mirror of
https://github.com/opencv/opencv.git
synced 2024-11-27 12:40:05 +08:00
Misc. ./samples typos
Found via `codespell -q 3 --skip="./3rdparty" -I ../opencv-whitelist.txt`
This commit is contained in:
parent
0c07836fba
commit
dbb57cd0ae
@ -15,7 +15,7 @@
|
||||
* 6- Texture Flattening
|
||||
|
||||
* The program takes as input a source and a destination image (for 1-3 methods)
|
||||
* and ouputs the cloned image.
|
||||
* and outputs the cloned image.
|
||||
*
|
||||
* Download test images from opencv_extra folder @github.
|
||||
*
|
||||
|
@ -15,7 +15,7 @@
|
||||
* 6- Texture Flattening
|
||||
|
||||
* The program takes as input a source and a destination image (for 1-3 methods)
|
||||
* and ouputs the cloned image.
|
||||
* and outputs the cloned image.
|
||||
|
||||
* Step 1:
|
||||
* -> In the source image, select the region of interest by left click mouse button. A Polygon ROI will be created by left clicking mouse button.
|
||||
@ -447,7 +447,7 @@ int main()
|
||||
}
|
||||
else
|
||||
{
|
||||
cout << "Wrong Option Choosen" << endl;
|
||||
cout << "Wrong Option Chosen" << endl;
|
||||
exit(1);
|
||||
}
|
||||
|
||||
|
@ -17,7 +17,7 @@ static void help()
|
||||
<< "\n------------------------------------------------------------------\n"
|
||||
<< " This program shows the serial out capabilities of cv::Mat\n"
|
||||
<< "That is, cv::Mat M(...); cout << M; Now works.\n"
|
||||
<< "Output can be formated to OpenCV, matlab, python, numpy, csv and \n"
|
||||
<< "Output can be formatted to OpenCV, matlab, python, numpy, csv and \n"
|
||||
<< "C styles Usage:\n"
|
||||
<< "./cvout_sample\n"
|
||||
<< "------------------------------------------------------------------\n\n"
|
||||
|
@ -5,7 +5,7 @@
|
||||
* Siddharth Kherada <siddharthkherada27[at]gmail[dot]com>
|
||||
*
|
||||
* This tutorial demonstrates how to make mask image (black and white).
|
||||
* The program takes as input a source image and ouputs its corresponding
|
||||
* The program takes as input a source image and outputs its corresponding
|
||||
* mask image.
|
||||
*/
|
||||
|
||||
|
@ -7,8 +7,8 @@ using namespace std;
|
||||
|
||||
static void help()
|
||||
{
|
||||
cout << "\nThis program demostrates iterative construction of\n"
|
||||
"delaunay triangulation and voronoi tesselation.\n"
|
||||
cout << "\nThis program demonstrates iterative construction of\n"
|
||||
"delaunay triangulation and voronoi tessellation.\n"
|
||||
"It draws a random set of points in an image and then delaunay triangulates them.\n"
|
||||
"Usage: \n"
|
||||
"./delaunay \n"
|
||||
|
@ -118,7 +118,7 @@ int main(int argc, char *argv[])
|
||||
help();
|
||||
|
||||
|
||||
// This descriptor are going to be detect and compute BLOBS with 6 differents params
|
||||
// These descriptors are going to be detecting and computing BLOBS with 6 different params
|
||||
// Param for first BLOB detector we want all
|
||||
typeDesc.push_back("BLOB"); // see http://docs.opencv.org/trunk/d0/d7a/classcv_1_1SimpleBlobDetector.html
|
||||
pBLOB.push_back(pDefaultBLOB);
|
||||
|
@ -18,8 +18,8 @@ static void help(char** av)
|
||||
cout << "\nfilestorage_sample demonstrate the usage of the opencv serialization functionality.\n"
|
||||
<< "usage:\n"
|
||||
<< av[0] << " outputfile.yml.gz\n"
|
||||
<< "\n outputfile above can have many different extenstions, see below."
|
||||
<< "\nThis program demonstrates the use of FileStorage for serialization, that is use << and >> in OpenCV\n"
|
||||
<< "\n outputfile above can have many different extensions, see below."
|
||||
<< "\nThis program demonstrates the use of FileStorage for serialization, that is in use << and >> in OpenCV\n"
|
||||
<< "For example, how to create a class and have it serialize, but also how to use it to read and write matrices.\n"
|
||||
<< "FileStorage allows you to serialize to various formats specified by the file end type."
|
||||
<< "\nYou should try using different file extensions.(e.g. yaml yml xml xml.gz yaml.gz etc...)\n" << endl;
|
||||
|
@ -16,7 +16,7 @@
|
||||
*
|
||||
*
|
||||
* Original Author: Denis Burenkov
|
||||
* AMS and Direct Methods Autor: Jasper Shemilt
|
||||
* AMS and Direct Methods Author: Jasper Shemilt
|
||||
*
|
||||
*
|
||||
********************************************************************************/
|
||||
@ -219,8 +219,8 @@ int main( int argc, char** argv )
|
||||
return 0;
|
||||
}
|
||||
|
||||
// Define trackbar callback functon. This function find contours,
|
||||
// draw it and approximate it by ellipses.
|
||||
// Define trackbar callback function. This function finds contours,
|
||||
// draws them, and approximates by ellipses.
|
||||
void processImage(int /*h*/, void*)
|
||||
{
|
||||
RotatedRect box, boxAMS, boxDirect;
|
||||
|
@ -60,7 +60,7 @@ const std::string keys =
|
||||
static void help(void)
|
||||
{
|
||||
|
||||
cout << "\nThis file demostrates the use of the ECC image alignment algorithm. When one image"
|
||||
cout << "\nThis file demonstrates the use of the ECC image alignment algorithm. When one image"
|
||||
" is given, the template image is artificially formed by a random warp. When both images"
|
||||
" are given, the initialization of the warp by command line parsing is possible. "
|
||||
"If inputWarp is missing, the identity transformation initializes the algorithm. \n" << endl;
|
||||
|
@ -36,7 +36,7 @@ static void printUsage(const char *arg0)
|
||||
cout << " -isp=IDX, set profile index of the image stream" << endl;
|
||||
cout << " -dsp=IDX, set profile index of the depth stream" << endl;
|
||||
cout << " -ir, show data from IR stream" << endl;
|
||||
cout << " -imb=VAL, set brighness value for a image stream" << endl;
|
||||
cout << " -imb=VAL, set brightness value for an image stream" << endl;
|
||||
cout << " -imc=VAL, set contrast value for a image stream" << endl;
|
||||
cout << " -pts, print frame index and frame time" << endl;
|
||||
cout << " --show-closed, print frame index and frame time" << endl;
|
||||
@ -307,7 +307,7 @@ int main(int argc, char* argv[])
|
||||
return 0;
|
||||
}
|
||||
|
||||
//Setup additional properies only after set profile of the stream
|
||||
//Setup additional properties only after set profile of the stream
|
||||
if ( (-10000.0 < g_imageBrightness) && (g_imageBrightness < 10000.0))
|
||||
capture.set(CAP_INTELPERC_IMAGE_GENERATOR | CAP_PROP_BRIGHTNESS, g_imageBrightness);
|
||||
if ( (0 < g_imageContrast) && (g_imageContrast < 10000.0))
|
||||
|
@ -164,7 +164,7 @@ int main(int argc, char *argv[])
|
||||
}
|
||||
int i=0;
|
||||
cout << "Cumulative distance between keypoint match for different algorithm and feature detector \n\t";
|
||||
cout << "We cannot say which is the best but we can say results are differents! \n\t";
|
||||
cout << "We cannot say which is the best but we can say results are different! \n\t";
|
||||
for (vector<String>::iterator itMatcher = typeAlgoMatch.begin(); itMatcher != typeAlgoMatch.end(); ++itMatcher)
|
||||
{
|
||||
cout<<*itMatcher<<"\t";
|
||||
|
@ -1,7 +1,7 @@
|
||||
/*
|
||||
*
|
||||
* select3obj.cpp With a calibration chessboard on a table, mark an object in a 3D box and
|
||||
* track that object in all subseqent frames as long as the camera can see
|
||||
* track that object in all subsequent frames as long as the camera can see
|
||||
* the chessboard. Also segments the object using the box projection. This
|
||||
* program is useful for collecting large datasets of many views of an object
|
||||
* on a table.
|
||||
@ -42,11 +42,11 @@ const char* helphelp =
|
||||
"\n"
|
||||
"Using a camera's intrinsics (from calibrating a camera -- see calibration.cpp) and an\n"
|
||||
"image of the object sitting on a planar surface with a calibration pattern of\n"
|
||||
"(board_width x board_height) on the surface, we draw a 3D box aroung the object. From\n"
|
||||
"(board_width x board_height) on the surface, we draw a 3D box around the object. From\n"
|
||||
"then on, we can move a camera and as long as it sees the chessboard calibration pattern,\n"
|
||||
"it will store a mask of where the object is. We get succesive images using <output_prefix>\n"
|
||||
"it will store a mask of where the object is. We get successive images using <output_prefix>\n"
|
||||
"of the segmentation mask containing the object. This makes creating training sets easy.\n"
|
||||
"It is best of the chessboard is odd x even in dimensions to avoid amiguous poses.\n"
|
||||
"It is best if the chessboard is odd x even in dimensions to avoid ambiguous poses.\n"
|
||||
"\n"
|
||||
"The actions one can use while the program is running are:\n"
|
||||
"\n"
|
||||
|
@ -16,7 +16,7 @@ using namespace cv;
|
||||
static void help()
|
||||
{
|
||||
printf("\n"
|
||||
"This program demonstrates a method for shape comparisson based on Shape Context\n"
|
||||
"This program demonstrates a method for shape comparison based on Shape Context\n"
|
||||
"You should run the program providing a number between 1 and 20 for selecting an image in the folder ../data/shape_sample.\n"
|
||||
"Call\n"
|
||||
"./shape_example [number between 1 and 20, 1 default]\n\n");
|
||||
|
@ -16,9 +16,9 @@ public:
|
||||
{
|
||||
rng = theRNG();
|
||||
}
|
||||
/** Give energy value for a state of system.*/
|
||||
/** Give energy value for a state of system.*/
|
||||
double energy() const;
|
||||
/** Function which change the state of system (random pertubation).*/
|
||||
/** Function which change the state of system (random perturbation).*/
|
||||
void changeState();
|
||||
/** Function to reverse to the previous state.*/
|
||||
void reverseState();
|
||||
|
@ -91,7 +91,7 @@ int main(int argc, char** argv)
|
||||
char key = 0;
|
||||
while(key != 'q' && key != 'Q')
|
||||
{
|
||||
// those paramaters cannot be =0
|
||||
// those parameters cannot be =0
|
||||
// so we must check here
|
||||
cannyThreshold = std::max(cannyThreshold, 1);
|
||||
accumulatorThreshold = std::max(accumulatorThreshold, 1);
|
||||
|
@ -96,7 +96,7 @@ void goodFeaturesToTrack_Demo( int, void* )
|
||||
namedWindow( source_window, WINDOW_AUTOSIZE );
|
||||
imshow( source_window, copy );
|
||||
|
||||
/// Set the neeed parameters to find the refined corners
|
||||
/// Set the needed parameters to find the refined corners
|
||||
Size winSize = Size( 5, 5 );
|
||||
Size zeroZone = Size( -1, -1 );
|
||||
TermCriteria criteria = TermCriteria( TermCriteria::EPS + TermCriteria::COUNT, 40, 0.001 );
|
||||
|
@ -84,7 +84,7 @@ int main(int argc, char *argv[])
|
||||
"{keypoints k |2000 | number of keypoints to detect }"
|
||||
"{ratio r |0.7 | threshold for ratio test }"
|
||||
"{iterations it |500 | RANSAC maximum iterations count }"
|
||||
"{error e |2.0 | RANSAC reprojection errror }"
|
||||
"{error e |2.0 | RANSAC reprojection error }"
|
||||
"{confidence c |0.95 | RANSAC confidence }"
|
||||
"{inliers in |30 | minimum inliers for Kalman update }"
|
||||
"{method pnp |0 | PnP method: (0) ITERATIVE - (1) EPNP - (2) P3P - (3) DLS}"
|
||||
|
@ -13,7 +13,7 @@ static void help( char* progName)
|
||||
{
|
||||
cout << endl << progName
|
||||
<< " shows how to use cv::Mat and IplImages together (converting back and forth)." << endl
|
||||
<< "Also contains example for image read, spliting the planes, merging back and " << endl
|
||||
<< "Also contains example for image read, splitting the planes, merging back and " << endl
|
||||
<< " color conversion, plus iterating through pixels. " << endl
|
||||
<< "Usage:" << endl
|
||||
<< progName << " [image-name Default: ../data/lena.jpg]" << endl << endl;
|
||||
|
@ -9,14 +9,14 @@ using namespace cv;
|
||||
static void help()
|
||||
{
|
||||
cout
|
||||
<< "\n--------------------------------------------------------------------------" << endl
|
||||
<< "\n---------------------------------------------------------------------------" << endl
|
||||
<< "This program shows how to create matrices(cv::Mat) in OpenCV and its serial"
|
||||
<< " out capabilities" << endl
|
||||
<< "That is, cv::Mat M(...); M.create and cout << M. " << endl
|
||||
<< "Shows how output can be formated to OpenCV, python, numpy, csv and C styles." << endl
|
||||
<< "Usage:" << endl
|
||||
<< "./mat_the_basic_image_container" << endl
|
||||
<< "--------------------------------------------------------------------------" << endl
|
||||
<< " out capabilities" << endl
|
||||
<< "That is, cv::Mat M(...); M.create and cout << M. " << endl
|
||||
<< "Shows how output can be formatted to OpenCV, python, numpy, csv and C styles." << endl
|
||||
<< "Usage:" << endl
|
||||
<< "./mat_the_basic_image_container" << endl
|
||||
<< "-----------------------------------------------------------------------------" << endl
|
||||
<< endl;
|
||||
}
|
||||
|
||||
@ -76,7 +76,7 @@ int main(int,char**)
|
||||
randu(R, Scalar::all(0), Scalar::all(255));
|
||||
//! [random]
|
||||
|
||||
// Demonstrate the output formating options
|
||||
// Demonstrate the output formatting options
|
||||
//! [out-default]
|
||||
cout << "R (default) = " << endl << R << endl << endl;
|
||||
//! [out-default]
|
||||
|
@ -15,7 +15,7 @@
|
||||
* 6- Texture Flattening
|
||||
|
||||
* The program takes as input a source and a destination image (for 1-3 methods)
|
||||
* and ouputs the cloned image.
|
||||
* and outputs the cloned image.
|
||||
*
|
||||
* Download test images from opencv_extra folder @github.
|
||||
*
|
||||
|
@ -15,7 +15,7 @@
|
||||
* 6- Texture Flattening
|
||||
|
||||
* The program takes as input a source and a destination image (for 1-3 methods)
|
||||
* and ouputs the cloned image.
|
||||
* and outputs the cloned image.
|
||||
|
||||
* Step 1:
|
||||
* -> In the source image, select the region of interest by left click mouse button. A Polygon ROI will be created by left clicking mouse button.
|
||||
@ -446,7 +446,7 @@ int main()
|
||||
}
|
||||
else
|
||||
{
|
||||
cout << "Wrong Option Choosen" << endl;
|
||||
cout << "Wrong Option Chosen" << endl;
|
||||
exit(0);
|
||||
}
|
||||
|
||||
|
@ -131,7 +131,7 @@ void printHelp()
|
||||
" --mi-dist-thresh=<float_number>\n"
|
||||
" Estimated flow distance threshold for motion inpainting. The default is 5.0.\n\n"
|
||||
" -ci=, --color-inpaint=(no|average|ns|telea)\n"
|
||||
" Do color inpainting. The defailt is no.\n"
|
||||
" Do color inpainting. The default is no.\n"
|
||||
" --ci-radius=<float_number>\n"
|
||||
" Set color inpainting radius (for ns and telea options only).\n"
|
||||
" The default is 2.0\n\n"
|
||||
@ -163,9 +163,9 @@ void printHelp()
|
||||
" -gpu=(yes|no)\n"
|
||||
" Use CUDA optimization whenever possible. The default is no.\n\n"
|
||||
" -o=, --output=(no|<file_path>)\n"
|
||||
" Set output file path explicitely. The default is stabilized.avi.\n"
|
||||
" Set output file path explicitly. The default is stabilized.avi.\n"
|
||||
" --fps=(<float_number>|auto)\n"
|
||||
" Set output video FPS explicitely. By default the source FPS is used (auto).\n"
|
||||
" Set output video FPS explicitly. By default the source FPS is used (auto).\n"
|
||||
" -q, --quiet\n"
|
||||
" Don't show output video frames.\n\n"
|
||||
" -h, --help\n"
|
||||
@ -487,7 +487,7 @@ int main(int argc, const char **argv)
|
||||
stabilizer->setDeblurer(deblurer);
|
||||
}
|
||||
|
||||
// set up trimming paramters
|
||||
// set up trimming parameters
|
||||
stabilizer->setTrimRatio(argf("trim-ratio"));
|
||||
stabilizer->setCorrectionForInclusion(arg("incl-constr") == "yes");
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
This is a brief description of training process which has been used to get res10_300x300_ssd_iter_140000.caffemodel.
|
||||
The model was created with SSD framework using ResNet-10 like architecture as a backbone. Channels count in ResNet-10 convolution layers was significantly dropped (2x- or 4x- fewer channels).
|
||||
The model was trained in Caffe framework on some huge and avaliable online dataset.
|
||||
The model was trained in Caffe framework on some huge and available online dataset.
|
||||
|
||||
1. Prepare training tools
|
||||
You need to use "ssd" branch from this repository https://github.com/weiliu89/caffe/tree/ssd . Checkout this branch and built it (see instructions in repo's README)
|
||||
|
@ -16,7 +16,7 @@ try:
|
||||
import cv2 as cv
|
||||
except ImportError:
|
||||
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
|
||||
'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
|
||||
'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
|
||||
|
||||
inWidth = 300
|
||||
inHeight = 300
|
||||
|
@ -5,7 +5,7 @@ try:
|
||||
import cv2 as cv
|
||||
except ImportError:
|
||||
raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, '
|
||||
'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
|
||||
'configure environment variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)')
|
||||
|
||||
from cv2 import dnn
|
||||
|
||||
|
@ -1,4 +1,4 @@
|
||||
/* This sample demonstrates the way you can perform independed tasks
|
||||
/* This sample demonstrates the way you can perform independent tasks
|
||||
on the different GPUs */
|
||||
|
||||
// Disable some warnings which are caused with CUDA headers
|
||||
|
@ -32,8 +32,8 @@ int main(int argc, const char* argv[])
|
||||
"{ minDist | 100 | minimum distance between the centers of the detected objects }"
|
||||
"{ levels | 360 | R-Table levels }"
|
||||
"{ votesThreshold | 30 | the accumulator threshold for the template centers at the detection stage. The smaller it is, the more false positions may be detected }"
|
||||
"{ angleThresh | 10000 | angle votes treshold }"
|
||||
"{ scaleThresh | 1000 | scale votes treshold }"
|
||||
"{ angleThresh | 10000 | angle votes threshold }"
|
||||
"{ scaleThresh | 1000 | scale votes threshold }"
|
||||
"{ posThresh | 100 | position votes threshold }"
|
||||
"{ dp | 2 | inverse ratio of the accumulator resolution to the image resolution }"
|
||||
"{ minScale | 0.5 | minimal scale to detect }"
|
||||
@ -46,7 +46,7 @@ int main(int argc, const char* argv[])
|
||||
"{ help h ? | | print help message }"
|
||||
);
|
||||
|
||||
cmd.about("This program demonstrates arbitary object finding with the Generalized Hough transform.");
|
||||
cmd.about("This program demonstrates arbitrary object finding with the Generalized Hough transform.");
|
||||
|
||||
if (cmd.has("help"))
|
||||
{
|
||||
|
@ -1,4 +1,4 @@
|
||||
/* This sample demonstrates the way you can perform independed tasks
|
||||
/* This sample demonstrates the way you can perform independent tasks
|
||||
on the different GPUs */
|
||||
|
||||
// Disable some warnings which are caused with CUDA headers
|
||||
|
@ -371,7 +371,7 @@ int main(int argc, char** argv)
|
||||
DeviceInfo devInfo(i);
|
||||
if (!devInfo.isCompatible())
|
||||
{
|
||||
cerr << "CUDA module was't built for GPU #" << i << " ("
|
||||
cerr << "CUDA module wasn't built for GPU #" << i << " ("
|
||||
<< devInfo.name() << ", CC " << devInfo.majorVersion()
|
||||
<< devInfo.minorVersion() << endl;
|
||||
return -1;
|
||||
|
@ -67,7 +67,7 @@ if __name__ == '__main__':
|
||||
cv.setMouseCallback("gray", onmouse)
|
||||
'''Loop through all the images in the directory'''
|
||||
for infile in glob.glob( os.path.join(path, '*.*') ):
|
||||
ext = os.path.splitext(infile)[1][1:] #get the filename extenstion
|
||||
ext = os.path.splitext(infile)[1][1:] #get the filename extension
|
||||
if ext == "png" or ext == "jpg" or ext == "bmp" or ext == "tiff" or ext == "pbm":
|
||||
print(infile)
|
||||
|
||||
|
@ -5,7 +5,7 @@ Planar augmented reality
|
||||
==================
|
||||
|
||||
This sample shows an example of augmented reality overlay over a planar object
|
||||
tracked by PlaneTracker from plane_tracker.py. solvePnP funciton is used to
|
||||
tracked by PlaneTracker from plane_tracker.py. solvePnP function is used to
|
||||
estimate the tracked object location in 3d space.
|
||||
|
||||
video: http://www.youtube.com/watch?v=pzVbhxx6aog
|
||||
|
@ -8,7 +8,7 @@ frames from a camera of a movie file. Also the sample provides
|
||||
an example of procedural video generation by an object, mimicking
|
||||
the VideoCapture interface (see Chess class).
|
||||
|
||||
'create_capture' is a convinience function for capture creation,
|
||||
'create_capture' is a convenience function for capture creation,
|
||||
falling back to procedural video in case of error.
|
||||
|
||||
Usage:
|
||||
|
@ -223,7 +223,7 @@ void App::run()
|
||||
|
||||
if (output!="" && write_once)
|
||||
{
|
||||
if (img_source!="") // wirte image
|
||||
if (img_source!="") // write image
|
||||
{
|
||||
write_once = false;
|
||||
imwrite(output, img_to_show);
|
||||
|
@ -295,7 +295,7 @@ void AdvancedCapture::AddEffectToImageStream()
|
||||
Windows::Media::MediaProperties::IMediaEncodingProperties ^props = mediaCapture->VideoDeviceController->GetMediaStreamProperties(Windows::Media::Capture::MediaStreamType::Photo);
|
||||
if(props->Type->Equals("Image"))
|
||||
{
|
||||
//Switch to a video media type instead since we cant add an effect to a image media type
|
||||
//Switch to a video media type instead since we can't add an effect to an image media type
|
||||
Windows::Foundation::Collections::IVectorView<Windows::Media::MediaProperties::IMediaEncodingProperties^>^ supportedPropsList = mediaCapture->VideoDeviceController->GetAvailableMediaStreamProperties(Windows::Media::Capture::MediaStreamType::Photo);
|
||||
{
|
||||
unsigned int i = 0;
|
||||
@ -565,7 +565,7 @@ void SDKSample::MediaCapture::AdvancedCapture::Button_Click(Platform::Object^ se
|
||||
{
|
||||
Windows::Media::MediaProperties::IMediaEncodingProperties ^props = mediaCapture->VideoDeviceController->GetMediaStreamProperties(Windows::Media::Capture::MediaStreamType::VideoRecord);
|
||||
Windows::Media::MediaProperties::VideoEncodingProperties ^videoEncodingProperties = static_cast<Windows::Media::MediaProperties::VideoEncodingProperties ^>(props);
|
||||
if(!videoEncodingProperties->Subtype->Equals("H264")) //Cant add an effect to an H264 stream
|
||||
if(!videoEncodingProperties->Subtype->Equals("H264")) //Can't add an effect to an H264 stream
|
||||
{
|
||||
task<void>(mediaCapture->AddEffectAsync(Windows::Media::Capture::MediaStreamType::VideoRecord,"OcvTransform.OcvImageManipulations", nullptr)).then([this](task<void> effectTask2)
|
||||
{
|
||||
|
@ -61,7 +61,7 @@
|
||||
<Grid Grid.Row="1">
|
||||
|
||||
<!-- All XAML in this section is purely for design time so you can see sample content in the designer. -->
|
||||
<!-- This will be repaced at runtime by live content. -->
|
||||
<!-- This will be replaced at runtime by live content. -->
|
||||
<Grid>
|
||||
<Grid.RowDefinitions>
|
||||
<RowDefinition Height="Auto"/>
|
||||
|
@ -244,7 +244,7 @@ task<void> SuspensionManager::SaveAsync(void)
|
||||
/// state, which in turn gives their active <see cref="Page"/> an opportunity restore its
|
||||
/// state.
|
||||
/// </summary>
|
||||
/// <param name="version">A version identifer compared to the session state to prevent
|
||||
/// <param name="version">A version identifier compared to the session state to prevent
|
||||
/// incompatible versions of session state from reaching app code. Saved state with a
|
||||
/// different version will be ignored, resulting in an empty <see cref="SessionState"/>
|
||||
/// dictionary.</param>
|
||||
|
Loading…
Reference in New Issue
Block a user