address CUDA-related errors and enable cuda in elementwise ops

This commit is contained in:
Smirnov Egor 2022-10-17 23:00:12 +03:00
parent 2763f988da
commit dd14cf6a9c
3 changed files with 37 additions and 11 deletions

View File

@ -1108,7 +1108,7 @@ struct CeilFunctor : public BaseDefaultFunctor<CeilFunctor>
bool supportBackend(int backendId, int) bool supportBackend(int backendId, int)
{ {
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE; return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_HALIDE;
} }
inline float calculate(float x) const inline float calculate(float x) const
@ -1143,7 +1143,7 @@ struct FloorFunctor : public BaseDefaultFunctor<FloorFunctor>
bool supportBackend(int backendId, int) bool supportBackend(int backendId, int)
{ {
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE; return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_HALIDE;
} }
inline float calculate(float x) const inline float calculate(float x) const
@ -1178,7 +1178,7 @@ struct LogFunctor : public BaseDefaultFunctor<LogFunctor>
bool supportBackend(int backendId, int) bool supportBackend(int backendId, int)
{ {
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE; return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_HALIDE;
} }
inline float calculate(float x) const inline float calculate(float x) const
@ -1213,7 +1213,7 @@ struct RoundFunctor : public BaseDefaultFunctor<RoundFunctor>
bool supportBackend(int backendId, int) bool supportBackend(int backendId, int)
{ {
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE; return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_HALIDE;
} }
inline float calculate(float x) const inline float calculate(float x) const
@ -1253,7 +1253,7 @@ struct SqrtFunctor : public BaseDefaultFunctor<SqrtFunctor>
bool supportBackend(int backendId, int) bool supportBackend(int backendId, int)
{ {
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE; return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_HALIDE;
} }
inline float calculate(float x) const inline float calculate(float x) const
@ -1295,7 +1295,7 @@ struct NotFunctor : public BaseDefaultFunctor<NotFunctor>
bool supportBackend(int backendId, int) bool supportBackend(int backendId, int)
{ {
return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_HALIDE; return backendId == DNN_BACKEND_OPENCV || backendId == DNN_BACKEND_CUDA || backendId == DNN_BACKEND_HALIDE;
} }
inline float calculate(float x) const inline float calculate(float x) const

View File

@ -2971,6 +2971,8 @@ void ONNXImporter::parseElementWise(LayerParams& layerParams, const opencv_onnx:
LayerParams constParams; LayerParams constParams;
constParams.name = node_proto.input(i); constParams.name = node_proto.input(i);
constParams.type = "Const"; constParams.type = "Const";
// Non-constant propagated layers cannot output 1-d or 0-d tensors.
inp.dims = std::max(inp.dims, 2);
constParams.blobs.push_back(inp); constParams.blobs.push_back(inp);
opencv_onnx::NodeProto proto; opencv_onnx::NodeProto proto;

View File

@ -221,11 +221,21 @@ TEST_P(Test_ONNX_layers, GatherMulti)
TEST_P(Test_ONNX_layers, Convolution3D) TEST_P(Test_ONNX_layers, Convolution3D)
{ {
if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
{
// CUDA_FP16: cuDNN did not return a suitable algorithm for convolution.
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
}
testONNXModels("conv3d"); testONNXModels("conv3d");
} }
TEST_P(Test_ONNX_layers, Convolution3D_bias) TEST_P(Test_ONNX_layers, Convolution3D_bias)
{ {
if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
{
// CUDA_FP16: cuDNN did not return a suitable algorithm for convolution.
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
}
testONNXModels("conv3d_bias"); testONNXModels("conv3d_bias");
} }
@ -868,6 +878,12 @@ TEST_P(Test_ONNX_layers, PoolConv3D)
if (backend == DNN_BACKEND_VKCOM) if (backend == DNN_BACKEND_VKCOM)
applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN); applyTestTag(CV_TEST_TAG_DNN_SKIP_VULKAN);
if (backend == DNN_BACKEND_CUDA && target == DNN_TARGET_CUDA_FP16)
{
// CUDA_FP16: cuDNN did not return a suitable algorithm for convolution.
applyTestTag(CV_TEST_TAG_DNN_SKIP_CUDA_FP16);
}
testONNXModels("pool_conv_3d"); testONNXModels("pool_conv_3d");
} }
@ -1073,10 +1089,9 @@ TEST_P(Test_ONNX_layers, Div)
Mat out = net.forward(); Mat out = net.forward();
normAssert(ref, out, "", default_l1, default_lInf); normAssert(ref, out, "", default_l1, default_lInf);
expectNoFallbacksFromIE(net);
expectNoFallbacksFromCUDA(net);
testONNXModels("div_test_1x1",npy, 0, 0, false, true, 2); // NaryEltwise layer suuports only CPU for now
testONNXModels("div_test_1x1", npy, 0, 0, false, false, 2);
} }
TEST_P(Test_ONNX_layers, DynamicReshape) TEST_P(Test_ONNX_layers, DynamicReshape)
@ -1122,10 +1137,19 @@ TEST_P(Test_ONNX_layers, Split)
testONNXModels("split_2"); testONNXModels("split_2");
testONNXModels("split_3"); testONNXModels("split_3");
testONNXModels("split_4"); testONNXModels("split_4");
testONNXModels("split_sizes");
testONNXModels("split_neg_axis"); testONNXModels("split_neg_axis");
} }
// Mul inside with 0-d tensor, output should be A x 1, but is 1 x A. PR #22652
TEST_P(Test_ONNX_layers, DISABLED_Split_sizes_0d)
{
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NN_BUILDER_2019)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NN_BUILDER);
if (backend == DNN_BACKEND_INFERENCE_ENGINE_NGRAPH)
applyTestTag(CV_TEST_TAG_DNN_SKIP_IE_NGRAPH);
testONNXModels("split_sizes");
}
TEST_P(Test_ONNX_layers, Slice) TEST_P(Test_ONNX_layers, Slice)
{ {
#if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000) #if defined(INF_ENGINE_RELEASE) && INF_ENGINE_VER_MAJOR_LT(2019010000)
@ -2179,7 +2203,7 @@ TEST_P(Test_ONNX_nets, LResNet100E_IR)
} }
else if (target == DNN_TARGET_CUDA_FP16) else if (target == DNN_TARGET_CUDA_FP16)
{ {
l1 = 0.008; l1 = 0.009;
lInf = 0.04; lInf = 0.04;
} }
testONNXModels("LResNet100E_IR", pb, l1, lInf); testONNXModels("LResNet100E_IR", pb, l1, lInf);