mirror of
https://github.com/opencv/opencv.git
synced 2024-11-28 13:10:12 +08:00
core: dispatch mean.cpp
This commit is contained in:
parent
4b82c8a22b
commit
dc84cf9914
@ -7,6 +7,7 @@ ocv_add_dispatched_file(convert SSE2 AVX2)
|
||||
ocv_add_dispatched_file(convert_scale SSE2 AVX2)
|
||||
ocv_add_dispatched_file(count_non_zero SSE2 AVX2)
|
||||
ocv_add_dispatched_file(matmul SSE2 AVX2)
|
||||
ocv_add_dispatched_file(mean SSE2 AVX2)
|
||||
ocv_add_dispatched_file(sum SSE2 AVX2)
|
||||
|
||||
# dispatching for accuracy tests
|
||||
|
@ -8,9 +8,12 @@
|
||||
#include "opencv2/core/openvx/ovx_defs.hpp"
|
||||
#include "stat.hpp"
|
||||
|
||||
#include "mean.simd.hpp"
|
||||
#include "mean.simd_declarations.hpp" // defines CV_CPU_DISPATCH_MODES_ALL=AVX2,...,BASELINE based on CMakeLists.txt content
|
||||
|
||||
namespace cv {
|
||||
|
||||
#if defined HAVE_IPP
|
||||
namespace cv
|
||||
{
|
||||
static bool ipp_mean( Mat &src, Mat &mask, Scalar &ret )
|
||||
{
|
||||
CV_INSTRUMENT_REGION_IPP();
|
||||
@ -101,10 +104,9 @@ static bool ipp_mean( Mat &src, Mat &mask, Scalar &ret )
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
cv::Scalar cv::mean( InputArray _src, InputArray _mask )
|
||||
Scalar mean(InputArray _src, InputArray _mask)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
@ -167,314 +169,11 @@ cv::Scalar cv::mean( InputArray _src, InputArray _mask )
|
||||
return s*(nz0 ? 1./nz0 : 0);
|
||||
}
|
||||
|
||||
//==================================================================================================
|
||||
|
||||
namespace cv {
|
||||
|
||||
template <typename T, typename ST, typename SQT>
|
||||
struct SumSqr_SIMD
|
||||
static SumSqrFunc getSumSqrFunc(int depth)
|
||||
{
|
||||
int operator () (const T *, const uchar *, ST *, SQT *, int, int) const
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
};
|
||||
|
||||
#if CV_SIMD
|
||||
|
||||
template <>
|
||||
struct SumSqr_SIMD<uchar, int, int>
|
||||
{
|
||||
int operator () (const uchar * src0, const uchar * mask, int * sum, int * sqsum, int len, int cn) const
|
||||
{
|
||||
if (mask || (cn != 1 && cn != 2 && cn != 4))
|
||||
return 0;
|
||||
len *= cn;
|
||||
|
||||
int x = 0;
|
||||
v_int32 v_sum = vx_setzero_s32();
|
||||
v_int32 v_sqsum = vx_setzero_s32();
|
||||
|
||||
const int len0 = len & -v_uint8::nlanes;
|
||||
while(x < len0)
|
||||
{
|
||||
const int len_tmp = min(x + 256*v_uint16::nlanes, len0);
|
||||
v_uint16 v_sum16 = vx_setzero_u16();
|
||||
for ( ; x < len_tmp; x += v_uint8::nlanes)
|
||||
{
|
||||
v_uint16 v_src0 = vx_load_expand(src0 + x);
|
||||
v_uint16 v_src1 = vx_load_expand(src0 + x + v_uint16::nlanes);
|
||||
v_sum16 += v_src0 + v_src1;
|
||||
v_int16 v_tmp0, v_tmp1;
|
||||
v_zip(v_reinterpret_as_s16(v_src0), v_reinterpret_as_s16(v_src1), v_tmp0, v_tmp1);
|
||||
v_sqsum += v_dotprod(v_tmp0, v_tmp0) + v_dotprod(v_tmp1, v_tmp1);
|
||||
}
|
||||
v_uint32 v_half0, v_half1;
|
||||
v_expand(v_sum16, v_half0, v_half1);
|
||||
v_sum += v_reinterpret_as_s32(v_half0 + v_half1);
|
||||
}
|
||||
if (x <= len - v_uint16::nlanes)
|
||||
{
|
||||
v_uint16 v_src = vx_load_expand(src0 + x);
|
||||
v_uint16 v_half = v_combine_high(v_src, v_src);
|
||||
|
||||
v_uint32 v_tmp0, v_tmp1;
|
||||
v_expand(v_src + v_half, v_tmp0, v_tmp1);
|
||||
v_sum += v_reinterpret_as_s32(v_tmp0);
|
||||
|
||||
v_int16 v_tmp2, v_tmp3;
|
||||
v_zip(v_reinterpret_as_s16(v_src), v_reinterpret_as_s16(v_half), v_tmp2, v_tmp3);
|
||||
v_sqsum += v_dotprod(v_tmp2, v_tmp2);
|
||||
x += v_uint16::nlanes;
|
||||
}
|
||||
|
||||
if (cn == 1)
|
||||
{
|
||||
*sum += v_reduce_sum(v_sum);
|
||||
*sqsum += v_reduce_sum(v_sqsum);
|
||||
}
|
||||
else
|
||||
{
|
||||
int CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[2 * v_int32::nlanes];
|
||||
v_store(ar, v_sum);
|
||||
v_store(ar + v_int32::nlanes, v_sqsum);
|
||||
for (int i = 0; i < v_int32::nlanes; ++i)
|
||||
{
|
||||
sum[i % cn] += ar[i];
|
||||
sqsum[i % cn] += ar[v_int32::nlanes + i];
|
||||
}
|
||||
}
|
||||
v_cleanup();
|
||||
return x / cn;
|
||||
}
|
||||
};
|
||||
|
||||
template <>
|
||||
struct SumSqr_SIMD<schar, int, int>
|
||||
{
|
||||
int operator () (const schar * src0, const uchar * mask, int * sum, int * sqsum, int len, int cn) const
|
||||
{
|
||||
if (mask || (cn != 1 && cn != 2 && cn != 4))
|
||||
return 0;
|
||||
len *= cn;
|
||||
|
||||
int x = 0;
|
||||
v_int32 v_sum = vx_setzero_s32();
|
||||
v_int32 v_sqsum = vx_setzero_s32();
|
||||
|
||||
const int len0 = len & -v_int8::nlanes;
|
||||
while (x < len0)
|
||||
{
|
||||
const int len_tmp = min(x + 256 * v_int16::nlanes, len0);
|
||||
v_int16 v_sum16 = vx_setzero_s16();
|
||||
for (; x < len_tmp; x += v_int8::nlanes)
|
||||
{
|
||||
v_int16 v_src0 = vx_load_expand(src0 + x);
|
||||
v_int16 v_src1 = vx_load_expand(src0 + x + v_int16::nlanes);
|
||||
v_sum16 += v_src0 + v_src1;
|
||||
v_int16 v_tmp0, v_tmp1;
|
||||
v_zip(v_src0, v_src1, v_tmp0, v_tmp1);
|
||||
v_sqsum += v_dotprod(v_tmp0, v_tmp0) + v_dotprod(v_tmp1, v_tmp1);
|
||||
}
|
||||
v_int32 v_half0, v_half1;
|
||||
v_expand(v_sum16, v_half0, v_half1);
|
||||
v_sum += v_half0 + v_half1;
|
||||
}
|
||||
if (x <= len - v_int16::nlanes)
|
||||
{
|
||||
v_int16 v_src = vx_load_expand(src0 + x);
|
||||
v_int16 v_half = v_combine_high(v_src, v_src);
|
||||
|
||||
v_int32 v_tmp0, v_tmp1;
|
||||
v_expand(v_src + v_half, v_tmp0, v_tmp1);
|
||||
v_sum += v_tmp0;
|
||||
|
||||
v_int16 v_tmp2, v_tmp3;
|
||||
v_zip(v_src, v_half, v_tmp2, v_tmp3);
|
||||
v_sqsum += v_dotprod(v_tmp2, v_tmp2);
|
||||
x += v_int16::nlanes;
|
||||
}
|
||||
|
||||
if (cn == 1)
|
||||
{
|
||||
*sum += v_reduce_sum(v_sum);
|
||||
*sqsum += v_reduce_sum(v_sqsum);
|
||||
}
|
||||
else
|
||||
{
|
||||
int CV_DECL_ALIGNED(CV_SIMD_WIDTH) ar[2 * v_int32::nlanes];
|
||||
v_store(ar, v_sum);
|
||||
v_store(ar + v_int32::nlanes, v_sqsum);
|
||||
for (int i = 0; i < v_int32::nlanes; ++i)
|
||||
{
|
||||
sum[i % cn] += ar[i];
|
||||
sqsum[i % cn] += ar[v_int32::nlanes + i];
|
||||
}
|
||||
}
|
||||
v_cleanup();
|
||||
return x / cn;
|
||||
}
|
||||
};
|
||||
|
||||
#endif
|
||||
|
||||
template<typename T, typename ST, typename SQT>
|
||||
static int sumsqr_(const T* src0, const uchar* mask, ST* sum, SQT* sqsum, int len, int cn )
|
||||
{
|
||||
const T* src = src0;
|
||||
|
||||
if( !mask )
|
||||
{
|
||||
SumSqr_SIMD<T, ST, SQT> vop;
|
||||
int x = vop(src0, mask, sum, sqsum, len, cn), k = cn % 4;
|
||||
src = src0 + x * cn;
|
||||
|
||||
if( k == 1 )
|
||||
{
|
||||
ST s0 = sum[0];
|
||||
SQT sq0 = sqsum[0];
|
||||
for(int i = x; i < len; i++, src += cn )
|
||||
{
|
||||
T v = src[0];
|
||||
s0 += v; sq0 += (SQT)v*v;
|
||||
}
|
||||
sum[0] = s0;
|
||||
sqsum[0] = sq0;
|
||||
}
|
||||
else if( k == 2 )
|
||||
{
|
||||
ST s0 = sum[0], s1 = sum[1];
|
||||
SQT sq0 = sqsum[0], sq1 = sqsum[1];
|
||||
for(int i = x; i < len; i++, src += cn )
|
||||
{
|
||||
T v0 = src[0], v1 = src[1];
|
||||
s0 += v0; sq0 += (SQT)v0*v0;
|
||||
s1 += v1; sq1 += (SQT)v1*v1;
|
||||
}
|
||||
sum[0] = s0; sum[1] = s1;
|
||||
sqsum[0] = sq0; sqsum[1] = sq1;
|
||||
}
|
||||
else if( k == 3 )
|
||||
{
|
||||
ST s0 = sum[0], s1 = sum[1], s2 = sum[2];
|
||||
SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2];
|
||||
for(int i = x; i < len; i++, src += cn )
|
||||
{
|
||||
T v0 = src[0], v1 = src[1], v2 = src[2];
|
||||
s0 += v0; sq0 += (SQT)v0*v0;
|
||||
s1 += v1; sq1 += (SQT)v1*v1;
|
||||
s2 += v2; sq2 += (SQT)v2*v2;
|
||||
}
|
||||
sum[0] = s0; sum[1] = s1; sum[2] = s2;
|
||||
sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2;
|
||||
}
|
||||
|
||||
for( ; k < cn; k += 4 )
|
||||
{
|
||||
src = src0 + x * cn + k;
|
||||
ST s0 = sum[k], s1 = sum[k+1], s2 = sum[k+2], s3 = sum[k+3];
|
||||
SQT sq0 = sqsum[k], sq1 = sqsum[k+1], sq2 = sqsum[k+2], sq3 = sqsum[k+3];
|
||||
for(int i = x; i < len; i++, src += cn )
|
||||
{
|
||||
T v0, v1;
|
||||
v0 = src[0], v1 = src[1];
|
||||
s0 += v0; sq0 += (SQT)v0*v0;
|
||||
s1 += v1; sq1 += (SQT)v1*v1;
|
||||
v0 = src[2], v1 = src[3];
|
||||
s2 += v0; sq2 += (SQT)v0*v0;
|
||||
s3 += v1; sq3 += (SQT)v1*v1;
|
||||
}
|
||||
sum[k] = s0; sum[k+1] = s1;
|
||||
sum[k+2] = s2; sum[k+3] = s3;
|
||||
sqsum[k] = sq0; sqsum[k+1] = sq1;
|
||||
sqsum[k+2] = sq2; sqsum[k+3] = sq3;
|
||||
}
|
||||
return len;
|
||||
}
|
||||
|
||||
int i, nzm = 0;
|
||||
|
||||
if( cn == 1 )
|
||||
{
|
||||
ST s0 = sum[0];
|
||||
SQT sq0 = sqsum[0];
|
||||
for( i = 0; i < len; i++ )
|
||||
if( mask[i] )
|
||||
{
|
||||
T v = src[i];
|
||||
s0 += v; sq0 += (SQT)v*v;
|
||||
nzm++;
|
||||
}
|
||||
sum[0] = s0;
|
||||
sqsum[0] = sq0;
|
||||
}
|
||||
else if( cn == 3 )
|
||||
{
|
||||
ST s0 = sum[0], s1 = sum[1], s2 = sum[2];
|
||||
SQT sq0 = sqsum[0], sq1 = sqsum[1], sq2 = sqsum[2];
|
||||
for( i = 0; i < len; i++, src += 3 )
|
||||
if( mask[i] )
|
||||
{
|
||||
T v0 = src[0], v1 = src[1], v2 = src[2];
|
||||
s0 += v0; sq0 += (SQT)v0*v0;
|
||||
s1 += v1; sq1 += (SQT)v1*v1;
|
||||
s2 += v2; sq2 += (SQT)v2*v2;
|
||||
nzm++;
|
||||
}
|
||||
sum[0] = s0; sum[1] = s1; sum[2] = s2;
|
||||
sqsum[0] = sq0; sqsum[1] = sq1; sqsum[2] = sq2;
|
||||
}
|
||||
else
|
||||
{
|
||||
for( i = 0; i < len; i++, src += cn )
|
||||
if( mask[i] )
|
||||
{
|
||||
for( int k = 0; k < cn; k++ )
|
||||
{
|
||||
T v = src[k];
|
||||
ST s = sum[k] + v;
|
||||
SQT sq = sqsum[k] + (SQT)v*v;
|
||||
sum[k] = s; sqsum[k] = sq;
|
||||
}
|
||||
nzm++;
|
||||
}
|
||||
}
|
||||
return nzm;
|
||||
}
|
||||
|
||||
|
||||
static int sqsum8u( const uchar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
static int sqsum8s( const schar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
static int sqsum16u( const ushort* src, const uchar* mask, int* sum, double* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
static int sqsum16s( const short* src, const uchar* mask, int* sum, double* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
static int sqsum32s( const int* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
static int sqsum32f( const float* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
static int sqsum64f( const double* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
typedef int (*SumSqrFunc)(const uchar*, const uchar* mask, uchar*, uchar*, int, int);
|
||||
|
||||
static SumSqrFunc getSumSqrTab(int depth)
|
||||
{
|
||||
static SumSqrFunc sumSqrTab[] =
|
||||
{
|
||||
(SumSqrFunc)GET_OPTIMIZED(sqsum8u), (SumSqrFunc)sqsum8s, (SumSqrFunc)sqsum16u, (SumSqrFunc)sqsum16s,
|
||||
(SumSqrFunc)sqsum32s, (SumSqrFunc)GET_OPTIMIZED(sqsum32f), (SumSqrFunc)sqsum64f, 0
|
||||
};
|
||||
|
||||
return sumSqrTab[depth];
|
||||
CV_INSTRUMENT_REGION();
|
||||
CV_CPU_DISPATCH(getSumSqrFunc, (depth),
|
||||
CV_CPU_DISPATCH_MODES_ALL);
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
@ -798,9 +497,7 @@ static bool ipp_meanStdDev(Mat& src, OutputArray _mean, OutputArray _sdv, Mat& m
|
||||
}
|
||||
#endif
|
||||
|
||||
} // cv::
|
||||
|
||||
void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask )
|
||||
void meanStdDev(InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
@ -819,7 +516,7 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
|
||||
|
||||
int k, cn = src.channels(), depth = src.depth();
|
||||
|
||||
SumSqrFunc func = getSumSqrTab(depth);
|
||||
SumSqrFunc func = getSumSqrFunc(depth);
|
||||
|
||||
CV_Assert( func != 0 );
|
||||
|
||||
@ -907,3 +604,5 @@ void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, Input
|
||||
dptr[k] = 0;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
@ -4,177 +4,21 @@
|
||||
|
||||
|
||||
#include "precomp.hpp"
|
||||
#include "opencl_kernels_core.hpp"
|
||||
#include "opencv2/core/openvx/ovx_defs.hpp"
|
||||
#include "stat.hpp"
|
||||
|
||||
#if defined HAVE_IPP
|
||||
namespace cv
|
||||
{
|
||||
static bool ipp_mean( Mat &src, Mat &mask, Scalar &ret )
|
||||
{
|
||||
CV_INSTRUMENT_REGION_IPP();
|
||||
|
||||
#if IPP_VERSION_X100 >= 700
|
||||
size_t total_size = src.total();
|
||||
int cn = src.channels();
|
||||
if (cn > 4)
|
||||
return false;
|
||||
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0;
|
||||
if( src.dims == 2 || (src.isContinuous() && mask.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) )
|
||||
{
|
||||
IppiSize sz = { cols, rows };
|
||||
int type = src.type();
|
||||
if( !mask.empty() )
|
||||
{
|
||||
typedef IppStatus (CV_STDCALL* ippiMaskMeanFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *);
|
||||
ippiMaskMeanFuncC1 ippiMean_C1MR =
|
||||
type == CV_8UC1 ? (ippiMaskMeanFuncC1)ippiMean_8u_C1MR :
|
||||
type == CV_16UC1 ? (ippiMaskMeanFuncC1)ippiMean_16u_C1MR :
|
||||
type == CV_32FC1 ? (ippiMaskMeanFuncC1)ippiMean_32f_C1MR :
|
||||
0;
|
||||
if( ippiMean_C1MR )
|
||||
{
|
||||
Ipp64f res;
|
||||
if( CV_INSTRUMENT_FUN_IPP(ippiMean_C1MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, &res) >= 0 )
|
||||
{
|
||||
ret = Scalar(res);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
typedef IppStatus (CV_STDCALL* ippiMaskMeanFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *);
|
||||
ippiMaskMeanFuncC3 ippiMean_C3MR =
|
||||
type == CV_8UC3 ? (ippiMaskMeanFuncC3)ippiMean_8u_C3CMR :
|
||||
type == CV_16UC3 ? (ippiMaskMeanFuncC3)ippiMean_16u_C3CMR :
|
||||
type == CV_32FC3 ? (ippiMaskMeanFuncC3)ippiMean_32f_C3CMR :
|
||||
0;
|
||||
if( ippiMean_C3MR )
|
||||
{
|
||||
Ipp64f res1, res2, res3;
|
||||
if( CV_INSTRUMENT_FUN_IPP(ippiMean_C3MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 1, &res1) >= 0 &&
|
||||
CV_INSTRUMENT_FUN_IPP(ippiMean_C3MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 2, &res2) >= 0 &&
|
||||
CV_INSTRUMENT_FUN_IPP(ippiMean_C3MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 3, &res3) >= 0 )
|
||||
{
|
||||
ret = Scalar(res1, res2, res3);
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
typedef IppStatus (CV_STDCALL* ippiMeanFuncHint)(const void*, int, IppiSize, double *, IppHintAlgorithm);
|
||||
typedef IppStatus (CV_STDCALL* ippiMeanFuncNoHint)(const void*, int, IppiSize, double *);
|
||||
ippiMeanFuncHint ippiMeanHint =
|
||||
type == CV_32FC1 ? (ippiMeanFuncHint)ippiMean_32f_C1R :
|
||||
type == CV_32FC3 ? (ippiMeanFuncHint)ippiMean_32f_C3R :
|
||||
type == CV_32FC4 ? (ippiMeanFuncHint)ippiMean_32f_C4R :
|
||||
0;
|
||||
ippiMeanFuncNoHint ippiMean =
|
||||
type == CV_8UC1 ? (ippiMeanFuncNoHint)ippiMean_8u_C1R :
|
||||
type == CV_8UC3 ? (ippiMeanFuncNoHint)ippiMean_8u_C3R :
|
||||
type == CV_8UC4 ? (ippiMeanFuncNoHint)ippiMean_8u_C4R :
|
||||
type == CV_16UC1 ? (ippiMeanFuncNoHint)ippiMean_16u_C1R :
|
||||
type == CV_16UC3 ? (ippiMeanFuncNoHint)ippiMean_16u_C3R :
|
||||
type == CV_16UC4 ? (ippiMeanFuncNoHint)ippiMean_16u_C4R :
|
||||
type == CV_16SC1 ? (ippiMeanFuncNoHint)ippiMean_16s_C1R :
|
||||
type == CV_16SC3 ? (ippiMeanFuncNoHint)ippiMean_16s_C3R :
|
||||
type == CV_16SC4 ? (ippiMeanFuncNoHint)ippiMean_16s_C4R :
|
||||
0;
|
||||
// Make sure only zero or one version of the function pointer is valid
|
||||
CV_Assert(!ippiMeanHint || !ippiMean);
|
||||
if( ippiMeanHint || ippiMean )
|
||||
{
|
||||
Ipp64f res[4];
|
||||
IppStatus status = ippiMeanHint ? CV_INSTRUMENT_FUN_IPP(ippiMeanHint, src.ptr(), (int)src.step[0], sz, res, ippAlgHintAccurate) :
|
||||
CV_INSTRUMENT_FUN_IPP(ippiMean, src.ptr(), (int)src.step[0], sz, res);
|
||||
if( status >= 0 )
|
||||
{
|
||||
for( int i = 0; i < cn; i++ )
|
||||
ret[i] = res[i];
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return false;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
cv::Scalar cv::mean( InputArray _src, InputArray _mask )
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
Mat src = _src.getMat(), mask = _mask.getMat();
|
||||
CV_Assert( mask.empty() || mask.type() == CV_8U );
|
||||
|
||||
int k, cn = src.channels(), depth = src.depth();
|
||||
Scalar s;
|
||||
|
||||
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_mean(src, mask, s), s)
|
||||
|
||||
SumFunc func = getSumFunc(depth);
|
||||
|
||||
CV_Assert( cn <= 4 && func != 0 );
|
||||
|
||||
const Mat* arrays[] = {&src, &mask, 0};
|
||||
uchar* ptrs[2] = {};
|
||||
NAryMatIterator it(arrays, ptrs);
|
||||
int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
|
||||
int j, count = 0;
|
||||
AutoBuffer<int> _buf;
|
||||
int* buf = (int*)&s[0];
|
||||
bool blockSum = depth <= CV_16S;
|
||||
size_t esz = 0, nz0 = 0;
|
||||
|
||||
if( blockSum )
|
||||
{
|
||||
intSumBlockSize = depth <= CV_8S ? (1 << 23) : (1 << 15);
|
||||
blockSize = std::min(blockSize, intSumBlockSize);
|
||||
_buf.allocate(cn);
|
||||
buf = _buf.data();
|
||||
|
||||
for( k = 0; k < cn; k++ )
|
||||
buf[k] = 0;
|
||||
esz = src.elemSize();
|
||||
}
|
||||
|
||||
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
||||
{
|
||||
for( j = 0; j < total; j += blockSize )
|
||||
{
|
||||
int bsz = std::min(total - j, blockSize);
|
||||
int nz = func( ptrs[0], ptrs[1], (uchar*)buf, bsz, cn );
|
||||
count += nz;
|
||||
nz0 += nz;
|
||||
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
|
||||
{
|
||||
for( k = 0; k < cn; k++ )
|
||||
{
|
||||
s[k] += buf[k];
|
||||
buf[k] = 0;
|
||||
}
|
||||
count = 0;
|
||||
}
|
||||
ptrs[0] += bsz*esz;
|
||||
if( ptrs[1] )
|
||||
ptrs[1] += bsz;
|
||||
}
|
||||
}
|
||||
return s*(nz0 ? 1./nz0 : 0);
|
||||
}
|
||||
|
||||
//==================================================================================================
|
||||
|
||||
namespace cv {
|
||||
typedef int (*SumSqrFunc)(const uchar*, const uchar* mask, uchar*, uchar*, int, int);
|
||||
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_BEGIN
|
||||
|
||||
SumSqrFunc getSumSqrFunc(int depth);
|
||||
|
||||
#ifndef CV_CPU_OPTIMIZATION_DECLARATIONS_ONLY
|
||||
|
||||
template <typename T, typename ST, typename SQT>
|
||||
struct SumSqr_SIMD
|
||||
{
|
||||
int operator () (const T *, const uchar *, ST *, SQT *, int, int) const
|
||||
inline int operator () (const T *, const uchar *, ST *, SQT *, int, int) const
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
@ -444,30 +288,29 @@ static int sumsqr_(const T* src0, const uchar* mask, ST* sum, SQT* sqsum, int le
|
||||
|
||||
|
||||
static int sqsum8u( const uchar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
{ CV_INSTRUMENT_REGION(); return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
static int sqsum8s( const schar* src, const uchar* mask, int* sum, int* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
{ CV_INSTRUMENT_REGION(); return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
static int sqsum16u( const ushort* src, const uchar* mask, int* sum, double* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
{ CV_INSTRUMENT_REGION(); return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
static int sqsum16s( const short* src, const uchar* mask, int* sum, double* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
{ CV_INSTRUMENT_REGION(); return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
static int sqsum32s( const int* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
{ CV_INSTRUMENT_REGION(); return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
static int sqsum32f( const float* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
{ CV_INSTRUMENT_REGION(); return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
static int sqsum64f( const double* src, const uchar* mask, double* sum, double* sqsum, int len, int cn )
|
||||
{ return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
{ CV_INSTRUMENT_REGION(); return sumsqr_(src, mask, sum, sqsum, len, cn); }
|
||||
|
||||
typedef int (*SumSqrFunc)(const uchar*, const uchar* mask, uchar*, uchar*, int, int);
|
||||
|
||||
static SumSqrFunc getSumSqrTab(int depth)
|
||||
SumSqrFunc getSumSqrFunc(int depth)
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
static SumSqrFunc sumSqrTab[] =
|
||||
{
|
||||
(SumSqrFunc)GET_OPTIMIZED(sqsum8u), (SumSqrFunc)sqsum8s, (SumSqrFunc)sqsum16u, (SumSqrFunc)sqsum16s,
|
||||
@ -477,433 +320,6 @@ static SumSqrFunc getSumSqrTab(int depth)
|
||||
return sumSqrTab[depth];
|
||||
}
|
||||
|
||||
#ifdef HAVE_OPENCL
|
||||
static bool ocl_meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask )
|
||||
{
|
||||
CV_INSTRUMENT_REGION_OPENCL();
|
||||
|
||||
bool haveMask = _mask.kind() != _InputArray::NONE;
|
||||
int nz = haveMask ? -1 : (int)_src.total();
|
||||
Scalar mean(0), stddev(0);
|
||||
const int cn = _src.channels();
|
||||
if (cn > 4)
|
||||
return false;
|
||||
|
||||
{
|
||||
int type = _src.type(), depth = CV_MAT_DEPTH(type);
|
||||
bool doubleSupport = ocl::Device::getDefault().doubleFPConfig() > 0,
|
||||
isContinuous = _src.isContinuous(),
|
||||
isMaskContinuous = _mask.isContinuous();
|
||||
const ocl::Device &defDev = ocl::Device::getDefault();
|
||||
int groups = defDev.maxComputeUnits();
|
||||
if (defDev.isIntel())
|
||||
{
|
||||
static const int subSliceEUCount = 10;
|
||||
groups = (groups / subSliceEUCount) * 2;
|
||||
}
|
||||
size_t wgs = defDev.maxWorkGroupSize();
|
||||
|
||||
int ddepth = std::max(CV_32S, depth), sqddepth = std::max(CV_32F, depth),
|
||||
dtype = CV_MAKE_TYPE(ddepth, cn),
|
||||
sqdtype = CV_MAKETYPE(sqddepth, cn);
|
||||
CV_Assert(!haveMask || _mask.type() == CV_8UC1);
|
||||
|
||||
int wgs2_aligned = 1;
|
||||
while (wgs2_aligned < (int)wgs)
|
||||
wgs2_aligned <<= 1;
|
||||
wgs2_aligned >>= 1;
|
||||
|
||||
if ( (!doubleSupport && depth == CV_64F) )
|
||||
return false;
|
||||
|
||||
char cvt[2][40];
|
||||
String opts = format("-D srcT=%s -D srcT1=%s -D dstT=%s -D dstT1=%s -D sqddepth=%d"
|
||||
" -D sqdstT=%s -D sqdstT1=%s -D convertToSDT=%s -D cn=%d%s%s"
|
||||
" -D convertToDT=%s -D WGS=%d -D WGS2_ALIGNED=%d%s%s",
|
||||
ocl::typeToStr(type), ocl::typeToStr(depth),
|
||||
ocl::typeToStr(dtype), ocl::typeToStr(ddepth), sqddepth,
|
||||
ocl::typeToStr(sqdtype), ocl::typeToStr(sqddepth),
|
||||
ocl::convertTypeStr(depth, sqddepth, cn, cvt[0]),
|
||||
cn, isContinuous ? " -D HAVE_SRC_CONT" : "",
|
||||
isMaskContinuous ? " -D HAVE_MASK_CONT" : "",
|
||||
ocl::convertTypeStr(depth, ddepth, cn, cvt[1]),
|
||||
(int)wgs, wgs2_aligned, haveMask ? " -D HAVE_MASK" : "",
|
||||
doubleSupport ? " -D DOUBLE_SUPPORT" : "");
|
||||
|
||||
ocl::Kernel k("meanStdDev", ocl::core::meanstddev_oclsrc, opts);
|
||||
if (k.empty())
|
||||
return false;
|
||||
|
||||
int dbsize = groups * ((haveMask ? CV_ELEM_SIZE1(CV_32S) : 0) +
|
||||
CV_ELEM_SIZE(sqdtype) + CV_ELEM_SIZE(dtype));
|
||||
UMat src = _src.getUMat(), db(1, dbsize, CV_8UC1), mask = _mask.getUMat();
|
||||
|
||||
ocl::KernelArg srcarg = ocl::KernelArg::ReadOnlyNoSize(src),
|
||||
dbarg = ocl::KernelArg::PtrWriteOnly(db),
|
||||
maskarg = ocl::KernelArg::ReadOnlyNoSize(mask);
|
||||
|
||||
if (haveMask)
|
||||
k.args(srcarg, src.cols, (int)src.total(), groups, dbarg, maskarg);
|
||||
else
|
||||
k.args(srcarg, src.cols, (int)src.total(), groups, dbarg);
|
||||
|
||||
size_t globalsize = groups * wgs;
|
||||
|
||||
if(!k.run(1, &globalsize, &wgs, false))
|
||||
return false;
|
||||
|
||||
typedef Scalar (* part_sum)(Mat m);
|
||||
part_sum funcs[3] = { ocl_part_sum<int>, ocl_part_sum<float>, ocl_part_sum<double> };
|
||||
Mat dbm = db.getMat(ACCESS_READ);
|
||||
|
||||
mean = funcs[ddepth - CV_32S](Mat(1, groups, dtype, dbm.ptr()));
|
||||
stddev = funcs[sqddepth - CV_32S](Mat(1, groups, sqdtype, dbm.ptr() + groups * CV_ELEM_SIZE(dtype)));
|
||||
|
||||
if (haveMask)
|
||||
nz = saturate_cast<int>(funcs[0](Mat(1, groups, CV_32SC1, dbm.ptr() +
|
||||
groups * (CV_ELEM_SIZE(dtype) +
|
||||
CV_ELEM_SIZE(sqdtype))))[0]);
|
||||
}
|
||||
|
||||
double total = nz != 0 ? 1.0 / nz : 0;
|
||||
int k, j;
|
||||
for (int i = 0; i < cn; ++i)
|
||||
{
|
||||
mean[i] *= total;
|
||||
stddev[i] = std::sqrt(std::max(stddev[i] * total - mean[i] * mean[i] , 0.));
|
||||
}
|
||||
|
||||
for( j = 0; j < 2; j++ )
|
||||
{
|
||||
const double * const sptr = j == 0 ? &mean[0] : &stddev[0];
|
||||
_OutputArray _dst = j == 0 ? _mean : _sdv;
|
||||
if( !_dst.needed() )
|
||||
continue;
|
||||
|
||||
if( !_dst.fixedSize() )
|
||||
_dst.create(cn, 1, CV_64F, -1, true);
|
||||
Mat dst = _dst.getMat();
|
||||
int dcn = (int)dst.total();
|
||||
CV_Assert( dst.type() == CV_64F && dst.isContinuous() &&
|
||||
(dst.cols == 1 || dst.rows == 1) && dcn >= cn );
|
||||
double* dptr = dst.ptr<double>();
|
||||
for( k = 0; k < cn; k++ )
|
||||
dptr[k] = sptr[k];
|
||||
for( ; k < dcn; k++ )
|
||||
dptr[k] = 0;
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_OPENVX
|
||||
static bool openvx_meanStdDev(Mat& src, OutputArray _mean, OutputArray _sdv, Mat& mask)
|
||||
{
|
||||
size_t total_size = src.total();
|
||||
int rows = src.size[0], cols = rows ? (int)(total_size / rows) : 0;
|
||||
if (src.type() != CV_8UC1|| !mask.empty() ||
|
||||
(src.dims != 2 && !(src.isContinuous() && cols > 0 && (size_t)rows*cols == total_size))
|
||||
)
|
||||
return false;
|
||||
|
||||
try
|
||||
{
|
||||
ivx::Context ctx = ovx::getOpenVXContext();
|
||||
#ifndef VX_VERSION_1_1
|
||||
if (ctx.vendorID() == VX_ID_KHRONOS)
|
||||
return false; // Do not use OpenVX meanStdDev estimation for sample 1.0.1 implementation due to lack of accuracy
|
||||
#endif
|
||||
|
||||
ivx::Image
|
||||
ia = ivx::Image::createFromHandle(ctx, VX_DF_IMAGE_U8,
|
||||
ivx::Image::createAddressing(cols, rows, 1, (vx_int32)(src.step[0])), src.ptr());
|
||||
|
||||
vx_float32 mean_temp, stddev_temp;
|
||||
ivx::IVX_CHECK_STATUS(vxuMeanStdDev(ctx, ia, &mean_temp, &stddev_temp));
|
||||
|
||||
if (_mean.needed())
|
||||
{
|
||||
if (!_mean.fixedSize())
|
||||
_mean.create(1, 1, CV_64F, -1, true);
|
||||
Mat mean = _mean.getMat();
|
||||
CV_Assert(mean.type() == CV_64F && mean.isContinuous() &&
|
||||
(mean.cols == 1 || mean.rows == 1) && mean.total() >= 1);
|
||||
double *pmean = mean.ptr<double>();
|
||||
pmean[0] = mean_temp;
|
||||
for (int c = 1; c < (int)mean.total(); c++)
|
||||
pmean[c] = 0;
|
||||
}
|
||||
|
||||
if (_sdv.needed())
|
||||
{
|
||||
if (!_sdv.fixedSize())
|
||||
_sdv.create(1, 1, CV_64F, -1, true);
|
||||
Mat stddev = _sdv.getMat();
|
||||
CV_Assert(stddev.type() == CV_64F && stddev.isContinuous() &&
|
||||
(stddev.cols == 1 || stddev.rows == 1) && stddev.total() >= 1);
|
||||
double *pstddev = stddev.ptr<double>();
|
||||
pstddev[0] = stddev_temp;
|
||||
for (int c = 1; c < (int)stddev.total(); c++)
|
||||
pstddev[c] = 0;
|
||||
}
|
||||
}
|
||||
catch (const ivx::RuntimeError & e)
|
||||
{
|
||||
VX_DbgThrow(e.what());
|
||||
}
|
||||
catch (const ivx::WrapperError & e)
|
||||
{
|
||||
VX_DbgThrow(e.what());
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef HAVE_IPP
|
||||
static bool ipp_meanStdDev(Mat& src, OutputArray _mean, OutputArray _sdv, Mat& mask)
|
||||
{
|
||||
CV_INSTRUMENT_REGION_IPP();
|
||||
|
||||
#if IPP_VERSION_X100 >= 700
|
||||
int cn = src.channels();
|
||||
|
||||
#if IPP_VERSION_X100 < 201801
|
||||
// IPP_DISABLE: C3C functions can read outside of allocated memory
|
||||
if (cn > 1)
|
||||
return false;
|
||||
#endif
|
||||
#if IPP_VERSION_X100 >= 201900 && IPP_VERSION_X100 < 201901
|
||||
// IPP_DISABLE: 32f C3C functions can read outside of allocated memory
|
||||
if (cn > 1 && src.depth() == CV_32F)
|
||||
return false;
|
||||
|
||||
// SSE4.2 buffer overrun
|
||||
#if defined(_WIN32) && !defined(_WIN64)
|
||||
// IPPICV doesn't have AVX2 in 32-bit builds
|
||||
// However cv::ipp::getIppTopFeatures() may return AVX2 value on AVX2 capable H/W
|
||||
// details #12959
|
||||
#else
|
||||
if (cv::ipp::getIppTopFeatures() == ippCPUID_SSE42) // Linux x64 + OPENCV_IPP=SSE42 is affected too
|
||||
#endif
|
||||
{
|
||||
if (src.depth() == CV_32F && src.dims > 1 && src.size[src.dims - 1] == 6)
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
size_t total_size = src.total();
|
||||
int rows = src.size[0], cols = rows ? (int)(total_size/rows) : 0;
|
||||
if( src.dims == 2 || (src.isContinuous() && mask.isContinuous() && cols > 0 && (size_t)rows*cols == total_size) )
|
||||
{
|
||||
Ipp64f mean_temp[3];
|
||||
Ipp64f stddev_temp[3];
|
||||
Ipp64f *pmean = &mean_temp[0];
|
||||
Ipp64f *pstddev = &stddev_temp[0];
|
||||
Mat mean, stddev;
|
||||
int dcn_mean = -1;
|
||||
if( _mean.needed() )
|
||||
{
|
||||
if( !_mean.fixedSize() )
|
||||
_mean.create(cn, 1, CV_64F, -1, true);
|
||||
mean = _mean.getMat();
|
||||
dcn_mean = (int)mean.total();
|
||||
pmean = mean.ptr<Ipp64f>();
|
||||
}
|
||||
int dcn_stddev = -1;
|
||||
if( _sdv.needed() )
|
||||
{
|
||||
if( !_sdv.fixedSize() )
|
||||
_sdv.create(cn, 1, CV_64F, -1, true);
|
||||
stddev = _sdv.getMat();
|
||||
dcn_stddev = (int)stddev.total();
|
||||
pstddev = stddev.ptr<Ipp64f>();
|
||||
}
|
||||
for( int c = cn; c < dcn_mean; c++ )
|
||||
pmean[c] = 0;
|
||||
for( int c = cn; c < dcn_stddev; c++ )
|
||||
pstddev[c] = 0;
|
||||
IppiSize sz = { cols, rows };
|
||||
int type = src.type();
|
||||
if( !mask.empty() )
|
||||
{
|
||||
typedef IppStatus (CV_STDCALL* ippiMaskMeanStdDevFuncC1)(const void *, int, const void *, int, IppiSize, Ipp64f *, Ipp64f *);
|
||||
ippiMaskMeanStdDevFuncC1 ippiMean_StdDev_C1MR =
|
||||
type == CV_8UC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_8u_C1MR :
|
||||
type == CV_16UC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_16u_C1MR :
|
||||
type == CV_32FC1 ? (ippiMaskMeanStdDevFuncC1)ippiMean_StdDev_32f_C1MR :
|
||||
0;
|
||||
if( ippiMean_StdDev_C1MR )
|
||||
{
|
||||
if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C1MR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, pmean, pstddev) >= 0 )
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
typedef IppStatus (CV_STDCALL* ippiMaskMeanStdDevFuncC3)(const void *, int, const void *, int, IppiSize, int, Ipp64f *, Ipp64f *);
|
||||
ippiMaskMeanStdDevFuncC3 ippiMean_StdDev_C3CMR =
|
||||
type == CV_8UC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_8u_C3CMR :
|
||||
type == CV_16UC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_16u_C3CMR :
|
||||
type == CV_32FC3 ? (ippiMaskMeanStdDevFuncC3)ippiMean_StdDev_32f_C3CMR :
|
||||
0;
|
||||
if( ippiMean_StdDev_C3CMR )
|
||||
{
|
||||
if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CMR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 1, &pmean[0], &pstddev[0]) >= 0 &&
|
||||
CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CMR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 2, &pmean[1], &pstddev[1]) >= 0 &&
|
||||
CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CMR, src.ptr(), (int)src.step[0], mask.ptr(), (int)mask.step[0], sz, 3, &pmean[2], &pstddev[2]) >= 0 )
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
typedef IppStatus (CV_STDCALL* ippiMeanStdDevFuncC1)(const void *, int, IppiSize, Ipp64f *, Ipp64f *);
|
||||
ippiMeanStdDevFuncC1 ippiMean_StdDev_C1R =
|
||||
type == CV_8UC1 ? (ippiMeanStdDevFuncC1)ippiMean_StdDev_8u_C1R :
|
||||
type == CV_16UC1 ? (ippiMeanStdDevFuncC1)ippiMean_StdDev_16u_C1R :
|
||||
#if (IPP_VERSION_X100 >= 810)
|
||||
type == CV_32FC1 ? (ippiMeanStdDevFuncC1)ippiMean_StdDev_32f_C1R ://Aug 2013: bug in IPP 7.1, 8.0
|
||||
#endif
|
||||
0;
|
||||
if( ippiMean_StdDev_C1R )
|
||||
{
|
||||
if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C1R, src.ptr(), (int)src.step[0], sz, pmean, pstddev) >= 0 )
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
typedef IppStatus (CV_STDCALL* ippiMeanStdDevFuncC3)(const void *, int, IppiSize, int, Ipp64f *, Ipp64f *);
|
||||
ippiMeanStdDevFuncC3 ippiMean_StdDev_C3CR =
|
||||
type == CV_8UC3 ? (ippiMeanStdDevFuncC3)ippiMean_StdDev_8u_C3CR :
|
||||
type == CV_16UC3 ? (ippiMeanStdDevFuncC3)ippiMean_StdDev_16u_C3CR :
|
||||
type == CV_32FC3 ? (ippiMeanStdDevFuncC3)ippiMean_StdDev_32f_C3CR :
|
||||
0;
|
||||
if( ippiMean_StdDev_C3CR )
|
||||
{
|
||||
if( CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CR, src.ptr(), (int)src.step[0], sz, 1, &pmean[0], &pstddev[0]) >= 0 &&
|
||||
CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CR, src.ptr(), (int)src.step[0], sz, 2, &pmean[1], &pstddev[1]) >= 0 &&
|
||||
CV_INSTRUMENT_FUN_IPP(ippiMean_StdDev_C3CR, src.ptr(), (int)src.step[0], sz, 3, &pmean[2], &pstddev[2]) >= 0 )
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
CV_UNUSED(src); CV_UNUSED(_mean); CV_UNUSED(_sdv); CV_UNUSED(mask);
|
||||
#endif
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
} // cv::
|
||||
|
||||
void cv::meanStdDev( InputArray _src, OutputArray _mean, OutputArray _sdv, InputArray _mask )
|
||||
{
|
||||
CV_INSTRUMENT_REGION();
|
||||
|
||||
CV_Assert(!_src.empty());
|
||||
CV_Assert( _mask.empty() || _mask.type() == CV_8UC1 );
|
||||
|
||||
CV_OCL_RUN(OCL_PERFORMANCE_CHECK(_src.isUMat()) && _src.dims() <= 2,
|
||||
ocl_meanStdDev(_src, _mean, _sdv, _mask))
|
||||
|
||||
Mat src = _src.getMat(), mask = _mask.getMat();
|
||||
|
||||
CV_OVX_RUN(!ovx::skipSmallImages<VX_KERNEL_MEAN_STDDEV>(src.cols, src.rows),
|
||||
openvx_meanStdDev(src, _mean, _sdv, mask))
|
||||
|
||||
CV_IPP_RUN(IPP_VERSION_X100 >= 700, ipp_meanStdDev(src, _mean, _sdv, mask));
|
||||
|
||||
int k, cn = src.channels(), depth = src.depth();
|
||||
|
||||
SumSqrFunc func = getSumSqrTab(depth);
|
||||
|
||||
CV_Assert( func != 0 );
|
||||
|
||||
const Mat* arrays[] = {&src, &mask, 0};
|
||||
uchar* ptrs[2] = {};
|
||||
NAryMatIterator it(arrays, ptrs);
|
||||
int total = (int)it.size, blockSize = total, intSumBlockSize = 0;
|
||||
int j, count = 0, nz0 = 0;
|
||||
AutoBuffer<double> _buf(cn*4);
|
||||
double *s = (double*)_buf.data(), *sq = s + cn;
|
||||
int *sbuf = (int*)s, *sqbuf = (int*)sq;
|
||||
bool blockSum = depth <= CV_16S, blockSqSum = depth <= CV_8S;
|
||||
size_t esz = 0;
|
||||
|
||||
for( k = 0; k < cn; k++ )
|
||||
s[k] = sq[k] = 0;
|
||||
|
||||
if( blockSum )
|
||||
{
|
||||
intSumBlockSize = 1 << 15;
|
||||
blockSize = std::min(blockSize, intSumBlockSize);
|
||||
sbuf = (int*)(sq + cn);
|
||||
if( blockSqSum )
|
||||
sqbuf = sbuf + cn;
|
||||
for( k = 0; k < cn; k++ )
|
||||
sbuf[k] = sqbuf[k] = 0;
|
||||
esz = src.elemSize();
|
||||
}
|
||||
|
||||
for( size_t i = 0; i < it.nplanes; i++, ++it )
|
||||
{
|
||||
for( j = 0; j < total; j += blockSize )
|
||||
{
|
||||
int bsz = std::min(total - j, blockSize);
|
||||
int nz = func( ptrs[0], ptrs[1], (uchar*)sbuf, (uchar*)sqbuf, bsz, cn );
|
||||
count += nz;
|
||||
nz0 += nz;
|
||||
if( blockSum && (count + blockSize >= intSumBlockSize || (i+1 >= it.nplanes && j+bsz >= total)) )
|
||||
{
|
||||
for( k = 0; k < cn; k++ )
|
||||
{
|
||||
s[k] += sbuf[k];
|
||||
sbuf[k] = 0;
|
||||
}
|
||||
if( blockSqSum )
|
||||
{
|
||||
for( k = 0; k < cn; k++ )
|
||||
{
|
||||
sq[k] += sqbuf[k];
|
||||
sqbuf[k] = 0;
|
||||
}
|
||||
}
|
||||
count = 0;
|
||||
}
|
||||
ptrs[0] += bsz*esz;
|
||||
if( ptrs[1] )
|
||||
ptrs[1] += bsz;
|
||||
}
|
||||
}
|
||||
|
||||
double scale = nz0 ? 1./nz0 : 0.;
|
||||
for( k = 0; k < cn; k++ )
|
||||
{
|
||||
s[k] *= scale;
|
||||
sq[k] = std::sqrt(std::max(sq[k]*scale - s[k]*s[k], 0.));
|
||||
}
|
||||
|
||||
for( j = 0; j < 2; j++ )
|
||||
{
|
||||
const double* sptr = j == 0 ? s : sq;
|
||||
_OutputArray _dst = j == 0 ? _mean : _sdv;
|
||||
if( !_dst.needed() )
|
||||
continue;
|
||||
|
||||
if( !_dst.fixedSize() )
|
||||
_dst.create(cn, 1, CV_64F, -1, true);
|
||||
Mat dst = _dst.getMat();
|
||||
int dcn = (int)dst.total();
|
||||
CV_Assert( dst.type() == CV_64F && dst.isContinuous() &&
|
||||
(dst.cols == 1 || dst.rows == 1) && dcn >= cn );
|
||||
double* dptr = dst.ptr<double>();
|
||||
for( k = 0; k < cn; k++ )
|
||||
dptr[k] = sptr[k];
|
||||
for( ; k < dcn; k++ )
|
||||
dptr[k] = 0;
|
||||
}
|
||||
}
|
||||
CV_CPU_OPTIMIZATION_NAMESPACE_END
|
||||
} // namespace
|
||||
|
Loading…
Reference in New Issue
Block a user