
||||
CvTrackbar* trackbar = 0;
|
||||
|
||||
if (trackbar_name == 0 || window_name == 0)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL trackbar or window name");
|
||||
CV_ERROR(cv::Error::StsNullPtr, "NULL trackbar or window name");
|
||||
|
||||
CvWindow* window = HighguiBridge::getInstance().findWindowByName(window_name);
|
||||
if (window)
|
||||
@ -160,7 +160,7 @@ CV_IMPL void cvSetTrackbarMax(const char* trackbar_name, const char* window_name
|
||||
if (maxval >= 0)
|
||||
{
|
||||
if (trackbar_name == 0 || window_name == 0)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL trackbar or window name");
|
||||
CV_ERROR(cv::Error::StsNullPtr, "NULL trackbar or window name");
|
||||
|
||||
CvTrackbar* trackbar = HighguiBridge::getInstance().findTrackbarByName(trackbar_name, window_name);
|
||||
|
||||
@ -176,7 +176,7 @@ CV_IMPL void cvSetTrackbarMin(const char* trackbar_name, const char* window_name
|
||||
if (minval >= 0)
|
||||
{
|
||||
if (trackbar_name == 0 || window_name == 0)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL trackbar or window name");
|
||||
CV_ERROR(cv::Error::StsNullPtr, "NULL trackbar or window name");
|
||||
|
||||
CvTrackbar* trackbar = HighguiBridge::getInstance().findTrackbarByName(trackbar_name, window_name);
|
||||
|
||||
@ -192,7 +192,7 @@ CV_IMPL int cvGetTrackbarPos(const char* trackbar_name, const char* window_name)
|
||||
CV_FUNCNAME("cvGetTrackbarPos");
|
||||
|
||||
if (trackbar_name == 0 || window_name == 0)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL trackbar or window name");
|
||||
CV_ERROR(cv::Error::StsNullPtr, "NULL trackbar or window name");
|
||||
|
||||
CvTrackbar* trackbar = HighguiBridge::getInstance().findTrackbarByName(trackbar_name, window_name);
|
||||
|
||||
@ -229,7 +229,7 @@ CV_IMPL void cvSetMouseCallback(const char* window_name, CvMouseCallback on_mous
|
||||
CV_FUNCNAME("cvSetMouseCallback");
|
||||
|
||||
if (!window_name)
|
||||
CV_ERROR(CV_StsNullPtr, "NULL window name");
|
||||
CV_ERROR(cv::Error::StsNullPtr, "NULL window name");
|
||||
|
||||
CvWindow* window = HighguiBridge::getInstance().findWindowByName(window_name);
|
||||
if (!window)
|
||||
@ -253,19 +253,19 @@ CV_IMPL void cvResizeWindow(const char* name, int width, int height)
|
||||
CV_IMPL int cvInitSystem(int, char**)
|
||||
{
|
||||
CV_WINRT_NO_GUI_ERROR("cvInitSystem");
|
||||
return CV_StsNotImplemented;
|
||||
return cv::Error::StsNotImplemented;
|
||||
}
|
||||
|
||||
CV_IMPL void* cvGetWindowHandle(const char*)
|
||||
{
|
||||
CV_WINRT_NO_GUI_ERROR("cvGetWindowHandle");
|
||||
return (void*) CV_StsNotImplemented;
|
||||
return (void*) cv::Error::StsNotImplemented;
|
||||
}
|
||||
|
||||
CV_IMPL const char* cvGetWindowName(void*)
|
||||
{
|
||||
CV_WINRT_NO_GUI_ERROR("cvGetWindowName");
|
||||
return (const char*) CV_StsNotImplemented;
|
||||
return (const char*) cv::Error::StsNotImplemented;
|
||||
}
|
||||
|
||||
void cvSetModeWindow_WinRT(const char* name, double prop_value) {
|
||||
@ -274,10 +274,10 @@ void cvSetModeWindow_WinRT(const char* name, double prop_value) {
|
||||
|
||||
double cvGetModeWindow_WinRT(const char* name) {
|
||||
CV_WINRT_NO_GUI_ERROR("cvGetModeWindow");
|
||||
return CV_StsNotImplemented;
|
||||
return cv::Error::StsNotImplemented;
|
||||
}
|
||||
|
||||
CV_IMPL int cvStartWindowThread() {
|
||||
CV_WINRT_NO_GUI_ERROR("cvStartWindowThread");
|
||||
return CV_StsNotImplemented;
|
||||
return cv::Error::StsNotImplemented;
|
||||
}
|
||||
|
@ -389,9 +389,9 @@ cvApproxChains( CvSeq* src_seq,
|
||||
CvSeq *dst_seq = 0;
|
||||
|
||||
if( !src_seq || !storage )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
if( method > cv::CHAIN_APPROX_TC89_KCOS || method <= 0 || minimal_perimeter < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
|
||||
while( src_seq != 0 )
|
||||
{
|
||||
@ -410,7 +410,7 @@ cvApproxChains( CvSeq* src_seq,
|
||||
contour = icvApproximateChainTC89( (CvChain *) src_seq, sizeof( CvContour ), storage, method );
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
}
|
||||
|
||||
if( contour->total > 0 )
|
||||
@ -681,7 +681,7 @@ void cv::approxPolyDP( InputArray _curve, OutputArray _approxCurve,
|
||||
//from being used.
|
||||
if (epsilon < 0.0 || !(epsilon < 1e30))
|
||||
{
|
||||
CV_Error(CV_StsOutOfRange, "Epsilon not valid.");
|
||||
CV_Error(cv::Error::StsOutOfRange, "Epsilon not valid.");
|
||||
}
|
||||
|
||||
Mat curve = _curve.getMat();
|
||||
@ -704,7 +704,7 @@ void cv::approxPolyDP( InputArray _curve, OutputArray _approxCurve,
|
||||
else if( depth == CV_32F )
|
||||
nout = approxPolyDP_(curve.ptr<Point2f>(), npoints, (Point2f*)buf, closed, epsilon, _stack);
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "" );
|
||||
|
||||
Mat(nout, 1, CV_MAKETYPE(depth, 2), buf).copyTo(_approxCurve);
|
||||
}
|
||||
@ -728,7 +728,7 @@ cvApproxPoly( const void* array, int header_size,
|
||||
{
|
||||
src_seq = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POLYLINE( src_seq ))
|
||||
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unsupported sequence type" );
|
||||
|
||||
recursive = parameter2;
|
||||
|
||||
@ -743,10 +743,10 @@ cvApproxPoly( const void* array, int header_size,
|
||||
}
|
||||
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "NULL storage pointer " );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL storage pointer " );
|
||||
|
||||
if( header_size < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "header_size is negative. "
|
||||
CV_Error( cv::Error::StsOutOfRange, "header_size is negative. "
|
||||
"Pass 0 to make the destination header_size == input header_size" );
|
||||
|
||||
if( header_size == 0 )
|
||||
@ -756,12 +756,12 @@ cvApproxPoly( const void* array, int header_size,
|
||||
{
|
||||
if( CV_IS_SEQ_CHAIN( src_seq ))
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "Input curves are not polygonal. "
|
||||
CV_Error( cv::Error::StsBadArg, "Input curves are not polygonal. "
|
||||
"Use cvApproxChains first" );
|
||||
}
|
||||
else
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "Input curves have unknown type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Input curves have unknown type" );
|
||||
}
|
||||
}
|
||||
|
||||
@ -769,10 +769,10 @@ cvApproxPoly( const void* array, int header_size,
|
||||
header_size = src_seq->header_size;
|
||||
|
||||
if( header_size < (int)sizeof(CvContour) )
|
||||
CV_Error( CV_StsBadSize, "New header size must be non-less than sizeof(CvContour)" );
|
||||
CV_Error( cv::Error::StsBadSize, "New header size must be non-less than sizeof(CvContour)" );
|
||||
|
||||
if( method != CV_POLY_APPROX_DP )
|
||||
CV_Error( CV_StsOutOfRange, "Unknown approximation method" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Unknown approximation method" );
|
||||
|
||||
while( src_seq != 0 )
|
||||
{
|
||||
@ -782,7 +782,7 @@ cvApproxPoly( const void* array, int header_size,
|
||||
{
|
||||
case CV_POLY_APPROX_DP:
|
||||
if( parameter < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "Accuracy must be non-negative" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Accuracy must be non-negative" );
|
||||
|
||||
CV_Assert( CV_SEQ_ELTYPE(src_seq) == CV_32SC2 ||
|
||||
CV_SEQ_ELTYPE(src_seq) == CV_32FC2 );
|
||||
@ -804,7 +804,7 @@ cvApproxPoly( const void* array, int header_size,
|
||||
nout = cv::approxPolyDP_((cv::Point2f*)src, npoints,
|
||||
(cv::Point2f*)dst, closed, parameter, stack);
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "" );
|
||||
|
||||
contour = cvCreateSeq( src_seq->flags, header_size,
|
||||
src_seq->elem_size, storage );
|
||||
@ -812,7 +812,7 @@ cvApproxPoly( const void* array, int header_size,
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "Invalid approximation method" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid approximation method" );
|
||||
}
|
||||
|
||||
CV_Assert( contour );
|
||||
|
@ -422,7 +422,7 @@ void bilateralFilter( InputArray _src, OutputArray _dst, int d,
|
||||
else if( src.depth() == CV_32F )
|
||||
bilateralFilter_32f( src, dst, d, sigmaColor, sigmaSpace, borderType );
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
CV_Error( cv::Error::StsUnsupportedFormat,
|
||||
"Bilateral filtering is only implemented for 8u and 32f images" );
|
||||
}
|
||||
|
||||
|
@ -1200,7 +1200,7 @@ Ptr<BaseRowFilter> getRowSumFilter(int srcType, int sumType, int ksize, int anch
|
||||
if( sdepth == CV_64F && ddepth == CV_64F )
|
||||
return makePtr<RowSum<double, double> >(ksize, anchor);
|
||||
|
||||
CV_Error_( CV_StsNotImplemented,
|
||||
CV_Error_( cv::Error::StsNotImplemented,
|
||||
("Unsupported combination of source format (=%d), and buffer format (=%d)",
|
||||
srcType, sumType));
|
||||
}
|
||||
@ -1241,7 +1241,7 @@ Ptr<BaseColumnFilter> getColumnSumFilter(int sumType, int dstType, int ksize, in
|
||||
if( ddepth == CV_64F && sdepth == CV_64F )
|
||||
return makePtr<ColumnSum<double, double> >(ksize, anchor, scale);
|
||||
|
||||
CV_Error_( CV_StsNotImplemented,
|
||||
CV_Error_( cv::Error::StsNotImplemented,
|
||||
("Unsupported combination of sum format (=%d), and destination format (=%d)",
|
||||
sumType, dstType));
|
||||
}
|
||||
@ -1339,7 +1339,7 @@ Ptr<BaseRowFilter> getSqrRowSumFilter(int srcType, int sumType, int ksize, int a
|
||||
if( sdepth == CV_64F && ddepth == CV_64F )
|
||||
return makePtr<SqrRowSum<double, double> >(ksize, anchor);
|
||||
|
||||
CV_Error_( CV_StsNotImplemented,
|
||||
CV_Error_( cv::Error::StsNotImplemented,
|
||||
("Unsupported combination of source format (=%d), and buffer format (=%d)",
|
||||
srcType, sumType));
|
||||
}
|
||||
|
@ -844,7 +844,7 @@ void Canny( InputArray _src, OutputArray _dst,
|
||||
}
|
||||
|
||||
if ((aperture_size & 1) == 0 || (aperture_size != -1 && (aperture_size < 3 || aperture_size > 7)))
|
||||
CV_Error(CV_StsBadFlag, "Aperture size should be odd between 3 and 7");
|
||||
CV_Error(cv::Error::StsBadFlag, "Aperture size should be odd between 3 and 7");
|
||||
|
||||
if (aperture_size == 7)
|
||||
{
|
||||
|
@ -415,7 +415,7 @@ namespace
|
||||
else if (_src.type() == CV_16UC1)
|
||||
calcLutBody = cv::makePtr<CLAHE_CalcLut_Body<ushort, 65536, 0> >(srcForLut, lut_, tileSize, tilesX_, clipLimit, lutScale);
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unsupported type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unsupported type" );
|
||||
|
||||
cv::parallel_for_(cv::Range(0, tilesX_ * tilesY_), *calcLutBody);
|
||||
|
||||
|
@ -177,7 +177,7 @@ void cvtColorTwoPlane( InputArray _ysrc, InputArray _uvsrc, OutputArray _dst, in
|
||||
case COLOR_YUV2BGRA_NV21: case COLOR_YUV2RGBA_NV21: case COLOR_YUV2BGRA_NV12: case COLOR_YUV2RGBA_NV12:
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadFlag, "Unknown/unsupported color conversion code" );
|
||||
CV_Error( cv::Error::StsBadFlag, "Unknown/unsupported color conversion code" );
|
||||
return;
|
||||
}
|
||||
|
||||
@ -379,7 +379,7 @@ void cvtColor( InputArray _src, OutputArray _dst, int code, int dcn )
|
||||
cvtColormRGBA2RGBA(_src, _dst);
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadFlag, "Unknown/unsupported color conversion code" );
|
||||
CV_Error( cv::Error::StsBadFlag, "Unknown/unsupported color conversion code" );
|
||||
}
|
||||
}
|
||||
} //namespace cv
|
||||
|
@ -2029,7 +2029,7 @@ void cvtTwoPlaneYUVtoBGR(const uchar * y_data, size_t y_step, const uchar * uv_d
|
||||
case 401: cvtPtr = cvtYUV420sp2RGB<0, 1, 4>; break;
|
||||
case 420: cvtPtr = cvtYUV420sp2RGB<2, 0, 4>; break;
|
||||
case 421: cvtPtr = cvtYUV420sp2RGB<2, 1, 4>; break;
|
||||
default: CV_Error( CV_StsBadFlag, "Unknown/unsupported color conversion code" ); break;
|
||||
default: CV_Error( cv::Error::StsBadFlag, "Unknown/unsupported color conversion code" ); break;
|
||||
};
|
||||
|
||||
cvtPtr(dst_data, dst_step, dst_width, dst_height, y_data, y_step, uv_data, uv_step);
|
||||
@ -2069,7 +2069,7 @@ void cvtThreePlaneYUVtoBGR(const uchar * src_data, size_t src_step,
|
||||
case 32: cvtPtr = cvtYUV420p2RGB<2, 3>; break;
|
||||
case 40: cvtPtr = cvtYUV420p2RGB<0, 4>; break;
|
||||
case 42: cvtPtr = cvtYUV420p2RGB<2, 4>; break;
|
||||
default: CV_Error( CV_StsBadFlag, "Unknown/unsupported color conversion code" ); break;
|
||||
default: CV_Error( cv::Error::StsBadFlag, "Unknown/unsupported color conversion code" ); break;
|
||||
};
|
||||
|
||||
cvtPtr(dst_data, dst_step, dst_width, dst_height, src_step, src_data, u, v, ustepIdx, vstepIdx);
|
||||
@ -2139,7 +2139,7 @@ void cvtOnePlaneYUVtoBGR(const uchar * src_data, size_t src_step,
|
||||
case 4200: cvtPtr = cvtYUV422toRGB<2,0,0,4>; break;
|
||||
case 4201: cvtPtr = cvtYUV422toRGB<2,0,1,4>; break;
|
||||
case 4210: cvtPtr = cvtYUV422toRGB<2,1,0,4>; break;
|
||||
default: CV_Error( CV_StsBadFlag, "Unknown/unsupported color conversion code" ); break;
|
||||
default: CV_Error( cv::Error::StsBadFlag, "Unknown/unsupported color conversion code" ); break;
|
||||
};
|
||||
|
||||
cvtPtr(dst_data, dst_step, src_data, src_step, width, height);
|
||||
@ -2168,7 +2168,7 @@ void cvtOnePlaneBGRtoYUV(const uchar * src_data, size_t src_step,
|
||||
case 4200: cvtPtr = cvtRGBtoYUV422<2,0,0,4>; break;
|
||||
case 4201: cvtPtr = cvtRGBtoYUV422<2,0,1,4>; break;
|
||||
case 4210: cvtPtr = cvtRGBtoYUV422<2,1,0,4>; break;
|
||||
default: CV_Error( CV_StsBadFlag, "Unknown/unsupported color conversion code" ); break;
|
||||
default: CV_Error( cv::Error::StsBadFlag, "Unknown/unsupported color conversion code" ); break;
|
||||
};
|
||||
|
||||
cvtPtr(dst_data, dst_step, src_data, src_step, width, height);
|
||||
|
@ -5716,7 +5716,7 @@ namespace cv{
|
||||
}
|
||||
}
|
||||
|
||||
CV_Error(CV_StsUnsupportedFormat, "unsupported label/image type");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "unsupported label/image type");
|
||||
}
|
||||
|
||||
}
|
||||
@ -5738,7 +5738,7 @@ int cv::connectedComponents(InputArray img_, OutputArray _labels, int connectivi
|
||||
return connectedComponents_sub1(img, labels, connectivity, ccltype, sop);
|
||||
}
|
||||
else{
|
||||
CV_Error(CV_StsUnsupportedFormat, "the type of labels must be 16u or 32s");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "the type of labels must be 16u or 32s");
|
||||
}
|
||||
}
|
||||
|
||||
@ -5763,7 +5763,7 @@ int cv::connectedComponentsWithStats(InputArray img_, OutputArray _labels, Outpu
|
||||
return connectedComponents_sub1(img, labels, connectivity, ccltype, sop);
|
||||
}
|
||||
else{
|
||||
CV_Error(CV_StsUnsupportedFormat, "the type of labels must be 16u or 32s");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "the type of labels must be 16u or 32s");
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
@ -59,10 +59,10 @@ cvStartReadChainPoints( CvChain * chain, CvChainPtReader * reader )
|
||||
int i;
|
||||
|
||||
if( !chain || !reader )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( chain->elem_size != 1 || chain->header_size < (int)sizeof(CvChain))
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
CV_Error( cv::Error::StsBadSize, "" );
|
||||
|
||||
cvStartReadSeq( (CvSeq *) chain, (CvSeqReader *) reader, 0 );
|
||||
|
||||
@ -80,7 +80,7 @@ CV_IMPL CvPoint
|
||||
cvReadChainPoint( CvChainPtReader * reader )
|
||||
{
|
||||
if( !reader )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
cv::Point2i pt = reader->pt;
|
||||
|
||||
@ -180,7 +180,7 @@ cvStartFindContours_Impl( void* _img, CvMemStorage* storage,
|
||||
int method, CvPoint offset, int needFillBorder )
|
||||
{
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
CvMat stub, *mat = cvGetMat( _img, &stub );
|
||||
|
||||
@ -189,7 +189,7 @@ cvStartFindContours_Impl( void* _img, CvMemStorage* storage,
|
||||
|
||||
if( !((CV_IS_MASK_ARR( mat ) && mode < CV_RETR_FLOODFILL) ||
|
||||
(CV_MAT_TYPE(mat->type) == CV_32SC1 && mode == CV_RETR_FLOODFILL)) )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
CV_Error( cv::Error::StsUnsupportedFormat,
|
||||
"[Start]FindContours supports only CV_8UC1 images when mode != CV_RETR_FLOODFILL "
|
||||
"otherwise supports CV_32SC1 images only" );
|
||||
|
||||
@ -198,10 +198,10 @@ cvStartFindContours_Impl( void* _img, CvMemStorage* storage,
|
||||
uchar* img = (uchar*)(mat->data.ptr);
|
||||
|
||||
if( method < 0 || method > CV_CHAIN_APPROX_TC89_KCOS )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
|
||||
if( header_size < (int) (method == CV_CHAIN_CODE ? sizeof( CvChain ) : sizeof( CvContour )))
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
CV_Error( cv::Error::StsBadSize, "" );
|
||||
|
||||
CvContourScanner scanner = (CvContourScanner)cvAlloc( sizeof( *scanner ));
|
||||
memset( scanner, 0, sizeof(*scanner) );
|
||||
@ -487,7 +487,7 @@ cvSubstituteContour( CvContourScanner scanner, CvSeq * new_contour )
|
||||
_CvContourInfo *l_cinfo;
|
||||
|
||||
if( !scanner )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
l_cinfo = scanner->l_cinfo;
|
||||
if( l_cinfo && l_cinfo->contour && l_cinfo->contour != new_contour )
|
||||
@ -1029,7 +1029,7 @@ CvSeq *
|
||||
cvFindNextContour( CvContourScanner scanner )
|
||||
{
|
||||
if( !scanner )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
CV_Assert(scanner->img_step >= 0);
|
||||
|
||||
@ -1313,7 +1313,7 @@ cvEndFindContours( CvContourScanner * _scanner )
|
||||
CvSeq *first = 0;
|
||||
|
||||
if( !_scanner )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
scanner = *_scanner;
|
||||
|
||||
if( scanner )
|
||||
@ -1438,13 +1438,13 @@ icvFindContoursInInterval( const CvArr* src,
|
||||
CvSeq* prev = 0;
|
||||
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL storage pointer" );
|
||||
|
||||
if( !result )
|
||||
CV_Error( CV_StsNullPtr, "NULL double CvSeq pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL double CvSeq pointer" );
|
||||
|
||||
if( contourHeaderSize < (int)sizeof(CvContour))
|
||||
CV_Error( CV_StsBadSize, "Contour header size must be >= sizeof(CvContour)" );
|
||||
CV_Error( cv::Error::StsBadSize, "Contour header size must be >= sizeof(CvContour)" );
|
||||
|
||||
storage00.reset(cvCreateChildMemStorage(storage));
|
||||
storage01.reset(cvCreateChildMemStorage(storage));
|
||||
@ -1453,7 +1453,7 @@ icvFindContoursInInterval( const CvArr* src,
|
||||
|
||||
mat = cvGetMat( src, &stub );
|
||||
if( !CV_IS_MASK_ARR(mat))
|
||||
CV_Error( CV_StsBadArg, "Input array must be 8uC1 or 8sC1" );
|
||||
CV_Error( cv::Error::StsBadArg, "Input array must be 8uC1 or 8sC1" );
|
||||
src_data = mat->data.ptr;
|
||||
img_step = mat->step;
|
||||
img_size = cvGetMatSize(mat);
|
||||
@ -1745,14 +1745,14 @@ cvFindContours_Impl( void* img, CvMemStorage* storage,
|
||||
int count = -1;
|
||||
|
||||
if( !firstContour )
|
||||
CV_Error( CV_StsNullPtr, "NULL double CvSeq pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL double CvSeq pointer" );
|
||||
|
||||
*firstContour = 0;
|
||||
|
||||
if( method == CV_LINK_RUNS )
|
||||
{
|
||||
if( offset.x != 0 || offset.y != 0 )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
CV_Error( cv::Error::StsOutOfRange,
|
||||
"Nonzero offset is not supported in CV_LINK_RUNS yet" );
|
||||
|
||||
count = icvFindContoursInInterval( img, storage, firstContour, cntHeaderSize );
|
||||
|
@ -471,7 +471,7 @@ cvConvexHull2( const CvArr* array, void* hull_storage,
|
||||
{
|
||||
ptseq = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POINT_SET( ptseq ))
|
||||
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unsupported sequence type" );
|
||||
if( hull_storage == 0 )
|
||||
hull_storage = ptseq->storage;
|
||||
}
|
||||
@ -503,15 +503,15 @@ cvConvexHull2( const CvArr* array, void* hull_storage,
|
||||
mat = (CvMat*)hull_storage;
|
||||
|
||||
if( (mat->cols != 1 && mat->rows != 1) || !CV_IS_MAT_CONT(mat->type))
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"The hull matrix should be continuous and have a single row or a single column" );
|
||||
|
||||
if( mat->cols + mat->rows - 1 < ptseq->total )
|
||||
CV_Error( CV_StsBadSize, "The hull matrix size might be not enough to fit the hull" );
|
||||
CV_Error( cv::Error::StsBadSize, "The hull matrix size might be not enough to fit the hull" );
|
||||
|
||||
if( CV_MAT_TYPE(mat->type) != CV_SEQ_ELTYPE(ptseq) &&
|
||||
CV_MAT_TYPE(mat->type) != CV_32SC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
CV_Error( cv::Error::StsUnsupportedFormat,
|
||||
"The hull matrix must have the same type as input or 32sC1 (integers)" );
|
||||
|
||||
hullseq = cvMakeSeqHeaderForArray(
|
||||
@ -526,7 +526,7 @@ cvConvexHull2( const CvArr* array, void* hull_storage,
|
||||
if( total == 0 )
|
||||
{
|
||||
if( !isStorage )
|
||||
CV_Error( CV_StsBadSize,
|
||||
CV_Error( cv::Error::StsBadSize,
|
||||
"Point sequence can not be empty if the output is matrix" );
|
||||
return 0;
|
||||
}
|
||||
@ -592,7 +592,7 @@ CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
|
||||
if( CV_IS_SEQ( ptseq ))
|
||||
{
|
||||
if( !CV_IS_SEQ_POINT_SET( ptseq ))
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
CV_Error( cv::Error::StsUnsupportedFormat,
|
||||
"Input sequence is not a sequence of points" );
|
||||
if( !storage )
|
||||
storage = ptseq->storage;
|
||||
@ -603,13 +603,13 @@ CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
|
||||
}
|
||||
|
||||
if( CV_SEQ_ELTYPE( ptseq ) != CV_32SC2 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Floating-point coordinates are not supported here" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "Floating-point coordinates are not supported here" );
|
||||
|
||||
if( CV_IS_SEQ( hull ))
|
||||
{
|
||||
int hulltype = CV_SEQ_ELTYPE( hull );
|
||||
if( hulltype != CV_SEQ_ELTYPE_PPOINT && hulltype != CV_SEQ_ELTYPE_INDEX )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
CV_Error( cv::Error::StsUnsupportedFormat,
|
||||
"Convex hull must represented as a sequence "
|
||||
"of indices or sequence of pointers" );
|
||||
if( !storage )
|
||||
@ -620,15 +620,15 @@ CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
|
||||
CvMat* mat = (CvMat*)hull;
|
||||
|
||||
if( !CV_IS_MAT( hull ))
|
||||
CV_Error(CV_StsBadArg, "Convex hull is neither sequence nor matrix");
|
||||
CV_Error(cv::Error::StsBadArg, "Convex hull is neither sequence nor matrix");
|
||||
|
||||
if( (mat->cols != 1 && mat->rows != 1) ||
|
||||
!CV_IS_MAT_CONT(mat->type) || CV_MAT_TYPE(mat->type) != CV_32SC1 )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"The matrix should be 1-dimensional and continuous array of int's" );
|
||||
|
||||
if( mat->cols + mat->rows - 1 > ptseq->total )
|
||||
CV_Error( CV_StsBadSize, "Convex hull is larger than the point sequence" );
|
||||
CV_Error( cv::Error::StsBadSize, "Convex hull is larger than the point sequence" );
|
||||
|
||||
hull = cvMakeSeqHeaderForArray(
|
||||
CV_SEQ_KIND_CURVE|CV_MAT_TYPE(mat->type)|CV_SEQ_FLAG_CLOSED,
|
||||
@ -639,13 +639,13 @@ CV_IMPL CvSeq* cvConvexityDefects( const CvArr* array,
|
||||
is_index = CV_SEQ_ELTYPE(hull) == CV_SEQ_ELTYPE_INDEX;
|
||||
|
||||
if( !storage )
|
||||
CV_Error( CV_StsNullPtr, "NULL storage pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL storage pointer" );
|
||||
|
||||
defects = cvCreateSeq( CV_SEQ_KIND_GENERIC, sizeof(CvSeq), sizeof(CvConvexityDefect), storage );
|
||||
|
||||
if( ptseq->total < 4 || hull->total < 3)
|
||||
{
|
||||
//CV_ERROR( CV_StsBadSize,
|
||||
//CV_ERROR( cv::Error::StsBadSize,
|
||||
// "point seq size must be >= 4, convex hull size must be >= 3" );
|
||||
return defects;
|
||||
}
|
||||
@ -779,7 +779,7 @@ cvCheckContourConvexity( const CvArr* array )
|
||||
if( CV_IS_SEQ(contour) )
|
||||
{
|
||||
if( !CV_IS_SEQ_POINT_SET(contour))
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
CV_Error( cv::Error::StsUnsupportedFormat,
|
||||
"Input sequence must be polygon (closed 2d curve)" );
|
||||
}
|
||||
else
|
||||
|
@ -1708,7 +1708,7 @@ void cv::demosaicing(InputArray _src, OutputArray _dst, int code, int dcn)
|
||||
else if( depth == CV_16U )
|
||||
Bayer2Gray_<ushort, SIMDBayerStubInterpolator_<ushort> >(src, dst, code);
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "Bayer->Gray demosaicing only supports 8u and 16u types");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "Bayer->Gray demosaicing only supports 8u and 16u types");
|
||||
break;
|
||||
|
||||
case COLOR_BayerBG2BGRA: case COLOR_BayerGB2BGRA: case COLOR_BayerRG2BGRA: case COLOR_BayerGR2BGRA:
|
||||
@ -1735,7 +1735,7 @@ void cv::demosaicing(InputArray _src, OutputArray _dst, int code, int dcn)
|
||||
else if( depth == CV_16U )
|
||||
Bayer2RGB_<ushort, SIMDBayerStubInterpolator_<ushort> >(src, dst_, code);
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "Bayer->RGB demosaicing only supports 8u and 16u types");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "Bayer->RGB demosaicing only supports 8u and 16u types");
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -1758,11 +1758,11 @@ void cv::demosaicing(InputArray _src, OutputArray _dst, int code, int dcn)
|
||||
else if (depth == CV_16U)
|
||||
Bayer2RGB_EdgeAware_T<ushort, SIMDBayerStubInterpolator_<ushort> >(src, dst, code);
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "Bayer->RGB Edge-Aware demosaicing only currently supports 8u and 16u types");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "Bayer->RGB Edge-Aware demosaicing only currently supports 8u and 16u types");
|
||||
|
||||
break;
|
||||
|
||||
default:
|
||||
CV_Error( CV_StsBadFlag, "Unknown / unsupported color conversion code" );
|
||||
CV_Error( cv::Error::StsBadFlag, "Unknown / unsupported color conversion code" );
|
||||
}
|
||||
}
|
||||
|
@ -101,7 +101,7 @@ static void getSobelKernels( OutputArray _kx, OutputArray _ky,
|
||||
Mat ky = _ky.getMat();
|
||||
|
||||
if( _ksize % 2 == 0 || _ksize > 31 )
|
||||
CV_Error( CV_StsOutOfRange, "The kernel size must be odd and not larger than 31" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "The kernel size must be odd and not larger than 31" );
|
||||
std::vector<int> kerI(std::max(ksizeX, ksizeY) + 1);
|
||||
|
||||
CV_Assert( dx >= 0 && dy >= 0 && dx+dy > 0 );
|
||||
|
@ -448,7 +448,7 @@ static void getDistanceTransformMask( int maskType, float *metrics )
|
||||
metrics[2] = 2.1969f;
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unknown metric type");
|
||||
CV_Error(cv::Error::StsBadArg, "Unknown metric type");
|
||||
}
|
||||
}
|
||||
|
||||
@ -766,7 +766,7 @@ void cv::distanceTransform( InputArray _src, OutputArray _dst, OutputArray _labe
|
||||
float _mask[5] = {0};
|
||||
|
||||
if( maskSize != cv::DIST_MASK_3 && maskSize != cv::DIST_MASK_5 && maskSize != cv::DIST_MASK_PRECISE )
|
||||
CV_Error( CV_StsBadSize, "Mask size should be 3 or 5 or 0 (precise)" );
|
||||
CV_Error( cv::Error::StsBadSize, "Mask size should be 3 or 5 or 0 (precise)" );
|
||||
|
||||
if ((distType == cv::DIST_C || distType == cv::DIST_L1) && !need_labels)
|
||||
maskSize = cv::DIST_MASK_3;
|
||||
|
@ -2239,7 +2239,7 @@ static const int* getFontData(int fontFace)
|
||||
ascii = HersheyScriptComplex;
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsOutOfRange, "Unknown font type" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Unknown font type" );
|
||||
}
|
||||
return ascii;
|
||||
}
|
||||
|
@ -174,28 +174,28 @@ CV_IMPL float cvCalcEMD2( const CvArr* signature_arr1,
|
||||
signature2 = cvGetMat( signature2, &sign_stub2 );
|
||||
|
||||
if( signature1->cols != signature2->cols )
|
||||
CV_Error( CV_StsUnmatchedSizes, "The arrays must have equal number of columns (which is number of dimensions but 1)" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "The arrays must have equal number of columns (which is number of dimensions but 1)" );
|
||||
|
||||
dims = signature1->cols - 1;
|
||||
size1 = signature1->rows;
|
||||
size2 = signature2->rows;
|
||||
|
||||
if( !CV_ARE_TYPES_EQ( signature1, signature2 ))
|
||||
CV_Error( CV_StsUnmatchedFormats, "The array must have equal types" );
|
||||
CV_Error( cv::Error::StsUnmatchedFormats, "The array must have equal types" );
|
||||
|
||||
if( CV_MAT_TYPE( signature1->type ) != CV_32FC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "The signatures must be 32fC1" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "The signatures must be 32fC1" );
|
||||
|
||||
if( flow )
|
||||
{
|
||||
flow = cvGetMat( flow, &flow_stub );
|
||||
|
||||
if( flow->rows != size1 || flow->cols != size2 )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
CV_Error( cv::Error::StsUnmatchedSizes,
|
||||
"The flow matrix size does not match to the signatures' sizes" );
|
||||
|
||||
if( CV_MAT_TYPE( flow->type ) != CV_32FC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "The flow matrix must be 32fC1" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "The flow matrix must be 32fC1" );
|
||||
}
|
||||
|
||||
cost->data.fl = 0;
|
||||
@ -206,28 +206,28 @@ CV_IMPL float cvCalcEMD2( const CvArr* signature_arr1,
|
||||
if( cost_matrix )
|
||||
{
|
||||
if( dist_func )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"Only one of cost matrix or distance function should be non-NULL in case of user-defined distance" );
|
||||
|
||||
if( lower_bound )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"The lower boundary can not be calculated if the cost matrix is used" );
|
||||
|
||||
cost = cvGetMat( cost_matrix, &cost_stub );
|
||||
if( cost->rows != size1 || cost->cols != size2 )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
CV_Error( cv::Error::StsUnmatchedSizes,
|
||||
"The cost matrix size does not match to the signatures' sizes" );
|
||||
|
||||
if( CV_MAT_TYPE( cost->type ) != CV_32FC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "The cost matrix must be 32fC1" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "The cost matrix must be 32fC1" );
|
||||
}
|
||||
else if( !dist_func )
|
||||
CV_Error( CV_StsNullPtr, "In case of user-defined distance Distance function is undefined" );
|
||||
CV_Error( cv::Error::StsNullPtr, "In case of user-defined distance Distance function is undefined" );
|
||||
}
|
||||
else
|
||||
{
|
||||
if( dims == 0 )
|
||||
CV_Error( CV_StsBadSize,
|
||||
CV_Error( cv::Error::StsBadSize,
|
||||
"Number of dimensions can be 0 only if a user-defined metric is used" );
|
||||
user_param = (void *) (size_t)dims;
|
||||
switch (dist_type)
|
||||
@ -242,7 +242,7 @@ CV_IMPL float cvCalcEMD2( const CvArr* signature_arr1,
|
||||
dist_func = icvDistC;
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadFlag, "Bad or unsupported metric type" );
|
||||
CV_Error( cv::Error::StsBadFlag, "Bad or unsupported metric type" );
|
||||
}
|
||||
}
|
||||
|
||||
@ -279,7 +279,7 @@ CV_IMPL float cvCalcEMD2( const CvArr* signature_arr1,
|
||||
state.ssize, state.dsize, state.enter_x );
|
||||
|
||||
if( min_delta == CV_EMD_INF )
|
||||
CV_Error( CV_StsNoConv, "" );
|
||||
CV_Error( cv::Error::StsNoConv, "" );
|
||||
|
||||
/* if no negative deltamin, we found the optimal solution */
|
||||
if( min_delta >= -eps )
|
||||
@ -287,7 +287,7 @@ CV_IMPL float cvCalcEMD2( const CvArr* signature_arr1,
|
||||
|
||||
/* improve solution */
|
||||
if(!icvNewSolution( &state ))
|
||||
CV_Error( CV_StsNoConv, "" );
|
||||
CV_Error( cv::Error::StsNoConv, "" );
|
||||
}
|
||||
}
|
||||
|
||||
@ -387,7 +387,7 @@ static int icvInitEMD( const float* signature1, int size1,
|
||||
|
||||
}
|
||||
else if( weight < 0 )
|
||||
CV_Error(CV_StsBadArg, "signature1 must not contain negative weights");
|
||||
CV_Error(cv::Error::StsBadArg, "signature1 must not contain negative weights");
|
||||
}
|
||||
|
||||
for( i = 0; i < size2; i++ )
|
||||
@ -401,13 +401,13 @@ static int icvInitEMD( const float* signature1, int size1,
|
||||
state->idx2[dsize++] = i;
|
||||
}
|
||||
else if( weight < 0 )
|
||||
CV_Error(CV_StsBadArg, "signature2 must not contain negative weights");
|
||||
CV_Error(cv::Error::StsBadArg, "signature2 must not contain negative weights");
|
||||
}
|
||||
|
||||
if( ssize == 0 )
|
||||
CV_Error(CV_StsBadArg, "signature1 must contain at least one non-zero value");
|
||||
CV_Error(cv::Error::StsBadArg, "signature1 must contain at least one non-zero value");
|
||||
if( dsize == 0 )
|
||||
CV_Error(CV_StsBadArg, "signature2 must contain at least one non-zero value");
|
||||
CV_Error(cv::Error::StsBadArg, "signature2 must contain at least one non-zero value");
|
||||
|
||||
/* if supply different than the demand, add a zero-cost dummy cluster */
|
||||
diff = s_sum - d_sum;
|
||||
|
@ -3039,7 +3039,7 @@ Ptr<BaseRowFilter> getLinearRowFilter(
|
||||
if( sdepth == CV_64F && ddepth == CV_64F )
|
||||
return makePtr<RowFilter<double, double, RowNoVec> >(kernel, anchor);
|
||||
|
||||
CV_Error_( CV_StsNotImplemented,
|
||||
CV_Error_( cv::Error::StsNotImplemented,
|
||||
("Unsupported combination of source format (=%d), and buffer format (=%d)",
|
||||
srcType, bufType));
|
||||
}
|
||||
@ -3137,7 +3137,7 @@ Ptr<BaseColumnFilter> getLinearColumnFilter(
|
||||
(kernel, anchor, delta, symmetryType);
|
||||
}
|
||||
|
||||
CV_Error_( CV_StsNotImplemented,
|
||||
CV_Error_( cv::Error::StsNotImplemented,
|
||||
("Unsupported combination of buffer format (=%d), and destination format (=%d)",
|
||||
bufType, dstType));
|
||||
}
|
||||
@ -3291,7 +3291,7 @@ Ptr<BaseFilter> getLinearFilter(
|
||||
return makePtr<Filter2D<double,
|
||||
Cast<double, double>, FilterNoVec> >(kernel, anchor, delta);
|
||||
|
||||
CV_Error_( CV_StsNotImplemented,
|
||||
CV_Error_( cv::Error::StsNotImplemented,
|
||||
("Unsupported combination of source format (=%d), and destination format (=%d)",
|
||||
srcType, dstType));
|
||||
}
|
||||
|
@ -487,12 +487,12 @@ int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
|
||||
|
||||
if ( (cn != 1) && (cn != 3) )
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "Number of channels in input image must be 1 or 3" );
|
||||
CV_Error( cv::Error::StsBadArg, "Number of channels in input image must be 1 or 3" );
|
||||
}
|
||||
|
||||
const int connectivity = flags & 255;
|
||||
if( connectivity != 0 && connectivity != 4 && connectivity != 8 )
|
||||
CV_Error( CV_StsBadFlag, "Connectivity must be 4, 0(=4) or 8" );
|
||||
CV_Error( cv::Error::StsBadFlag, "Connectivity must be 4, 0(=4) or 8" );
|
||||
|
||||
if( _mask.empty() )
|
||||
{
|
||||
@ -513,13 +513,13 @@ int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
|
||||
for( i = 0; i < cn; i++ )
|
||||
{
|
||||
if( loDiff[i] < 0 || upDiff[i] < 0 )
|
||||
CV_Error( CV_StsBadArg, "lo_diff and up_diff must be non-negative" );
|
||||
CV_Error( cv::Error::StsBadArg, "lo_diff and up_diff must be non-negative" );
|
||||
is_simple = is_simple && fabs(loDiff[i]) < DBL_EPSILON && fabs(upDiff[i]) < DBL_EPSILON;
|
||||
}
|
||||
|
||||
if( (unsigned)seedPoint.x >= (unsigned)size.width ||
|
||||
(unsigned)seedPoint.y >= (unsigned)size.height )
|
||||
CV_Error( CV_StsOutOfRange, "Seed point is outside of image" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Seed point is outside of image" );
|
||||
|
||||
scalarToRawData( newVal, &nv_buf, type, 0);
|
||||
size_t buffer_size = MAX( size.width, size.height ) * 2;
|
||||
@ -550,7 +550,7 @@ int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
|
||||
else if( type == CV_32FC3 )
|
||||
floodFill_CnIR(img, seedPoint, Vec3f(nv_buf.f), &comp, flags, &buffer);
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "" );
|
||||
if( rect )
|
||||
*rect = comp.rect;
|
||||
return comp.area;
|
||||
@ -583,7 +583,7 @@ int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
|
||||
ud_buf.f[i] = (float)upDiff[i];
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "" );
|
||||
|
||||
uchar newMaskVal = (uchar)((flags & 0xff00) == 0 ? 1 : ((flags >> 8) & 255));
|
||||
|
||||
@ -618,7 +618,7 @@ int cv::floodFill( InputOutputArray _image, InputOutputArray _mask,
|
||||
Diff32fC3(ld_buf.f, ud_buf.f),
|
||||
&comp, flags, &buffer);
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "");
|
||||
|
||||
if( rect )
|
||||
*rect = comp.rect;
|
||||
|
@ -87,7 +87,7 @@ CV_IMPL void
|
||||
cvBoxPoints( CvBox2D box, CvPoint2D32f pt[4] )
|
||||
{
|
||||
if( !pt )
|
||||
CV_Error( CV_StsNullPtr, "NULL vertex array pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL vertex array pointer" );
|
||||
cv::RotatedRect(box).points((cv::Point2f*)pt);
|
||||
}
|
||||
|
||||
|
@ -96,7 +96,7 @@ GMM::GMM( Mat& _model )
|
||||
_model.setTo(Scalar(0));
|
||||
}
|
||||
else if( (_model.type() != CV_64FC1) || (_model.rows != 1) || (_model.cols != modelSize*componentsCount) )
|
||||
CV_Error( CV_StsBadArg, "_model must have CV_64FC1 type, rows == 1 and cols == 13*componentsCount" );
|
||||
CV_Error( cv::Error::StsBadArg, "_model must have CV_64FC1 type, rows == 1 and cols == 13*componentsCount" );
|
||||
|
||||
model = _model;
|
||||
|
||||
@ -329,18 +329,18 @@ static void calcNWeights( const Mat& img, Mat& leftW, Mat& upleftW, Mat& upW, Ma
|
||||
static void checkMask( const Mat& img, const Mat& mask )
|
||||
{
|
||||
if( mask.empty() )
|
||||
CV_Error( CV_StsBadArg, "mask is empty" );
|
||||
CV_Error( cv::Error::StsBadArg, "mask is empty" );
|
||||
if( mask.type() != CV_8UC1 )
|
||||
CV_Error( CV_StsBadArg, "mask must have CV_8UC1 type" );
|
||||
CV_Error( cv::Error::StsBadArg, "mask must have CV_8UC1 type" );
|
||||
if( mask.cols != img.cols || mask.rows != img.rows )
|
||||
CV_Error( CV_StsBadArg, "mask must have as many rows and cols as img" );
|
||||
CV_Error( cv::Error::StsBadArg, "mask must have as many rows and cols as img" );
|
||||
for( int y = 0; y < mask.rows; y++ )
|
||||
{
|
||||
for( int x = 0; x < mask.cols; x++ )
|
||||
{
|
||||
uchar val = mask.at<uchar>(y,x);
|
||||
if( val!=GC_BGD && val!=GC_FGD && val!=GC_PR_BGD && val!=GC_PR_FGD )
|
||||
CV_Error( CV_StsBadArg, "mask element value must be equal "
|
||||
CV_Error( cv::Error::StsBadArg, "mask element value must be equal "
|
||||
"GC_BGD or GC_FGD or GC_PR_BGD or GC_PR_FGD" );
|
||||
}
|
||||
}
|
||||
@ -552,9 +552,9 @@ void cv::grabCut( InputArray _img, InputOutputArray _mask, Rect rect,
|
||||
Mat& fgdModel = _fgdModel.getMatRef();
|
||||
|
||||
if( img.empty() )
|
||||
CV_Error( CV_StsBadArg, "image is empty" );
|
||||
CV_Error( cv::Error::StsBadArg, "image is empty" );
|
||||
if( img.type() != CV_8UC3 )
|
||||
CV_Error( CV_StsBadArg, "image must have CV_8UC3 type" );
|
||||
CV_Error( cv::Error::StsBadArg, "image must have CV_8UC3 type" );
|
||||
|
||||
GMM bgdGMM( bgdModel ), fgdGMM( fgdModel );
|
||||
Mat compIdxs( img.size(), CV_32SC1 );
|
||||
|
@ -1005,7 +1005,7 @@ void cv::calcHist( const Mat* images, int nimages, const int* channels,
|
||||
else if( depth == CV_32F )
|
||||
calcHist_<float>(ptrs, deltas, imsize, ihist, dims, ranges, _uniranges, uniform );
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "");
|
||||
|
||||
ihist.convertTo(hist, CV_32F);
|
||||
}
|
||||
@ -1182,7 +1182,7 @@ static void calcHist( const Mat* images, int nimages, const int* channels,
|
||||
else if( depth == CV_32F )
|
||||
calcSparseHist_<float>(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, uniform );
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "");
|
||||
|
||||
if( !keepInt )
|
||||
{
|
||||
@ -1637,7 +1637,7 @@ void cv::calcBackProject( const Mat* images, int nimages, const int* channels,
|
||||
else if( depth == CV_32F )
|
||||
calcBackProj_<float, float>(ptrs, deltas, imsize, hist, dims, ranges, _uniranges, (float)scale, uniform );
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "");
|
||||
}
|
||||
|
||||
|
||||
@ -1810,7 +1810,7 @@ void cv::calcBackProject( const Mat* images, int nimages, const int* channels,
|
||||
calcSparseBackProj_<float, float>(ptrs, deltas, imsize, hist, dims, ranges,
|
||||
_uniranges, (float)scale, uniform );
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "");
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
@ -2211,7 +2211,7 @@ double cv::compareHist( InputArray _H1, InputArray _H2, int method )
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown comparison method" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown comparison method" );
|
||||
}
|
||||
|
||||
if( method == CV_COMP_CHISQR_ALT )
|
||||
@ -2350,7 +2350,7 @@ double cv::compareHist( const SparseMat& H1, const SparseMat& H2, int method )
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown comparison method" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown comparison method" );
|
||||
|
||||
if( method == CV_COMP_CHISQR_ALT )
|
||||
result *= 2;
|
||||
@ -2387,7 +2387,7 @@ cvCreateHist( int dims, int *sizes, CvHistType type, float** ranges, int uniform
|
||||
else if( type == CV_HIST_SPARSE )
|
||||
hist->bins = cvCreateSparseMat( dims, sizes, CV_HIST_DEFAULT_TYPE );
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid histogram type" );
|
||||
|
||||
if( ranges )
|
||||
cvSetHistBinRanges( hist, ranges, uniform );
|
||||
@ -2402,10 +2402,10 @@ cvMakeHistHeaderForArray( int dims, int *sizes, CvHistogram *hist,
|
||||
float *data, float **ranges, int uniform )
|
||||
{
|
||||
if( !hist )
|
||||
CV_Error( CV_StsNullPtr, "Null histogram header pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Null histogram header pointer" );
|
||||
|
||||
if( !data )
|
||||
CV_Error( CV_StsNullPtr, "Null data pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Null data pointer" );
|
||||
|
||||
hist->thresh2 = 0;
|
||||
hist->type = CV_HIST_MAGIC_VAL;
|
||||
@ -2414,7 +2414,7 @@ cvMakeHistHeaderForArray( int dims, int *sizes, CvHistogram *hist,
|
||||
if( ranges )
|
||||
{
|
||||
if( !uniform )
|
||||
CV_Error( CV_StsBadArg, "Only uniform bin ranges can be used here "
|
||||
CV_Error( cv::Error::StsBadArg, "Only uniform bin ranges can be used here "
|
||||
"(to avoid memory allocation)" );
|
||||
cvSetHistBinRanges( hist, ranges, uniform );
|
||||
}
|
||||
@ -2427,14 +2427,14 @@ CV_IMPL void
|
||||
cvReleaseHist( CvHistogram **hist )
|
||||
{
|
||||
if( !hist )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( *hist )
|
||||
{
|
||||
CvHistogram* temp = *hist;
|
||||
|
||||
if( !CV_IS_HIST(temp))
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid histogram header" );
|
||||
*hist = 0;
|
||||
|
||||
if( CV_IS_SPARSE_HIST( temp ))
|
||||
@ -2455,7 +2455,7 @@ CV_IMPL void
|
||||
cvClearHist( CvHistogram *hist )
|
||||
{
|
||||
if( !CV_IS_HIST(hist) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid histogram header" );
|
||||
cvZero( hist->bins );
|
||||
}
|
||||
|
||||
@ -2465,7 +2465,7 @@ CV_IMPL void
|
||||
cvThreshHist( CvHistogram* hist, double thresh )
|
||||
{
|
||||
if( !CV_IS_HIST(hist) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid histogram header" );
|
||||
|
||||
if( !CV_IS_SPARSE_MAT(hist->bins) )
|
||||
{
|
||||
@ -2497,7 +2497,7 @@ cvNormalizeHist( CvHistogram* hist, double factor )
|
||||
double sum = 0;
|
||||
|
||||
if( !CV_IS_HIST(hist) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid histogram header" );
|
||||
|
||||
if( !CV_IS_SPARSE_HIST(hist) )
|
||||
{
|
||||
@ -2544,7 +2544,7 @@ cvGetMinMaxHistValue( const CvHistogram* hist,
|
||||
int dims, size[CV_MAX_DIM];
|
||||
|
||||
if( !CV_IS_HIST(hist) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid histogram header" );
|
||||
|
||||
dims = cvGetDims( hist->bins, size );
|
||||
|
||||
@ -2662,10 +2662,10 @@ cvCompareHist( const CvHistogram* hist1,
|
||||
int size1[CV_MAX_DIM], size2[CV_MAX_DIM], total = 1;
|
||||
|
||||
if( !CV_IS_HIST(hist1) || !CV_IS_HIST(hist2) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header[s]" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid histogram header[s]" );
|
||||
|
||||
if( CV_IS_SPARSE_MAT(hist1->bins) != CV_IS_SPARSE_MAT(hist2->bins))
|
||||
CV_Error(CV_StsUnmatchedFormats, "One of histograms is sparse and other is not");
|
||||
CV_Error(cv::Error::StsUnmatchedFormats, "One of histograms is sparse and other is not");
|
||||
|
||||
if( !CV_IS_SPARSE_MAT(hist1->bins) )
|
||||
{
|
||||
@ -2678,13 +2678,13 @@ cvCompareHist( const CvHistogram* hist1,
|
||||
int dims2 = cvGetDims( hist2->bins, size2 );
|
||||
|
||||
if( dims1 != dims2 )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
CV_Error( cv::Error::StsUnmatchedSizes,
|
||||
"The histograms have different numbers of dimensions" );
|
||||
|
||||
for( i = 0; i < dims1; i++ )
|
||||
{
|
||||
if( size1[i] != size2[i] )
|
||||
CV_Error( CV_StsUnmatchedSizes, "The histograms have different sizes" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "The histograms have different sizes" );
|
||||
total *= size1[i];
|
||||
}
|
||||
|
||||
@ -2804,7 +2804,7 @@ cvCompareHist( const CvHistogram* hist1,
|
||||
result = cv::compareHist( sH1, sH2, CV_COMP_KL_DIV );
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown comparison method" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown comparison method" );
|
||||
|
||||
if( method == CV_COMP_CHISQR_ALT )
|
||||
result *= 2;
|
||||
@ -2817,12 +2817,12 @@ CV_IMPL void
|
||||
cvCopyHist( const CvHistogram* src, CvHistogram** _dst )
|
||||
{
|
||||
if( !_dst )
|
||||
CV_Error( CV_StsNullPtr, "Destination double pointer is NULL" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Destination double pointer is NULL" );
|
||||
|
||||
CvHistogram* dst = *_dst;
|
||||
|
||||
if( !CV_IS_HIST(src) || (dst && !CV_IS_HIST(dst)) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header[s]" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid histogram header[s]" );
|
||||
|
||||
bool eq = false;
|
||||
int size1[CV_MAX_DIM];
|
||||
@ -2887,10 +2887,10 @@ cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform )
|
||||
int i, j;
|
||||
|
||||
if( !ranges )
|
||||
CV_Error( CV_StsNullPtr, "NULL ranges pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL ranges pointer" );
|
||||
|
||||
if( !CV_IS_HIST(hist) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid histogram header" );
|
||||
|
||||
dims = cvGetDims( hist->bins, size );
|
||||
for( i = 0; i < dims; i++ )
|
||||
@ -2901,7 +2901,7 @@ cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform )
|
||||
for( i = 0; i < dims; i++ )
|
||||
{
|
||||
if( !ranges[i] )
|
||||
CV_Error( CV_StsNullPtr, "One of <ranges> elements is NULL" );
|
||||
CV_Error( cv::Error::StsNullPtr, "One of <ranges> elements is NULL" );
|
||||
hist->thresh[i][0] = ranges[i][0];
|
||||
hist->thresh[i][1] = ranges[i][1];
|
||||
}
|
||||
@ -2925,13 +2925,13 @@ cvSetHistBinRanges( CvHistogram* hist, float** ranges, int uniform )
|
||||
float val0 = -FLT_MAX;
|
||||
|
||||
if( !ranges[i] )
|
||||
CV_Error( CV_StsNullPtr, "One of <ranges> elements is NULL" );
|
||||
CV_Error( cv::Error::StsNullPtr, "One of <ranges> elements is NULL" );
|
||||
|
||||
for( j = 0; j <= size[i]; j++ )
|
||||
{
|
||||
float val = ranges[i][j];
|
||||
if( val <= val0 )
|
||||
CV_Error(CV_StsOutOfRange, "Bin ranges should go in ascenting order");
|
||||
CV_Error(cv::Error::StsOutOfRange, "Bin ranges should go in ascenting order");
|
||||
val0 = dim_ranges[j] = val;
|
||||
}
|
||||
|
||||
@ -2949,10 +2949,10 @@ CV_IMPL void
|
||||
cvCalcArrHist( CvArr** img, CvHistogram* hist, int accumulate, const CvArr* mask )
|
||||
{
|
||||
if( !CV_IS_HIST(hist))
|
||||
CV_Error( CV_StsBadArg, "Bad histogram pointer" );
|
||||
CV_Error( cv::Error::StsBadArg, "Bad histogram pointer" );
|
||||
|
||||
if( !img )
|
||||
CV_Error( CV_StsNullPtr, "Null double array pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Null double array pointer" );
|
||||
|
||||
int size[CV_MAX_DIM];
|
||||
int i, dims = cvGetDims( hist->bins, size);
|
||||
@ -3015,10 +3015,10 @@ CV_IMPL void
|
||||
cvCalcArrBackProject( CvArr** img, CvArr* dst, const CvHistogram* hist )
|
||||
{
|
||||
if( !CV_IS_HIST(hist))
|
||||
CV_Error( CV_StsBadArg, "Bad histogram pointer" );
|
||||
CV_Error( cv::Error::StsBadArg, "Bad histogram pointer" );
|
||||
|
||||
if( !img )
|
||||
CV_Error( CV_StsNullPtr, "Null double array pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Null double array pointer" );
|
||||
|
||||
int size[CV_MAX_DIM];
|
||||
int i, dims = cvGetDims( hist->bins, size );
|
||||
@ -3078,21 +3078,21 @@ cvCalcArrBackProjectPatch( CvArr** arr, CvArr* dst, CvSize patch_size, CvHistogr
|
||||
cv::Size size;
|
||||
|
||||
if( !CV_IS_HIST(hist))
|
||||
CV_Error( CV_StsBadArg, "Bad histogram pointer" );
|
||||
CV_Error( cv::Error::StsBadArg, "Bad histogram pointer" );
|
||||
|
||||
if( !arr )
|
||||
CV_Error( CV_StsNullPtr, "Null double array pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "Null double array pointer" );
|
||||
|
||||
if( norm_factor <= 0 )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
CV_Error( cv::Error::StsOutOfRange,
|
||||
"Bad normalization factor (set it to 1.0 if unsure)" );
|
||||
|
||||
if( patch_size.width <= 0 || patch_size.height <= 0 )
|
||||
CV_Error( CV_StsBadSize, "The patch width and height must be positive" );
|
||||
CV_Error( cv::Error::StsBadSize, "The patch width and height must be positive" );
|
||||
|
||||
dims = cvGetDims( hist->bins );
|
||||
if (dims < 1)
|
||||
CV_Error( CV_StsOutOfRange, "Invalid number of dimensions");
|
||||
CV_Error( cv::Error::StsOutOfRange, "Invalid number of dimensions");
|
||||
cvNormalizeHist( hist, norm_factor );
|
||||
|
||||
for( i = 0; i < dims; i++ )
|
||||
@ -3105,11 +3105,11 @@ cvCalcArrBackProjectPatch( CvArr** arr, CvArr* dst, CvSize patch_size, CvHistogr
|
||||
|
||||
dstmat = cvGetMat( dst, &dststub, 0, 0 );
|
||||
if( CV_MAT_TYPE( dstmat->type ) != CV_32FC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Resultant image must have 32fC1 type" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "Resultant image must have 32fC1 type" );
|
||||
|
||||
if( dstmat->cols != img[0]->width - patch_size.width + 1 ||
|
||||
dstmat->rows != img[0]->height - patch_size.height + 1 )
|
||||
CV_Error( CV_StsUnmatchedSizes,
|
||||
CV_Error( cv::Error::StsUnmatchedSizes,
|
||||
"The output map must be (W-w+1 x H-h+1), "
|
||||
"where the input images are (W x H) each and the patch is (w x h)" );
|
||||
|
||||
@ -3146,18 +3146,18 @@ cvCalcBayesianProb( CvHistogram** src, int count, CvHistogram** dst )
|
||||
int i;
|
||||
|
||||
if( !src || !dst )
|
||||
CV_Error( CV_StsNullPtr, "NULL histogram array pointer" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL histogram array pointer" );
|
||||
|
||||
if( count < 2 )
|
||||
CV_Error( CV_StsOutOfRange, "Too small number of histograms" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Too small number of histograms" );
|
||||
|
||||
for( i = 0; i < count; i++ )
|
||||
{
|
||||
if( !CV_IS_HIST(src[i]) || !CV_IS_HIST(dst[i]) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram header" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid histogram header" );
|
||||
|
||||
if( !CV_IS_MATND(src[i]->bins) || !CV_IS_MATND(dst[i]->bins) )
|
||||
CV_Error( CV_StsBadArg, "The function supports dense histograms only" );
|
||||
CV_Error( cv::Error::StsBadArg, "The function supports dense histograms only" );
|
||||
}
|
||||
|
||||
cvZero( dst[0]->bins );
|
||||
@ -3178,10 +3178,10 @@ cvCalcProbDensity( const CvHistogram* hist, const CvHistogram* hist_mask,
|
||||
CvHistogram* hist_dens, double scale )
|
||||
{
|
||||
if( scale <= 0 )
|
||||
CV_Error( CV_StsOutOfRange, "scale must be positive" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "scale must be positive" );
|
||||
|
||||
if( !CV_IS_HIST(hist) || !CV_IS_HIST(hist_mask) || !CV_IS_HIST(hist_dens) )
|
||||
CV_Error( CV_StsBadArg, "Invalid histogram pointer[s]" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid histogram pointer[s]" );
|
||||
|
||||
{
|
||||
CvArr* arrs[] = { hist->bins, hist_mask->bins, hist_dens->bins };
|
||||
@ -3191,7 +3191,7 @@ cvCalcProbDensity( const CvHistogram* hist, const CvHistogram* hist_mask,
|
||||
cvInitNArrayIterator( 3, arrs, 0, stubs, &iterator );
|
||||
|
||||
if( CV_MAT_TYPE(iterator.hdr[0]->type) != CV_32FC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "All histograms must have 32fC1 type" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "All histograms must have 32fC1 type" );
|
||||
|
||||
do
|
||||
{
|
||||
@ -3533,7 +3533,7 @@ static void *icvReadHist( CvFileStorage * fs, CvFileNode * node )
|
||||
int i, sizes[CV_MAX_DIM];
|
||||
|
||||
if(!CV_IS_MATND(mat))
|
||||
CV_Error( CV_StsError, "Expected CvMatND");
|
||||
CV_Error( cv::Error::StsError, "Expected CvMatND");
|
||||
|
||||
for(i=0; i<mat->dims; i++)
|
||||
sizes[i] = mat->dim[i].size;
|
||||
@ -3554,7 +3554,7 @@ static void *icvReadHist( CvFileStorage * fs, CvFileNode * node )
|
||||
{
|
||||
h->bins = cvReadByName( fs, node, "bins" );
|
||||
if(!CV_IS_SPARSE_MAT(h->bins)){
|
||||
CV_Error( CV_StsError, "Unknown Histogram type");
|
||||
CV_Error( cv::Error::StsError, "Unknown Histogram type");
|
||||
}
|
||||
}
|
||||
|
||||
@ -3571,7 +3571,7 @@ static void *icvReadHist( CvFileStorage * fs, CvFileNode * node )
|
||||
|
||||
thresh_node = cvGetFileNodeByName( fs, node, "thresh" );
|
||||
if(!thresh_node)
|
||||
CV_Error( CV_StsError, "'thresh' node is missing");
|
||||
CV_Error( cv::Error::StsError, "'thresh' node is missing");
|
||||
cvStartReadRawData( fs, thresh_node, &reader );
|
||||
|
||||
if(is_uniform)
|
||||
|
@ -2396,11 +2396,11 @@ cvHoughLines2( CvArr* src_image, void* lineStorage, int method,
|
||||
mat = (CvMat*)lineStorage;
|
||||
|
||||
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"The destination matrix should be continuous and have a single row or a single column" );
|
||||
|
||||
if( CV_MAT_TYPE( mat->type ) != lineType )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"The destination matrix data type is inappropriate, see the manual" );
|
||||
|
||||
lines = cvMakeSeqHeaderForArray( lineType, sizeof(CvSeq), elemSize, mat->data.ptr,
|
||||
@ -2427,7 +2427,7 @@ cvHoughLines2( CvArr* src_image, void* lineStorage, int method,
|
||||
threshold, iparam1, iparam2, l4, linesMax );
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "Unrecognized method id" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unrecognized method id" );
|
||||
}
|
||||
|
||||
int nlines = (int)(l2.size() + l4.size());
|
||||
@ -2473,7 +2473,7 @@ cvHoughCircles( CvArr* src_image, void* circle_storage,
|
||||
cv::Mat src = cv::cvarrToMat(src_image), circles_mat;
|
||||
|
||||
if( !circle_storage )
|
||||
CV_Error( CV_StsNullPtr, "NULL destination" );
|
||||
CV_Error( cv::Error::StsNullPtr, "NULL destination" );
|
||||
|
||||
bool isStorage = isStorageOrMat(circle_storage);
|
||||
|
||||
@ -2490,7 +2490,7 @@ cvHoughCircles( CvArr* src_image, void* circle_storage,
|
||||
|
||||
if( !CV_IS_MAT_CONT( mat->type ) || (mat->rows != 1 && mat->cols != 1) ||
|
||||
CV_MAT_TYPE(mat->type) != CV_32FC3 )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"The destination matrix should be continuous and have a single row or a single column" );
|
||||
|
||||
circles = cvMakeSeqHeaderForArray( CV_32FC3, sizeof(CvSeq), sizeof(float)*3,
|
||||
|
@ -206,7 +206,7 @@ static void initInterTab1D(int method, float* tab, int tabsz)
|
||||
interpolateLanczos4( i*scale, tab );
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown interpolation method" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown interpolation method" );
|
||||
}
|
||||
|
||||
|
||||
@ -223,7 +223,7 @@ static const void* initInterTab2D( int method, bool fixpt )
|
||||
else if( method == INTER_LANCZOS4 )
|
||||
tab = Lanczos4Tab_f[0][0], itab = Lanczos4Tab_i[0][0], ksize=8;
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown/unsupported interpolation type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown/unsupported interpolation type" );
|
||||
|
||||
if( !inittab[method] )
|
||||
{
|
||||
@ -1502,7 +1502,7 @@ static bool ocl_logPolar(InputArray _src, OutputArray _dst,
|
||||
Point2f center, double M, int flags)
|
||||
{
|
||||
if (M <= 0)
|
||||
CV_Error(CV_StsOutOfRange, "M should be >0");
|
||||
CV_Error(cv::Error::StsOutOfRange, "M should be >0");
|
||||
UMat src_with_border; // don't scope this variable (it holds image data)
|
||||
|
||||
UMat mapx, mapy, r, cp_sp;
|
||||
@ -1649,12 +1649,12 @@ static bool openvx_remap(Mat src, Mat dst, Mat map1, Mat map2, int interpolation
|
||||
}
|
||||
catch (const ivx::RuntimeError & e)
|
||||
{
|
||||
CV_Error(CV_StsInternal, e.what());
|
||||
CV_Error(cv::Error::StsInternal, e.what());
|
||||
return false;
|
||||
}
|
||||
catch (const ivx::WrapperError & e)
|
||||
{
|
||||
CV_Error(CV_StsInternal, e.what());
|
||||
CV_Error(cv::Error::StsInternal, e.what());
|
||||
return false;
|
||||
}
|
||||
return true;
|
||||
@ -1888,7 +1888,7 @@ void cv::remap( InputArray _src, OutputArray _dst,
|
||||
CV_Assert( _src.channels() <= 4 );
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown interpolation method" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown interpolation method" );
|
||||
CV_Assert( ifunc != 0 );
|
||||
ctab = initInterTab2D( interpolation, fixpt );
|
||||
}
|
||||
@ -2236,7 +2236,7 @@ void cv::convertMaps( InputArray _map1, InputArray _map2,
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsNotImplemented, "Unsupported combination of input/output matrices" );
|
||||
CV_Error( cv::Error::StsNotImplemented, "Unsupported combination of input/output matrices" );
|
||||
}
|
||||
}
|
||||
|
||||
@ -3610,7 +3610,7 @@ void cv::invertAffineTransform(InputArray _matM, OutputArray __iM)
|
||||
iM[istep] = A21; iM[istep+1] = A22; iM[istep+2] = b2;
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "" );
|
||||
}
|
||||
|
||||
cv::Mat cv::getPerspectiveTransform(InputArray _src, InputArray _dst, int solveMethod)
|
||||
|
@ -358,7 +358,7 @@ static void fitLine2D( const Point2f * points, int count, int dist,
|
||||
calc_weights = (void ( * )(float *, int, float *)) _PFP.fp;
|
||||
break;*/
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unknown distance type");
|
||||
CV_Error(cv::Error::StsBadArg, "Unknown distance type");
|
||||
}
|
||||
|
||||
AutoBuffer<float> wr(count*2);
|
||||
@ -499,7 +499,7 @@ static void fitLine3D( Point3f * points, int count, int dist,
|
||||
break;
|
||||
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, "Unknown distance");
|
||||
CV_Error(cv::Error::StsBadArg, "Unknown distance");
|
||||
}
|
||||
|
||||
AutoBuffer<float> buf(count*2);
|
||||
|
@ -158,7 +158,7 @@ double cv::matchShapes(InputArray contour1, InputArray contour2, int method, dou
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "Unknown comparison method" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown comparison method" );
|
||||
}
|
||||
|
||||
//If anyA and anyB are both true, the result is correct.
|
||||
|
@ -867,7 +867,7 @@ void medianBlur(const Mat& src0, /*const*/ Mat& dst, int ksize)
|
||||
else if( src.depth() == CV_32F )
|
||||
medianBlur_SortNet<MinMax32f, MinMaxVec32f>( src, dst, ksize );
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "");
|
||||
|
||||
return;
|
||||
}
|
||||
|
@ -584,7 +584,7 @@ cv::Moments cv::moments( InputArray _src, bool binary )
|
||||
return contourMoments(mat);
|
||||
|
||||
if( cn > 1 )
|
||||
CV_Error( CV_StsBadArg, "Invalid image type (must be single-channel)" );
|
||||
CV_Error( cv::Error::StsBadArg, "Invalid image type (must be single-channel)" );
|
||||
|
||||
CV_IPP_RUN(!binary, ipp_moments(mat, m), m);
|
||||
|
||||
@ -599,7 +599,7 @@ cv::Moments cv::moments( InputArray _src, bool binary )
|
||||
else if( depth == CV_64F )
|
||||
func = momentsInTile<double, double, double>;
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "" );
|
||||
|
||||
Mat src0(mat);
|
||||
|
||||
@ -730,9 +730,9 @@ CV_IMPL double cvGetSpatialMoment( CvMoments * moments, int x_order, int y_order
|
||||
int order = x_order + y_order;
|
||||
|
||||
if( !moments )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
if( (x_order | y_order) < 0 || order > 3 )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
|
||||
return (&(moments->m00))[order + (order >> 1) + (order > 2) * 2 + y_order];
|
||||
}
|
||||
@ -743,9 +743,9 @@ CV_IMPL double cvGetCentralMoment( CvMoments * moments, int x_order, int y_order
|
||||
int order = x_order + y_order;
|
||||
|
||||
if( !moments )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
if( (x_order | y_order) < 0 || order > 3 )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
|
||||
return order >= 2 ? (&(moments->m00))[4 + order * 3 + y_order] :
|
||||
order == 0 ? moments->m00 : 0;
|
||||
@ -768,7 +768,7 @@ CV_IMPL double cvGetNormalizedCentralMoment( CvMoments * moments, int x_order, i
|
||||
CV_IMPL void cvGetHuMoments( CvMoments * mState, CvHuMoments * HuState )
|
||||
{
|
||||
if( !mState || !HuState )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
double m00s = mState->inv_sqrt_m00, m00 = m00s * m00s, s2 = m00 * m00, s3 = s2 * m00s;
|
||||
|
||||
|
@ -1076,7 +1076,7 @@ static bool ocl_morphologyEx(InputArray _src, OutputArray _dst, int op,
|
||||
return false;
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "unknown morphological operation" );
|
||||
CV_Error( cv::Error::StsBadArg, "unknown morphological operation" );
|
||||
}
|
||||
|
||||
return true;
|
||||
@ -1249,7 +1249,7 @@ void morphologyEx( InputArray _src, OutputArray _dst, int op,
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "unknown morphological operation" );
|
||||
CV_Error( cv::Error::StsBadArg, "unknown morphological operation" );
|
||||
}
|
||||
}
|
||||
|
||||
@ -1296,7 +1296,7 @@ CV_IMPL void
|
||||
cvReleaseStructuringElement( IplConvKernel ** element )
|
||||
{
|
||||
if( !element )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
cvFree( element );
|
||||
}
|
||||
|
||||
|
@ -753,7 +753,7 @@ Ptr<BaseRowFilter> getMorphologyRowFilter(int op, int type, int ksize, int ancho
|
||||
DilateRowVec64f> >(ksize, anchor);
|
||||
}
|
||||
|
||||
CV_Error_( CV_StsNotImplemented, ("Unsupported data type (=%d)", type));
|
||||
CV_Error_( cv::Error::StsNotImplemented, ("Unsupported data type (=%d)", type));
|
||||
}
|
||||
|
||||
Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int anchor)
|
||||
@ -801,7 +801,7 @@ Ptr<BaseColumnFilter> getMorphologyColumnFilter(int op, int type, int ksize, int
|
||||
DilateColumnVec64f> >(ksize, anchor);
|
||||
}
|
||||
|
||||
CV_Error_( CV_StsNotImplemented, ("Unsupported data type (=%d)", type));
|
||||
CV_Error_( cv::Error::StsNotImplemented, ("Unsupported data type (=%d)", type));
|
||||
}
|
||||
|
||||
Ptr<BaseFilter> getMorphologyFilter(int op, int type, const Mat& kernel, Point anchor)
|
||||
@ -838,7 +838,7 @@ Ptr<BaseFilter> getMorphologyFilter(int op, int type, const Mat& kernel, Point a
|
||||
return makePtr<MorphFilter<MaxOp<double>, DilateVec64f> >(kernel, anchor);
|
||||
}
|
||||
|
||||
CV_Error_( CV_StsNotImplemented, ("Unsupported data type (=%d)", type));
|
||||
CV_Error_( cv::Error::StsNotImplemented, ("Unsupported data type (=%d)", type));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
@ -112,7 +112,7 @@ inline bool isStorageOrMat(void * arr)
|
||||
return true;
|
||||
else if (CV_IS_MAT( arr ))
|
||||
return false;
|
||||
CV_Error( CV_StsBadArg, "Destination is not CvMemStorage* nor CvMat*" );
|
||||
CV_Error( cv::Error::StsBadArg, "Destination is not CvMemStorage* nor CvMat*" );
|
||||
}
|
||||
|
||||
|
||||
|
@ -1448,7 +1448,7 @@ void cv::pyrDown( InputArray _src, OutputArray _dst, const Size& _dsz, int borde
|
||||
else if( depth == CV_64F )
|
||||
func = pyrDown_< FltCast<double, 8> >;
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "" );
|
||||
|
||||
func( src, dst, borderType );
|
||||
}
|
||||
@ -1551,7 +1551,7 @@ void cv::pyrUp( InputArray _src, OutputArray _dst, const Size& _dsz, int borderT
|
||||
else if( depth == CV_64F )
|
||||
func = pyrUp_< FltCast<double, 6> >;
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "" );
|
||||
|
||||
func( src, dst, borderType );
|
||||
}
|
||||
@ -1722,7 +1722,7 @@ CV_IMPL void
|
||||
cvReleasePyramid( CvMat*** _pyramid, int extra_layers )
|
||||
{
|
||||
if( !_pyramid )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
if( *_pyramid )
|
||||
for( int i = 0; i <= extra_layers; i++ )
|
||||
@ -1743,7 +1743,7 @@ cvCreatePyramid( const CvArr* srcarr, int extra_layers, double rate,
|
||||
CvMat stub, *src = cvGetMat( srcarr, &stub );
|
||||
|
||||
if( extra_layers < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "The number of extra layers must be non negative" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "The number of extra layers must be non negative" );
|
||||
|
||||
int i, layer_step, elem_size = CV_ELEM_SIZE(src->type);
|
||||
cv::Size layer_size, size = cvGetMatSize(src);
|
||||
@ -1770,7 +1770,7 @@ cvCreatePyramid( const CvArr* srcarr, int extra_layers, double rate,
|
||||
}
|
||||
|
||||
if( bufsize < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "The buffer is too small to fit the pyramid" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "The buffer is too small to fit the pyramid" );
|
||||
ptr = buf->data.ptr;
|
||||
}
|
||||
|
||||
|
@ -4024,7 +4024,7 @@ void resize(int src_type,
|
||||
else if( interpolation == INTER_LINEAR || interpolation == INTER_AREA )
|
||||
ksize = 2, func = linear_tab[depth];
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown interpolation method" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown interpolation method" );
|
||||
ksize2 = ksize/2;
|
||||
|
||||
CV_Assert( func != 0 );
|
||||
|
@ -245,7 +245,7 @@ static void rotatingCalipers( const Point2f* points, int n, int mode, float* out
|
||||
base_b = lead_x;
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsError, "main_element should be 0, 1, 2 or 3");
|
||||
CV_Error(cv::Error::StsError, "main_element should be 0, 1, 2 or 3");
|
||||
}
|
||||
}
|
||||
/* change base point of main edge */
|
||||
|
@ -417,7 +417,7 @@ void cv::getRectSubPix( InputArray _image, Size patchSize, Point2f center,
|
||||
getRectSubPix_Cn_<float, float, float, nop<float>, nop<float> >
|
||||
(image.ptr<float>(), image.step, image.size(), patch.ptr<float>(), patch.step, patch.size(), center, cn);
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "Unsupported combination of input and output formats");
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "Unsupported combination of input and output formats");
|
||||
}
|
||||
|
||||
|
||||
@ -473,7 +473,7 @@ cvSampleLine( const void* _img, CvPoint pt1, CvPoint pt2,
|
||||
size_t pixsize = img.elemSize();
|
||||
|
||||
if( !buffer )
|
||||
CV_Error( CV_StsNullPtr, "" );
|
||||
CV_Error( cv::Error::StsNullPtr, "" );
|
||||
|
||||
for( int i = 0; i < li.count; i++, ++li )
|
||||
{
|
||||
|
@ -348,7 +348,7 @@ void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
|
||||
const int MAX_LEVELS = 8;
|
||||
|
||||
if( (unsigned)max_level > (unsigned)MAX_LEVELS )
|
||||
CV_Error( CV_StsOutOfRange, "The number of pyramid levels is too large or negative" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "The number of pyramid levels is too large or negative" );
|
||||
|
||||
std::vector<cv::Mat> src_pyramid(max_level+1);
|
||||
std::vector<cv::Mat> dst_pyramid(max_level+1);
|
||||
@ -365,13 +365,13 @@ void cv::pyrMeanShiftFiltering( InputArray _src, OutputArray _dst,
|
||||
|
||||
|
||||
if( src0.type() != CV_8UC3 )
|
||||
CV_Error( CV_StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "Only 8-bit, 3-channel images are supported" );
|
||||
|
||||
if( src0.type() != dst0.type() )
|
||||
CV_Error( CV_StsUnmatchedFormats, "The input and output images must have the same type" );
|
||||
CV_Error( cv::Error::StsUnmatchedFormats, "The input and output images must have the same type" );
|
||||
|
||||
if( src0.size() != dst0.size() )
|
||||
CV_Error( CV_StsUnmatchedSizes, "The input and output images must have the same size" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "The input and output images must have the same size" );
|
||||
|
||||
if( !(termcrit.type & CV_TERMCRIT_ITER) )
|
||||
termcrit.maxCount = 5;
|
||||
|
@ -357,7 +357,7 @@ static RotatedRect fitEllipseNoDirect( InputArray _points )
|
||||
RotatedRect box;
|
||||
|
||||
if( n < 5 )
|
||||
CV_Error( CV_StsBadSize, "There should be at least 5 points to fit the ellipse" );
|
||||
CV_Error( cv::Error::StsBadSize, "There should be at least 5 points to fit the ellipse" );
|
||||
|
||||
// New fitellipse algorithm, contributed by Dr. Daniel Weiss
|
||||
Point2f c(0,0);
|
||||
@ -520,7 +520,7 @@ cv::RotatedRect cv::fitEllipseAMS( InputArray _points )
|
||||
RotatedRect box;
|
||||
|
||||
if( n < 5 )
|
||||
CV_Error( CV_StsBadSize, "There should be at least 5 points to fit the ellipse" );
|
||||
CV_Error( cv::Error::StsBadSize, "There should be at least 5 points to fit the ellipse" );
|
||||
|
||||
Point2f c(0,0);
|
||||
|
||||
@ -705,7 +705,7 @@ cv::RotatedRect cv::fitEllipseDirect( InputArray _points )
|
||||
RotatedRect box;
|
||||
|
||||
if( n < 5 )
|
||||
CV_Error( CV_StsBadSize, "There should be at least 5 points to fit the ellipse" );
|
||||
CV_Error( cv::Error::StsBadSize, "There should be at least 5 points to fit the ellipse" );
|
||||
|
||||
Point2d c(0., 0.);
|
||||
|
||||
@ -1364,7 +1364,7 @@ cvContourArea( const void *array, CvSlice slice, int oriented )
|
||||
{
|
||||
contour = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POLYLINE( contour ))
|
||||
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unsupported sequence type" );
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -1379,7 +1379,7 @@ cvContourArea( const void *array, CvSlice slice, int oriented )
|
||||
}
|
||||
|
||||
if( CV_SEQ_ELTYPE( contour ) != CV_32SC2 )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
CV_Error( cv::Error::StsUnsupportedFormat,
|
||||
"Only curves with integer coordinates are supported in case of contour slice" );
|
||||
area = icvContourSecArea( contour, slice );
|
||||
return oriented ? area : fabs(area);
|
||||
@ -1405,7 +1405,7 @@ cvArcLength( const void *array, CvSlice slice, int is_closed )
|
||||
{
|
||||
contour = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POLYLINE( contour ))
|
||||
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unsupported sequence type" );
|
||||
if( is_closed < 0 )
|
||||
is_closed = CV_IS_SEQ_CLOSED( contour );
|
||||
}
|
||||
@ -1498,7 +1498,7 @@ cvBoundingRect( CvArr* array, int update )
|
||||
{
|
||||
ptseq = (CvSeq*)array;
|
||||
if( !CV_IS_SEQ_POINT_SET( ptseq ))
|
||||
CV_Error( CV_StsBadArg, "Unsupported sequence type" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unsupported sequence type" );
|
||||
|
||||
if( ptseq->header_size < (int)sizeof(CvContour))
|
||||
{
|
||||
@ -1517,7 +1517,7 @@ cvBoundingRect( CvArr* array, int update )
|
||||
}
|
||||
else if( CV_MAT_TYPE(mat->type) != CV_8UC1 &&
|
||||
CV_MAT_TYPE(mat->type) != CV_8SC1 )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
CV_Error( cv::Error::StsUnsupportedFormat,
|
||||
"The image/matrix format is not supported by the function" );
|
||||
update = 0;
|
||||
calculate = 1;
|
||||
|
@ -784,7 +784,7 @@ cvSmooth( const void* srcarr, void* dstarr, int smooth_type,
|
||||
cv::bilateralFilter( src, dst, param1, param3, param4, cv::BORDER_REPLICATE );
|
||||
|
||||
if( dst.data != dst0.data )
|
||||
CV_Error( CV_StsUnmatchedFormats, "The destination image does not have the proper type" );
|
||||
CV_Error( cv::Error::StsUnmatchedFormats, "The destination image does not have the proper type" );
|
||||
}
|
||||
|
||||
/* End of file. */
|
||||
|
@ -282,10 +282,10 @@ int Subdiv2D::locate(Point2f pt, int& _edge, int& _vertex)
|
||||
int i, maxEdges = (int)(qedges.size() * 4);
|
||||
|
||||
if( qedges.size() < (size_t)4 )
|
||||
CV_Error( CV_StsError, "Subdivision is empty" );
|
||||
CV_Error( cv::Error::StsError, "Subdivision is empty" );
|
||||
|
||||
if( pt.x < topLeft.x || pt.y < topLeft.y || pt.x >= bottomRight.x || pt.y >= bottomRight.y )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
|
||||
int edge = recentEdge;
|
||||
CV_Assert(edge > 0);
|
||||
@ -417,10 +417,10 @@ int Subdiv2D::insert(Point2f pt)
|
||||
int location = locate( pt, curr_edge, curr_point );
|
||||
|
||||
if( location == PTLOC_ERROR )
|
||||
CV_Error( CV_StsBadSize, "" );
|
||||
CV_Error( cv::Error::StsBadSize, "" );
|
||||
|
||||
if( location == PTLOC_OUTSIDE_RECT )
|
||||
CV_Error( CV_StsOutOfRange, "" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "" );
|
||||
|
||||
if( location == PTLOC_VERTEX )
|
||||
return curr_point;
|
||||
@ -434,7 +434,7 @@ int Subdiv2D::insert(Point2f pt)
|
||||
else if( location == PTLOC_INSIDE )
|
||||
;
|
||||
else
|
||||
CV_Error_(CV_StsError, ("Subdiv2D::locate returned invalid location = %d", location) );
|
||||
CV_Error_(cv::Error::StsError, ("Subdiv2D::locate returned invalid location = %d", location) );
|
||||
|
||||
CV_Assert( curr_edge != 0 );
|
||||
validGeometry = false;
|
||||
|
@ -145,7 +145,7 @@ void ConvolveBuf::create(Size image_size, Size templ_size)
|
||||
dft_size.width = std::max(getOptimalDFTSize(block_size.width + templ_size.width - 1), 2);
|
||||
dft_size.height = getOptimalDFTSize(block_size.height + templ_size.height - 1);
|
||||
if( dft_size.width <= 0 || dft_size.height <= 0 )
|
||||
CV_Error( CV_StsOutOfRange, "the input arrays are too big" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "the input arrays are too big" );
|
||||
|
||||
// recompute block size
|
||||
block_size.width = dft_size.width - templ_size.width + 1;
|
||||
@ -602,7 +602,7 @@ void crossCorr( const Mat& img, const Mat& _templ, Mat& corr,
|
||||
dftsize.width = std::max(getOptimalDFTSize(blocksize.width + templ.cols - 1), 2);
|
||||
dftsize.height = getOptimalDFTSize(blocksize.height + templ.rows - 1);
|
||||
if( dftsize.width <= 0 || dftsize.height <= 0 )
|
||||
CV_Error( CV_StsOutOfRange, "the input arrays are too big" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "the input arrays are too big" );
|
||||
|
||||
// recompute block size
|
||||
blocksize.width = dftsize.width - templ.cols + 1;
|
||||
|
@ -117,7 +117,7 @@ static void threshGeneric(Size roi, const T* src, size_t src_step, T* dst,
|
||||
return;
|
||||
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "" ); return;
|
||||
CV_Error( cv::Error::StsBadArg, "" ); return;
|
||||
}
|
||||
}
|
||||
|
||||
@ -719,7 +719,7 @@ thresh_16s( const Mat& _src, Mat& _dst, short thresh, short maxval, int type )
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "" ); return;
|
||||
CV_Error( cv::Error::StsBadArg, "" ); return;
|
||||
}
|
||||
#else
|
||||
threshGeneric<short>(roi, src, src_step, dst, dst_step, thresh, maxval, type);
|
||||
@ -925,7 +925,7 @@ thresh_32f( const Mat& _src, Mat& _dst, float thresh, float maxval, int type )
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_Error( CV_StsBadArg, "" ); return;
|
||||
CV_Error( cv::Error::StsBadArg, "" ); return;
|
||||
}
|
||||
#else
|
||||
threshGeneric<float>(roi, src, src_step, dst, dst_step, thresh, maxval, type);
|
||||
@ -1096,7 +1096,7 @@ thresh_64f(const Mat& _src, Mat& _dst, double thresh, double maxval, int type)
|
||||
}
|
||||
break;
|
||||
default:
|
||||
CV_Error(CV_StsBadArg, ""); return;
|
||||
CV_Error(cv::Error::StsBadArg, ""); return;
|
||||
}
|
||||
#else
|
||||
threshGeneric<double>(roi, src, src_step, dst, dst_step, thresh, maxval, type);
|
||||
@ -1656,7 +1656,7 @@ double cv::threshold( InputArray _src, OutputArray _dst, double thresh, double m
|
||||
else if( src.depth() == CV_64F )
|
||||
;
|
||||
else
|
||||
CV_Error( CV_StsUnsupportedFormat, "" );
|
||||
CV_Error( cv::Error::StsUnsupportedFormat, "" );
|
||||
|
||||
parallel_for_(Range(0, dst.rows),
|
||||
ThresholdRunner(src, dst, thresh, maxval, type),
|
||||
@ -1704,7 +1704,7 @@ void cv::adaptiveThreshold( InputArray _src, OutputArray _dst, double maxValue,
|
||||
meanfloat.convertTo(mean, src.type());
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadFlag, "Unknown/unsupported adaptive threshold method" );
|
||||
CV_Error( cv::Error::StsBadFlag, "Unknown/unsupported adaptive threshold method" );
|
||||
|
||||
int i, j;
|
||||
uchar imaxval = saturate_cast<uchar>(maxValue);
|
||||
@ -1718,7 +1718,7 @@ void cv::adaptiveThreshold( InputArray _src, OutputArray _dst, double maxValue,
|
||||
for( i = 0; i < 768; i++ )
|
||||
tab[i] = (uchar)(i - 255 <= -idelta ? imaxval : 0);
|
||||
else
|
||||
CV_Error( CV_StsBadFlag, "Unknown/unsupported threshold type" );
|
||||
CV_Error( cv::Error::StsBadFlag, "Unknown/unsupported threshold type" );
|
||||
|
||||
if( src.isContinuous() && mean.isContinuous() && dst.isContinuous() )
|
||||
{
|
||||
|
@ -51,19 +51,19 @@ CV_IMPL CvSeq* cvPointSeqFromMat( int seq_kind, const CvArr* arr,
|
||||
CvMat* mat = (CvMat*)arr;
|
||||
|
||||
if( !CV_IS_MAT( mat ))
|
||||
CV_Error( CV_StsBadArg, "Input array is not a valid matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "Input array is not a valid matrix" );
|
||||
|
||||
if( CV_MAT_CN(mat->type) == 1 && mat->width == 2 )
|
||||
mat = cvReshape(mat, &hdr, 2);
|
||||
|
||||
eltype = CV_MAT_TYPE( mat->type );
|
||||
if( eltype != CV_32SC2 && eltype != CV_32FC2 )
|
||||
CV_Error( CV_StsUnsupportedFormat,
|
||||
CV_Error( cv::Error::StsUnsupportedFormat,
|
||||
"The matrix can not be converted to point sequence because of "
|
||||
"inappropriate element type" );
|
||||
|
||||
if( (mat->width != 1 && mat->height != 1) || !CV_IS_MAT_CONT(mat->type))
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"The matrix converted to point sequence must be "
|
||||
"1-dimensional and continuous" );
|
||||
|
||||
|
@ -1824,7 +1824,7 @@ void CV_ColorBayerTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
else if( depth == CV_16U )
|
||||
bayer2BGR_<ushort>(src, dst, fwd_code);
|
||||
else
|
||||
CV_Error(CV_StsUnsupportedFormat, "");
|
||||
CV_Error(cv::Error::StsUnsupportedFormat, "");
|
||||
}
|
||||
|
||||
|
||||
|
@ -307,7 +307,7 @@ void CV_MorphologyBaseTest::prepare_to_validation( int /*test_case_idx*/ )
|
||||
cvtest::add( dst, 1, src, -1, Scalar::all(0), dst, dst.type() );
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadArg, "Unknown operation" );
|
||||
CV_Error( cv::Error::StsBadArg, "Unknown operation" );
|
||||
}
|
||||
|
||||
cvReleaseStructuringElement( &element );
|
||||
|
@ -223,7 +223,7 @@ public:
|
||||
void setActivationFunction(int _activ_func, double _f_param1, double _f_param2) CV_OVERRIDE
|
||||
{
|
||||
if( _activ_func < 0 || _activ_func > LEAKYRELU)
|
||||
CV_Error( CV_StsOutOfRange, "Unknown activation function" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "Unknown activation function" );
|
||||
|
||||
activ_func = _activ_func;
|
||||
|
||||
@ -322,7 +322,7 @@ public:
|
||||
{
|
||||
int n = layer_sizes[i];
|
||||
if( n < 1 + (0 < i && i < l_count-1))
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
CV_Error( cv::Error::StsOutOfRange,
|
||||
"there should be at least one input and one output "
|
||||
"and every hidden layer must have more than 1 neuron" );
|
||||
max_lsize = std::max( max_lsize, n );
|
||||
@ -341,7 +341,7 @@ public:
|
||||
float predict( InputArray _inputs, OutputArray _outputs, int ) const CV_OVERRIDE
|
||||
{
|
||||
if( !trained )
|
||||
CV_Error( CV_StsError, "The network has not been trained or loaded" );
|
||||
CV_Error( cv::Error::StsError, "The network has not been trained or loaded" );
|
||||
|
||||
Mat inputs = _inputs.getMat();
|
||||
int type = inputs.type(), l_count = layer_count();
|
||||
@ -790,7 +790,7 @@ public:
|
||||
{
|
||||
t = t*inv_scale[j*2] + inv_scale[2*j+1];
|
||||
if( t < m1 || t > M1 )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
CV_Error( cv::Error::StsOutOfRange,
|
||||
"Some of new output training vector components run exceed the original range too much" );
|
||||
}
|
||||
}
|
||||
@ -817,25 +817,25 @@ public:
|
||||
Mat& sample_weights, int flags )
|
||||
{
|
||||
if( layer_sizes.empty() )
|
||||
CV_Error( CV_StsError,
|
||||
CV_Error( cv::Error::StsError,
|
||||
"The network has not been created. Use method create or the appropriate constructor" );
|
||||
|
||||
if( (inputs.type() != CV_32F && inputs.type() != CV_64F) ||
|
||||
inputs.cols != layer_sizes[0] )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"input training data should be a floating-point matrix with "
|
||||
"the number of rows equal to the number of training samples and "
|
||||
"the number of columns equal to the size of 0-th (input) layer" );
|
||||
|
||||
if( (outputs.type() != CV_32F && outputs.type() != CV_64F) ||
|
||||
outputs.cols != layer_sizes.back() )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"output training data should be a floating-point matrix with "
|
||||
"the number of rows equal to the number of training samples and "
|
||||
"the number of columns equal to the size of last (output) layer" );
|
||||
|
||||
if( inputs.rows != outputs.rows )
|
||||
CV_Error( CV_StsUnmatchedSizes, "The numbers of input and output samples do not match" );
|
||||
CV_Error( cv::Error::StsUnmatchedSizes, "The numbers of input and output samples do not match" );
|
||||
|
||||
Mat temp;
|
||||
double s = sum(sample_weights)[0];
|
||||
@ -1323,7 +1323,7 @@ public:
|
||||
fs << "itePerStep" << params.itePerStep;
|
||||
}
|
||||
else
|
||||
CV_Error(CV_StsError, "Unknown training method");
|
||||
CV_Error(cv::Error::StsError, "Unknown training method");
|
||||
|
||||
fs << "term_criteria" << "{";
|
||||
if( params.termCrit.type & TermCriteria::EPS )
|
||||
@ -1421,7 +1421,7 @@ public:
|
||||
params.itePerStep = tpn["itePerStep"];
|
||||
}
|
||||
else
|
||||
CV_Error(CV_StsParseError, "Unknown training method (should be BACKPROP or RPROP)");
|
||||
CV_Error(cv::Error::StsParseError, "Unknown training method (should be BACKPROP or RPROP)");
|
||||
|
||||
FileNode tcn = tpn["term_criteria"];
|
||||
if( !tcn.empty() )
|
||||
|
@ -308,7 +308,7 @@ public:
|
||||
}
|
||||
}
|
||||
else
|
||||
CV_Error(CV_StsNotImplemented, "Unknown boosting type");
|
||||
CV_Error(cv::Error::StsNotImplemented, "Unknown boosting type");
|
||||
|
||||
/*if( bparams.boostType != Boost::LOGIT )
|
||||
{
|
||||
@ -387,7 +387,7 @@ public:
|
||||
void write( FileStorage& fs ) const CV_OVERRIDE
|
||||
{
|
||||
if( roots.empty() )
|
||||
CV_Error( CV_StsBadArg, "RTrees have not been trained" );
|
||||
CV_Error( cv::Error::StsBadArg, "RTrees have not been trained" );
|
||||
|
||||
writeFormat(fs);
|
||||
writeParams(fs);
|
||||
|
@ -574,7 +574,7 @@ public:
|
||||
if( nvars == 0 )
|
||||
{
|
||||
if( rowvals.empty() )
|
||||
CV_Error(CV_StsBadArg, "invalid CSV format; no data found");
|
||||
CV_Error(cv::Error::StsBadArg, "invalid CSV format; no data found");
|
||||
nvars = (int)rowvals.size();
|
||||
if( !varTypeSpec.empty() && varTypeSpec.size() > 0 )
|
||||
{
|
||||
@ -637,7 +637,7 @@ public:
|
||||
{
|
||||
for( i = ninputvars; i < nvars; i++ )
|
||||
if( vtypes[i] == VAR_CATEGORICAL )
|
||||
CV_Error(CV_StsBadArg,
|
||||
CV_Error(cv::Error::StsBadArg,
|
||||
"If responses are vector values, not scalars, they must be marked as ordered responses");
|
||||
}
|
||||
}
|
||||
@ -724,14 +724,14 @@ public:
|
||||
}
|
||||
|
||||
if ( ptr[3] != '[')
|
||||
CV_Error( CV_StsBadArg, errmsg );
|
||||
CV_Error( cv::Error::StsBadArg, errmsg );
|
||||
|
||||
ptr += 4; // pass "ord["
|
||||
do
|
||||
{
|
||||
int b1 = (int)strtod( ptr, &stopstring );
|
||||
if( *stopstring == 0 || (*stopstring != ',' && *stopstring != ']' && *stopstring != '-') )
|
||||
CV_Error( CV_StsBadArg, errmsg );
|
||||
CV_Error( cv::Error::StsBadArg, errmsg );
|
||||
ptr = stopstring + 1;
|
||||
if( (stopstring[0] == ',') || (stopstring[0] == ']'))
|
||||
{
|
||||
@ -745,7 +745,7 @@ public:
|
||||
{
|
||||
int b2 = (int)strtod( ptr, &stopstring);
|
||||
if ( (*stopstring == 0) || (*stopstring != ',' && *stopstring != ']') )
|
||||
CV_Error( CV_StsBadArg, errmsg );
|
||||
CV_Error( cv::Error::StsBadArg, errmsg );
|
||||
ptr = stopstring + 1;
|
||||
CV_Assert( 0 <= b1 && b1 <= b2 && b2 < nvars );
|
||||
for (int i = b1; i <= b2; i++)
|
||||
@ -753,7 +753,7 @@ public:
|
||||
specCounter += b2 - b1 + 1;
|
||||
}
|
||||
else
|
||||
CV_Error( CV_StsBadArg, errmsg );
|
||||
CV_Error( cv::Error::StsBadArg, errmsg );
|
||||
|
||||
}
|
||||
}
|
||||
@ -762,7 +762,7 @@ public:
|
||||
}
|
||||
|
||||
if( specCounter != nvars )
|
||||
CV_Error( CV_StsBadArg, "type of some variables is not specified" );
|
||||
CV_Error( cv::Error::StsBadArg, "type of some variables is not specified" );
|
||||
}
|
||||
|
||||
void setTrainTestSplitRatio(double ratio, bool shuffle) CV_OVERRIDE
|
||||
|
@ -218,7 +218,7 @@ CvGBTrees::train( const CvMat* _train_data, int _tflag,
|
||||
orig_response->data.fl[i] = (float) _responses->data.i[i*step];
|
||||
}; break;
|
||||
default:
|
||||
CV_Error(CV_StsUnmatchedFormats, "Response should be a 32fC1 or 32sC1 vector.");
|
||||
CV_Error(cv::Error::StsUnmatchedFormats, "Response should be a 32fC1 or 32sC1 vector.");
|
||||
}
|
||||
|
||||
if (!is_regression)
|
||||
@ -283,7 +283,7 @@ CvGBTrees::train( const CvMat* _train_data, int _tflag,
|
||||
sample_idx->data.i[active_samples_count++] = i;
|
||||
|
||||
} break;
|
||||
default: CV_Error(CV_StsUnmatchedFormats, "_sample_idx should be a 32sC1, 8sC1 or 8uC1 vector.");
|
||||
default: CV_Error(cv::Error::StsUnmatchedFormats, "_sample_idx should be a 32sC1, 8sC1 or 8uC1 vector.");
|
||||
}
|
||||
}
|
||||
else
|
||||
@ -1072,7 +1072,7 @@ void CvGBTrees::read_params( CvFileStorage* fs, CvFileNode* fnode )
|
||||
|
||||
|
||||
if( params.loss_function_type < SQUARED_LOSS || params.loss_function_type > DEVIANCE_LOSS || params.loss_function_type == 2)
|
||||
CV_ERROR( CV_StsBadArg, "Unknown loss function" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "Unknown loss function" );
|
||||
|
||||
params.weak_count = cvReadIntByName( fs, fnode, "ensemble_length" );
|
||||
params.shrinkage = (float)cvReadRealByName( fs, fnode, "shrinkage", 0.1 );
|
||||
@ -1082,7 +1082,7 @@ void CvGBTrees::read_params( CvFileStorage* fs, CvFileNode* fnode )
|
||||
{
|
||||
class_labels = (CvMat*)cvReadByName( fs, fnode, "class_labels" );
|
||||
if( class_labels && !CV_IS_MAT(class_labels))
|
||||
CV_ERROR( CV_StsParseError, "class_labels must stored as a matrix");
|
||||
CV_ERROR( cv::Error::StsParseError, "class_labels must stored as a matrix");
|
||||
}
|
||||
data->is_classifier = 0;
|
||||
|
||||
@ -1105,7 +1105,7 @@ void CvGBTrees::write( CvFileStorage* fs, const char* name ) const
|
||||
cvStartWriteStruct( fs, name, CV_NODE_MAP, CV_TYPE_NAME_ML_GBT );
|
||||
|
||||
if( !weak )
|
||||
CV_ERROR( CV_StsBadArg, "The model has not been trained yet" );
|
||||
CV_ERROR( cv::Error::StsBadArg, "The model has not been trained yet" );
|
||||
|
||||
write_params( fs );
|
||||
cvWriteReal( fs, "base_value", base_value);
|
||||
@ -1170,13 +1170,13 @@ void CvGBTrees::read( CvFileStorage* fs, CvFileNode* node )
|
||||
|
||||
trees_fnode = cvGetFileNodeByName( fs, node, s.c_str() );
|
||||
if( !trees_fnode || !CV_NODE_IS_SEQ(trees_fnode->tag) )
|
||||
CV_ERROR( CV_StsParseError, "<trees_x> tag is missing" );
|
||||
CV_ERROR( cv::Error::StsParseError, "<trees_x> tag is missing" );
|
||||
|
||||
cvStartReadSeq( trees_fnode->data.seq, &reader );
|
||||
ntrees = trees_fnode->data.seq->total;
|
||||
|
||||
if( ntrees != params.weak_count )
|
||||
CV_ERROR( CV_StsUnmatchedSizes,
|
||||
CV_ERROR( cv::Error::StsUnmatchedSizes,
|
||||
"The number of trees stored does not match <ntrees> tag value" );
|
||||
|
||||
CV_CALL( storage = cvCreateMemStorage() );
|
||||
|
@ -63,7 +63,7 @@ bool StatModel::train(const Ptr<TrainData>& trainData, int )
|
||||
{
|
||||
CV_TRACE_FUNCTION();
|
||||
CV_Assert(!trainData.empty());
|
||||
CV_Error(CV_StsNotImplemented, "");
|
||||
CV_Error(cv::Error::StsNotImplemented, "");
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -109,15 +109,15 @@ bool LogisticRegressionImpl::train(const Ptr<TrainData>& trainData, int)
|
||||
CV_Assert( !_labels_i.empty() && !_data_i.empty());
|
||||
if(_labels_i.cols != 1)
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "labels should be a column matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "labels should be a column matrix" );
|
||||
}
|
||||
if(_data_i.type() != CV_32FC1 || _labels_i.type() != CV_32FC1)
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "data and labels must be a floating point matrix" );
|
||||
CV_Error( cv::Error::StsBadArg, "data and labels must be a floating point matrix" );
|
||||
}
|
||||
if(_labels_i.rows != _data_i.rows)
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "number of rows in data and labels should be equal" );
|
||||
CV_Error( cv::Error::StsBadArg, "number of rows in data and labels should be equal" );
|
||||
}
|
||||
|
||||
// class labels
|
||||
@ -126,7 +126,7 @@ bool LogisticRegressionImpl::train(const Ptr<TrainData>& trainData, int)
|
||||
int num_classes = (int) this->forward_mapper.size();
|
||||
if(num_classes < 2)
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "data should have at least 2 classes" );
|
||||
CV_Error( cv::Error::StsBadArg, "data should have at least 2 classes" );
|
||||
}
|
||||
|
||||
// add a column of ones to the data (bias/intercept term)
|
||||
@ -174,7 +174,7 @@ bool LogisticRegressionImpl::train(const Ptr<TrainData>& trainData, int)
|
||||
this->learnt_thetas = thetas.clone();
|
||||
if( cvIsNaN( (double)sum(this->learnt_thetas)[0] ) )
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "check training parameters. Invalid training classifier" );
|
||||
CV_Error( cv::Error::StsBadArg, "check training parameters. Invalid training classifier" );
|
||||
}
|
||||
|
||||
// success
|
||||
@ -187,7 +187,7 @@ float LogisticRegressionImpl::predict(InputArray samples, OutputArray results, i
|
||||
// check if learnt_mats array is populated
|
||||
if(!this->isTrained())
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "classifier should be trained first" );
|
||||
CV_Error( cv::Error::StsBadArg, "classifier should be trained first" );
|
||||
}
|
||||
|
||||
// coefficient matrix
|
||||
@ -206,7 +206,7 @@ float LogisticRegressionImpl::predict(InputArray samples, OutputArray results, i
|
||||
Mat data = samples.getMat();
|
||||
if(data.type() != CV_32F)
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "data must be of floating type" );
|
||||
CV_Error( cv::Error::StsBadArg, "data must be of floating type" );
|
||||
}
|
||||
|
||||
// add a column of ones to the data (bias/intercept term)
|
||||
@ -327,7 +327,7 @@ double LogisticRegressionImpl::compute_cost(const Mat& _data, const Mat& _labels
|
||||
|
||||
if(cvIsNaN( cost ) == 1)
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "check training parameters. Invalid training classifier" );
|
||||
CV_Error( cv::Error::StsBadArg, "check training parameters. Invalid training classifier" );
|
||||
}
|
||||
|
||||
return cost;
|
||||
@ -398,12 +398,12 @@ Mat LogisticRegressionImpl::batch_gradient_descent(const Mat& _data, const Mat&
|
||||
// implements batch gradient descent
|
||||
if(this->params.alpha<=0)
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "check training parameters (learning rate) for the classifier" );
|
||||
CV_Error( cv::Error::StsBadArg, "check training parameters (learning rate) for the classifier" );
|
||||
}
|
||||
|
||||
if(this->params.num_iters <= 0)
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "number of iterations cannot be zero or a negative number" );
|
||||
CV_Error( cv::Error::StsBadArg, "number of iterations cannot be zero or a negative number" );
|
||||
}
|
||||
|
||||
int llambda = 0;
|
||||
@ -439,12 +439,12 @@ Mat LogisticRegressionImpl::mini_batch_gradient_descent(const Mat& _data, const
|
||||
|
||||
if(this->params.mini_batch_size <= 0 || this->params.alpha == 0)
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "check training parameters for the classifier" );
|
||||
CV_Error( cv::Error::StsBadArg, "check training parameters for the classifier" );
|
||||
}
|
||||
|
||||
if(this->params.num_iters <= 0)
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "number of iterations cannot be zero or a negative number" );
|
||||
CV_Error( cv::Error::StsBadArg, "number of iterations cannot be zero or a negative number" );
|
||||
}
|
||||
|
||||
Mat theta_p = _init_theta.clone();
|
||||
@ -551,7 +551,7 @@ void LogisticRegressionImpl::write(FileStorage& fs) const
|
||||
// check if open
|
||||
if(fs.isOpened() == 0)
|
||||
{
|
||||
CV_Error(CV_StsBadArg,"file can't open. Check file path");
|
||||
CV_Error(cv::Error::StsBadArg,"file can't open. Check file path");
|
||||
}
|
||||
writeFormat(fs);
|
||||
string desc = "Logistic Regression Classifier";
|
||||
@ -574,7 +574,7 @@ void LogisticRegressionImpl::read(const FileNode& fn)
|
||||
// check if empty
|
||||
if(fn.empty())
|
||||
{
|
||||
CV_Error( CV_StsBadArg, "empty FileNode object" );
|
||||
CV_Error( cv::Error::StsBadArg, "empty FileNode object" );
|
||||
}
|
||||
|
||||
this->params.alpha = (double)fn["alpha"];
|
||||
|
@ -101,7 +101,7 @@ public:
|
||||
norm(var_idx, __var_idx, NORM_INF) != 0 ||
|
||||
cls_labels.size() != __cls_labels.size() ||
|
||||
norm(cls_labels, __cls_labels, NORM_INF) != 0 )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"The new training data is inconsistent with the original training data; varIdx and the class labels should be the same" );
|
||||
}
|
||||
|
||||
@ -312,11 +312,11 @@ public:
|
||||
bool rawOutput = (flags & RAW_OUTPUT) != 0;
|
||||
|
||||
if( samples.type() != CV_32F || samples.cols != nallvars )
|
||||
CV_Error( CV_StsBadArg,
|
||||
CV_Error( cv::Error::StsBadArg,
|
||||
"The input samples must be 32f matrix with the number of columns = nallvars" );
|
||||
|
||||
if( (samples.rows > 1) && (! _results.needed()) )
|
||||
CV_Error( CV_StsNullPtr,
|
||||
CV_Error( cv::Error::StsNullPtr,
|
||||
"When the number of input samples is >1, the output vector of results must be passed" );
|
||||
|
||||
if( _results.needed() )
|
||||
@ -388,7 +388,7 @@ public:
|
||||
fn["var_all"] >> nallvars;
|
||||
|
||||
if( nallvars <= 0 )
|
||||
CV_Error( CV_StsParseError,
|
||||
CV_Error( cv::Error::StsParseError,
|
||||
"The field \"var_count\" of NBayes classifier is missing or non-positive" );
|
||||
|
||||
fn["var_idx"] >> var_idx;
|
||||
@ -397,7 +397,7 @@ public:
|
||||
int nclasses = (int)cls_labels.total(), i;
|
||||
|
||||
if( cls_labels.empty() || nclasses < 1 )
|
||||
CV_Error( CV_StsParseError, "No or invalid \"cls_labels\" in NBayes classifier" );
|
||||
CV_Error( cv::Error::StsParseError, "No or invalid \"cls_labels\" in NBayes classifier" );
|
||||
|
||||
FileNodeIterator
|
||||
count_it = fn["count"].begin(),
|
||||
|
@ -131,13 +131,13 @@ namespace ml
|
||||
inline void setMaxCategories(int val)
|
||||
{
|
||||
if( val < 2 )
|
||||
CV_Error( CV_StsOutOfRange, "max_categories should be >= 2" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "max_categories should be >= 2" );
|
||||
maxCategories = std::min(val, 15 );
|
||||
}
|
||||
inline void setMaxDepth(int val)
|
||||
{
|
||||
if( val < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "max_depth should be >= 0" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "max_depth should be >= 0" );
|
||||
maxDepth = std::min( val, 25 );
|
||||
}
|
||||
inline void setMinSampleCount(int val)
|
||||
@ -147,11 +147,11 @@ namespace ml
|
||||
inline void setCVFolds(int val)
|
||||
{
|
||||
if( val < 0 )
|
||||
CV_Error( CV_StsOutOfRange,
|
||||
CV_Error( cv::Error::StsOutOfRange,
|
||||
"params.CVFolds should be =0 (the tree is not pruned) "
|
||||
"or n>0 (tree is pruned using n-fold cross-validation)" );
|
||||
if(val > 1)
|
||||
CV_Error( CV_StsNotImplemented,
|
||||
CV_Error( cv::Error::StsNotImplemented,
|
||||
"tree pruning using cross-validation is not implemented."
|
||||
"Set CVFolds to 1");
|
||||
|
||||
@ -162,7 +162,7 @@ namespace ml
|
||||
inline void setRegressionAccuracy(float val)
|
||||
{
|
||||
if( val < 0 )
|
||||
CV_Error( CV_StsOutOfRange, "params.regression_accuracy should be >= 0" );
|
||||
CV_Error( cv::Error::StsOutOfRange, "params.regression_accuracy should be >= 0" );
|
||||
regressionAccuracy = val;
|
||||
}
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user