Merge pull request #9189 from tomoaki0705:fixCalib3dRandom

This commit is contained in:
Alexander Alekhin 2017-07-20 12:24:34 +00:00
commit dcb3c4ff1e
2 changed files with 47 additions and 34 deletions

View File

@ -237,7 +237,8 @@ enum { SOLVEPNP_ITERATIVE = 0,
SOLVEPNP_P3P = 2, //!< Complete Solution Classification for the Perspective-Three-Point Problem @cite gao2003complete
SOLVEPNP_DLS = 3, //!< A Direct Least-Squares (DLS) Method for PnP @cite hesch2011direct
SOLVEPNP_UPNP = 4, //!< Exhaustive Linearization for Robust Camera Pose and Focal Length Estimation @cite penate2013exhaustive
SOLVEPNP_AP3P = 5 //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
SOLVEPNP_AP3P = 5, //!< An Efficient Algebraic Solution to the Perspective-Three-Point Problem @cite Ke17
SOLVEPNP_MAX_COUNT //!< Used for count
};
enum { CALIB_CB_ADAPTIVE_THRESH = 1,

View File

@ -61,22 +61,22 @@ public:
eps[SOLVEPNP_DLS] = 1.0e-2;
eps[SOLVEPNP_UPNP] = 1.0e-2;
totalTestsCount = 10;
pointsCount = 500;
}
~CV_solvePnPRansac_Test() {}
protected:
void generate3DPointCloud(vector<Point3f>& points, Point3f pmin = Point3f(-1,
-1, 5), Point3f pmax = Point3f(1, 1, 10))
void generate3DPointCloud(vector<Point3f>& points,
Point3f pmin = Point3f(-1, -1, 5),
Point3f pmax = Point3f(1, 1, 10))
{
const Point3f delta = pmax - pmin;
RNG rng = ::theRNG(); // fix the seed to use "fixed" input 3D points
for (size_t i = 0; i < points.size(); i++)
{
Point3f p(float(rand()) / RAND_MAX, float(rand()) / RAND_MAX,
float(rand()) / RAND_MAX);
p.x *= delta.x;
p.y *= delta.y;
p.z *= delta.z;
p = p + pmin;
points[i] = p;
float _x = rng.uniform(pmin.x, pmax.x);
float _y = rng.uniform(pmin.y, pmax.y);
float _z = rng.uniform(pmin.z, pmax.z);
points[i] = Point3f(_x, _y, _z);
}
}
@ -138,8 +138,7 @@ protected:
}
}
solvePnPRansac(points, projectedPoints, intrinsics, distCoeffs, rvec, tvec,
false, 500, 0.5f, 0.99, inliers, method);
solvePnPRansac(points, projectedPoints, intrinsics, distCoeffs, rvec, tvec, false, pointsCount, 0.5f, 0.99, inliers, method);
bool isTestSuccess = inliers.size() >= points.size()*0.95;
@ -158,26 +157,25 @@ protected:
ts->set_failed_test_info(cvtest::TS::OK);
vector<Point3f> points, points_dls;
const int pointsCount = 500;
points.resize(pointsCount);
generate3DPointCloud(points);
const int methodsCount = 6;
RNG rng = ts->get_rng();
for (int mode = 0; mode < 2; mode++)
{
for (int method = 0; method < methodsCount; method++)
for (int method = 0; method < SOLVEPNP_MAX_COUNT; method++)
{
double maxError = 0;
int successfulTestsCount = 0;
for (int testIndex = 0; testIndex < totalTestsCount; testIndex++)
{
if (runTest(rng, mode, method, points, eps, maxError))
{
successfulTestsCount++;
}
}
//cout << maxError << " " << successfulTestsCount << endl;
if (successfulTestsCount < 0.7*totalTestsCount)
{
ts->printf( cvtest::TS::LOG, "Invalid accuracy for method %d, failed %d tests from %d, maximum error equals %f, distortion mode equals %d\n",
@ -190,8 +188,9 @@ protected:
}
}
}
double eps[6];
double eps[SOLVEPNP_MAX_COUNT];
int totalTestsCount;
int pointsCount;
};
class CV_solvePnP_Test : public CV_solvePnPRansac_Test
@ -201,7 +200,7 @@ public:
{
eps[SOLVEPNP_ITERATIVE] = 1.0e-6;
eps[SOLVEPNP_EPNP] = 1.0e-6;
eps[SOLVEPNP_P3P] = 1.0e-4;
eps[SOLVEPNP_P3P] = 2.0e-4;
eps[SOLVEPNP_AP3P] = 1.0e-4;
eps[SOLVEPNP_DLS] = 1.0e-4;
eps[SOLVEPNP_UPNP] = 1.0e-4;
@ -216,38 +215,53 @@ protected:
Mat trueRvec, trueTvec;
Mat intrinsics, distCoeffs;
generateCameraMatrix(intrinsics, rng);
if (method == 4) intrinsics.at<double>(1,1) = intrinsics.at<double>(0,0);
if (method == SOLVEPNP_DLS)
{
intrinsics.at<double>(1,1) = intrinsics.at<double>(0,0);
}
if (mode == 0)
{
distCoeffs = Mat::zeros(4, 1, CV_64FC1);
}
else
{
generateDistCoeffs(distCoeffs, rng);
}
generatePose(trueRvec, trueTvec, rng);
std::vector<Point3f> opoints;
if (method == 2 || method == 5)
switch(method)
{
opoints = std::vector<Point3f>(points.begin(), points.begin()+4);
case SOLVEPNP_P3P:
case SOLVEPNP_AP3P:
opoints = std::vector<Point3f>(points.begin(), points.begin()+4);
break;
case SOLVEPNP_UPNP:
opoints = std::vector<Point3f>(points.begin(), points.begin()+50);
break;
default:
opoints = points;
break;
}
else if(method == 3)
{
opoints = std::vector<Point3f>(points.begin(), points.begin()+50);
}
else
opoints = points;
vector<Point2f> projectedPoints;
projectedPoints.resize(opoints.size());
projectPoints(Mat(opoints), trueRvec, trueTvec, intrinsics, distCoeffs, projectedPoints);
solvePnP(opoints, projectedPoints, intrinsics, distCoeffs, rvec, tvec,
false, method);
bool isEstimateSuccess = solvePnP(opoints, projectedPoints, intrinsics, distCoeffs, rvec, tvec, false, method);
if (isEstimateSuccess == false)
{
return isEstimateSuccess;
}
double rvecDiff = norm(rvec-trueRvec), tvecDiff = norm(tvec-trueTvec);
bool isTestSuccess = rvecDiff < epsilon[method] && tvecDiff < epsilon[method];
double error = rvecDiff > tvecDiff ? rvecDiff : tvecDiff;
if (error > maxError)
{
maxError = error;
}
return isTestSuccess;
}
@ -258,7 +272,7 @@ class CV_solveP3P_Test : public CV_solvePnPRansac_Test
public:
CV_solveP3P_Test()
{
eps[SOLVEPNP_P3P] = 1.0e-4;
eps[SOLVEPNP_P3P] = 2.0e-4;
eps[SOLVEPNP_AP3P] = 1.0e-4;
totalTestsCount = 1000;
}
@ -311,12 +325,11 @@ class CV_solveP3P_Test : public CV_solvePnPRansac_Test
ts->set_failed_test_info(cvtest::TS::OK);
vector<Point3f> points, points_dls;
const int pointsCount = 500;
points.resize(pointsCount);
generate3DPointCloud(points);
const int methodsCount = 2;
int methods[methodsCount] = {SOLVEPNP_P3P, SOLVEPNP_AP3P};
int methods[] = {SOLVEPNP_P3P, SOLVEPNP_AP3P};
RNG rng = ts->get_rng();
for (int mode = 0; mode < 2; mode++)
@ -330,7 +343,6 @@ class CV_solveP3P_Test : public CV_solvePnPRansac_Test
if (runTest(rng, mode, methods[method], points, eps, maxError))
successfulTestsCount++;
}
//cout << maxError << " " << successfulTestsCount << endl;
if (successfulTestsCount < 0.7*totalTestsCount)
{
ts->printf( cvtest::TS::LOG, "Invalid accuracy for method %d, failed %d tests from %d, maximum error equals %f, distortion mode equals %d\n",